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Preface

This book is for aspiring academic economists and those in related fields. It
provides a rigorous treatment of some of the basic tools of economic modeling
and reasoning, bundled together with enough commentary and reflection so that
the reader can appreciate both the strengths and weaknesses of these tools. The
target audience (to whom this preface is directly addressed) consists of first-year
graduate students who are taking the standard “ theory sequence” and would like
to go more deeply into a selection of foundational issues, as well as students
who, having taken a first-year graduate course out of one of the standard
textbooks, would like a deeper dive. At the Stanford Graduate School of
Business, this book (more or less) has been the basis of the first-quarter, first-
year theory course for Ph.D. students, many of whom had taken a course out of
the admirable textbook by Mas-Colell, Whinston, and Green,1 and so for whom
this is an opportunity to review and extend their command of that material.

The objective of the book is captured by the word “ command.” In my
experience, most students emerge from the standard first-year graduate theory
course with an understanding of the material that is good but not great. There is
little doubt that almost any student would benefit from a structured review of
this material using her original text. But, in my opinion, the standard textbooks
are not written with command or mastery of the material as their primary
objective. Because they are written to serve very broad audiences, breadth of
coverage is stressed over depth, and the authors sometimes omit technical
details, to avoid panicking less well-prepared readers. This book sacrifices
breadth for depth, avoids compromises about details (with a few exceptions),
and tries to explain to the reader both why economic foundations are done the
way they are done and what are some of the limitations in how things are done.

Clearly, words like “ command” and “ mastery” must be taken with many
grains of salt. If your career objectives are to do research in any topic covered by
this book, the coverage here is inadequate to bring you to the level of
understanding you will require. Every chapter in this book could be expanded to
a book-length treatment on its own and, even then, important work on the topic
would be left out. In some cases, the book comes closer to the research frontier
than in others; perhaps not surprisingly, this is true on topics on which I myself



have made contributions. But in no case will you finish a chapter and be
prepared to tackle frontier research on the topic of that chapter.

Instead, when I use the terms “ command” and “ mastery,” I have in mind
something less ambitious. The foundations of economics are abstract and
mathematical (more about this momentarily), and as with any abstract,
mathematics-based discipline, the more comfortable you are with the
foundations, the more likely it is that you will use those foundations well.
Errors in thought are much more likely the closer you are working to the
frontiers of your understanding. If you ever find yourself leaning on formal
mathematics that you don’t fully understand—if you find yourself thinking,
“ I’m not sure why my model generates this result, but that’s what emerges”—
you are in grave danger. You should understand the tools you use deeply
enough so that you aren’t fooled by them.

So that’s the objective here: to bring you(closer) to command level on a
relatively limited set of results, rather than to a nodding-acquaintance level with
a broader set. If you understand a few things deeply, you will understand what it
means to acquire deep understanding, and then you can strive for a similar depth
of understanding on whatever (other) subject is of interest to you. My objective
is to turn that “ if” into a “ when,” while covering a selection of important
microeconomic foundations.

Given this objective, can this book be used as a primary text in the first-
graduate-theory course? It is used that way for some of the students at the
Stanford GSB, so of course I think the answer is yes. But bear in mind the
book’s trade-off of breadth for depth. You should complement this book with
one that provides broader coverage. Indeed, since this material is part of the
foundation of what (I expect) you hope to be your career, you should in any case
invest in multiple perspectives. And, having given you that advice in general,
let me be a bit more specific: One of the many virtues of Mas-Colell, Whinston,
and Green (ibid.) is its enormous breadth. You ought to have a copy on your
shelf, if not your desk.2

Volume I?
The title is Microeconomic Foundations I with subtitle Choice and Competitive
Markets, suggesting that further volumes are in preparation. “ In preparation” is
an overstatement, as I write these words; “ planned” is more accurate, and I plan



not only II: Strategic Interaction, Information, and Imperfect Competition, but
also III: Institutions and Behavior. The volume you are holding deals with
economic foundations that existed in (nearly) finished form in the mid 1970s:
various models of individual choice; consumer and producer theory (for price-
taking or competitive consumers and firms); and (some) general equilibrium
theory. The intended second volume will cover material that entered the
mainstream of economic thought and practice from the mid 1970s to, say, 1990:
information economics and noncooperative game theory, in particular. The third
piece is the most speculative: I have in mind a volume that will wrap together
developments in behavioral and institutional economics, with (perhaps)
transaction cost economics playing a central (but not the central) role. I am
trying to write this so that each volume would correspond to one ten-week
course, fitting the academic calendar of Stanford University. But that’s an
ambitious agenda; only time will tell if the second and third parts ever appear.

Mathematics in this book and in economics
The approach of this book is resolutely mathematical, because the foundations of
economics are resolutely mathematical. The level of mathematics required is not
extremely high; nearly everything takes place within finite-dimensional
Euclidean space. This is a deliberate choice: I have tried to hold the
mathematics employed to a level that most graduate students in economics will
have. With exceptions limited to a few topics, to navigate this book you must
know the sort of mathematics covered in an undergraduate course on real
analysis, plus the first few weeks of an undergraduate course in abstract algebra
(concerning binary relations).3 You will need to know more about some specific
mathematics, notably some convex analysis, some theory of correspondences,
and basics of constrained optimization. But most of the prerequisite
mathematics and all of these specific topics are reviewed in a series of appendices
at the end of the book.4

However, while high-level mathematics is not required, what is commonly
called “ mathematical sophistication” is needed from start to finish. To make it
through the book, you need to be comfortable with mathematical abstraction and
with a definition–proposition–proof style of presentation. For students with a
strong background in mathematics, this will not be problematic and may even
be comforting; but for many students, this will be the real barrier to using this



book. I make no apologies for imposing this hurdle, because this, in my
opinion, is essential to command-level understanding of the mathematical tools
economists employ. I take proofs seriously, providing in most cases details or
at least an outline of the proof. (I will sometimes skip steps or “ leave the proof
to the reader.” In every case where this happens, if you aren’t sure you see how
to fill in the gaps, then you really should take the time to figure out how to do
so.)

Each chapter comes with some problems, often including requests that you
provide proofs that I leave to the reader. You won’t achieve mastery of this
material if you don’t do them. So do them. Answers to problems with asterisks
—as in, *2.3, meaning Problem 3 in Chapter 2—are provided in a Student’s
Guide, which also gives summaries of each chapter. (This includes roughly half
the problems and, in most cases, problems where I ask you to fill in gaps left in
the text.) You can freely download chapter-by-chapter pieces of the Student’s
Guide at the URL http://www.microfoundations1.stanford.edu/student.5

Concerning mathematics and its role in economics: Some first-year graduate
students are utterly turned off by their first-year theory courses. They have come
to the study of economics to understand real-world phenomena and, perhaps, to
make a difference in the real world, not to study mathematics. To those
students, my response is that if you plan to use economic techniques to
understand the real world and to see how to make a difference, your effectiveness
will depend in part on how well you understand those techniques; doing all this
math builds your understanding of the techniques. Aspiring novelists or
essayists may not see the value in learning to diagram sentences in fifth grade,
but if diagramming sentences in fifth grade improves the clarity of their
sentences—and I think it does—it is an important drill along the way to
becoming a novelist or essayist.

A different objection is that economics is a poorer discipline because of its
reliance on mathematical models. To be tractable—a word you are likely to
come to dislike—mathematical models must be relatively simple. So
mathematics forces all sorts of simplifications on economic models that make
the models less realistic. Because of this, some critics decry the study of
mathematical models in economics; they say it is indoctrination of the young
into a false and limiting faith.

Mathematical modeling is a mixed blessing for economics. Mathematical

http://www.microfoundations1.stanford.edu/student


modeling provides real advantages in terms of precision of thought, in seeing
how assumptions are linked to conclusions, in generating and communicating
insights, in generalizing propositions, and in exporting knowledge from one
context to another. In my opinion, these advantages are monumental, far
outweighing the costs. But the costs are not zero. Mathematical modeling
limits what can be tackled and what is considered legitimate inquiry. You may
decide, with experience, that the sorts of models in this book do not help you
understand the economic phenomena that you want to understand. Since, as I
write these lines, I don’t know what phenomena you want to understand, I can’t
say that you are surely wrong. And the position is defensible. But, based on my
own experiences, you are probably wrong. In any case, you are more likely to
succeed in convincing others and changing the way economists as a whole do
business if you have mastered the sort of mathematical models presented here,
which continue to be the foundation of modern economics.

Conventions
Within each chapter, propositions, definitions, lemmas, and so forth are
numbered sequentially. That is, if the first such item in Chapter 6 is a
definition, it is Definition 6.1; if the second such item in Chapter 6 is a
proposition, it is Proposition 6.2. Figures in a chapter are also numbered
sequentially, but in a different list. So the first figure in Chapter 6 is Figure 6.1.
Problems are numbered sequentially in still another list, and equations in still
another list.

The use of third-person singular pronouns in books such as this has become
an exercise in political correctness. I use she, her, and hers when only one actor
i s involved; the second actor is he, him, and his. Keeping with PC
requirements, when there are two actors and a logical status ordering, she has
higher status, as in: she is the employer, he is the employee. With a tip of the
hat to Robert Aumann, in some places she is Alice and he is Bob.

Having paid my dues to PC as outlined in the previous paragraph, the dollar
is the standard currency in this book.

Acknowledgments
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1 Microeconomic Theory, Oxford: Oxford University Press, 1995.
2 Of course, many other excellent treatments of these topics can be found; I

make no attempt to list them all. But one resource that may be harder to find is
a sequence of excellent notes on a variety of topics in microeconomics and
related mathematics, prepared by Kim Border. Go to the URL
http://www.hss.caltech.edu/~kcb/Notes.shtml for a list of these notes.

3 So my earlier claim that I have tried to avoid compromises is, at best, a
relative statement. And sometimes the lure of going beyond finite-dimensional
Euclidean spaces is irresistable: in a very few places, I employ some measure-
theoretic probability theory; to do some of the problems, you must know some
theory of stochastic processes; toward the end of the book, I informally discuss
economies with a continuum of agents. But none of this material is essential for
the main expositional flow of the text. I also expect all readers to be reasonably
facile with spreadsheets; I employ MSExcel.

4 I also provide a very detailed appendix on the methods of dynamic
programming, which I expect few readers will have seen before. This material is
not used in this book except in the problems connected to Chapter 7, but these
are useful tools in modern macroeconomics and in topics to be discussed in the
second volume, and it seemed appropriate to cover these methods in connection
with Chapter 7, which concerns dynamic choice.

5 Solutions to the other problems are provided in an Instructor’s Manual ,
which also provides my recommendations about teaching out of this volume.
The Instructor’s Manual is also available via the internet, but access is limited:
instructors who wish access can get more information at the URL
http://www.microfoundations1.stanford.edu/instructor.

http://www.hss.caltech.edu/%7Ekcb/Notes.shtml
http://www.microfoundations1.stanford.edu/instructor


Microeconomic Foundations I



Chapter One



Choice, Preference, and Utility

Most people, when they think about microeconomics, think first about the
slogan supply equals demand and its picture, shown here in Figure 1.1, with a
rising supply function intersecting a falling demand function, determining an
equilibrium price and quantity.

Figure 1.1. Supply equals demand

But before getting to this picture and the concept of an equilibrium, the
picture’s constituent pieces, the demand and supply functions, are needed.
Those functions arise from choices, choices by firms and by individual
consumers. Hence, microeconomic theory begins with choices. Indeed, the
theory not only begins with choices; it remains focused on them for a very long
time. Most of this volume concerns modeling the choices of consumers, with
some attention paid to the choices of profit-maximizing firms; only toward the
end do we seriously worry about equilibrium.



1.1. Consumer Choice: The Basics
The basic story of consumer choice is easily told: Begin with a set X of possible
objects that might be chosen and an individual, the consumer, who does the
choosing. The consumer faces limits on what she might choose, and so we
imagine some collection A of nonempty subsets of X from which the consumer
might choose. We let A denote a typical element of A; that is, A is a subset of
X. Then the choices of our consumer are denoted by c(A).

The story is that the consumer chooses one element of A. Nonetheless, we
think of c(A) as a subset of A, not a member or element of A. This allows for the
possibility that the consumer is happy with any one of several elements of A, in
which case c(A) lists all those elements. When she makes a definite choice of a
single element, say x, out of A—when she says, in effect, “ I want x and nothing
else”—we write c(A) = {x}, or the singleton set consisting of the single element
x. But if she says, “ I would be happy with either x or y,” then c(A) = {x, y}.

So far, no restrictions have been put on c(A). But some restrictions are
natural. For instance, c(A) ⊆ A seems obvious; we do not want to give the
consumer a choice out of A and have her choosing something that is not in A.
You might think that we would insist on c(A) ≠ ; that is, the consumer
makes some choice. But we do not insist on this, at least, not yet. Therefore…

A model of consumer choice consists of some set X of possible objects
of choice, a collection A of nonempty subsets of X, and a choice
function c whose domain is A and whose range is the set of subsets of
X, with the sole restriction that c(A) ⊆ A.

For instance, we can imagine a world of k commodities, where a commodity
bundle is a vector x = (x1, …, xk) ∈ Rk

+, the positive orthant in k-dimensional
Euclidean space. (In this book, the positive orthant means all components
nonnegative, or Rk

+ = {x ∈ Rk : x ≥ 0}. The strict positive orthant, denoted by
Rk

++, means elements of Rk all of whose components are strictly positive.) If,
say, k = 3 and the commodities are (in order) bread, cheese, and salami, the
bundle (3, 0, 0.5) means 3 units of bread, no cheese, and 0.5 units of salami, in
whatever units we are using. We can also imagine prices pi for the commodities,
so that p = (p1, …, pk) is the price vector; for convenience, we assume that all



prices are strictly positive, or p ∈ Rk
++. And we can imagine that the consumer

has some amount of income y ≥ 0 to spend. Then the consumer’s choice
problem is to choose some affordable bundle given these prices and her income;
that is, a typical set A is a budget set

{x ∈ Rk
+ : p · x ≤ y}.

A model of consumer choice in this context is then a choice function that says
which bundles the consumer would be willing to accept, as a function of the
prices of the goods p and her level of income y.

This is not much of a model, yet. Economic modeling begins with an
assumption that the choices made by the consumer in different situations are
somewhat coherent. Imagine, for instance, a customer at a café asking for a cup
of coffee and a piece of pie. When told that they have apple and cherry pie, she
opts for apple. Then the waiter tells her that they also have peach pie. “ If you
also have peach,” she responds, “ I would like cherry pie, please.” We want to
(and will) assume that choice in different situations is coherent enough to
preclude this sort of behavior; we’ll formalize this next page, in Definition 1.1b.

This is one sort of coherence. A second is that the consumer’s choices are in
accord with utility maximization, for some utility function defined on X. That
is, there is a function u : X → R, such that for every A,

A third sort of coherence involves a preference relation over X. A preference
relation expresses the consumer’s feelings between pairs of objects in X. We
denote the preference relation by  and imagine that for every pair x and y from
X, the consumer is willing to say that either x  y, meaning x is at least as
good as y, or not. For any pair x and y, then, one of four mutually exclusive
possibilities holds: (1) the consumer says that x  y and that y  x; (2) x 
y but not y  x; (3) y  x but not x  y; or (4) neither x  y nor y  x.
Then, with these preferences in hand, a consumer chooses from a set A precisely
those elements of A that are at least as good as everything in A, or



When you look at (most) models in microeconomics that have consumers,
consumers make choices, and the choice behavior of the consumer is modeled
by either (1) a utility function and the (implicit) assumption that choice from
any set A is governed by the rule (1.1) or (2) a preference relation and the
(implicit) assumption that choice from any set A is governed by the rule (1.2).
(Discrete choice models in econometrics have so-called random utility models,
in which choices are stochastic. And in some parts of behavioral economics, you
will find models of choice behavior that don’t quite fit either of these
frameworks. But most models have either utility-maximizing or preference-
maximizing consumers.)

The questions before us in this chapter are: How do these different ways of
modeling consumer choice compare? If we restrict attention to coherent choice,
does one imply the other(s)? Can they be made consistent?

The basic answer is that under certain coherence assumptions, the three
ways of modeling consumer choice are equivalent. We begin with the case of
finite X. (We worry a lot about infinite X later.) To keep matters simple, we
make the following assumption for the remainder of this chapter (but see
Problems 1.15 and 1.16).

Assumption. A is the set of all nonempty subsets of X.

Two properties of choice functions and two properties of a preference relation
must be defined:

Definition 1.1.
a.   A choice function c satisfies finite nonemptiness if c(A) is nonempty for

every finite A ∈ A.
b.   A choice function c satisfies choice coherence if, for every pair x and y

from X and A and B from A, if x, y ∈ A ∩ B, x ∈ c(A), and y ∉ c(A), then
y ∉ c(B).

c.   A preference relation on X is complete if for every pair x and y from X,
either x  y or y  x (or both).



d.   A preference relation on X is transitive if x  y and y  z implies that x
 z.

Some comments about these definitions may be helpful: Concerning a, if X is
finite, finite nonemptiness of c means that c(A) is nonempty for all subsets of X.
Later in the chapter, the restriction to finite A will have a role to play. Choice
coherence is the formalization intended to preclude the apple, cherry, and peach
pie vignette: If apple is the (sole) choice out of {apple, cherry}, then cherry
cannot be chosen from {apple, cherry, peach}. An equivalent (contrapositive)
form for b is: For every pair x and y from X and A and B from A, if x, y ∈ A ∩
B, x ∈ c(A), and y ∈ c(B), then y ∈ c(A) and x ∈ c(B).1

Proposition 1.2. Suppose that X is finite.
a.   If a choice function c satisfies finite nonemptiness and choice coherence,

then there exist both a utility function u : X → R and a complete and
transitive preference relation  that produce choices according to c via
the formulas (1.1) and (1.2), respectively.

b.   If a preference relation  on X is complete and transitive, then the choice
function it produces via formula (1.2) satisfies finite nonemptiness and
choice coherence, and there exists a utility function u : X → R such that

c.   Given any utility function u : X → R, the choice function it produces via
formula (1.1) satisfies finite nonemptiness and choice coherence, the
preference relation it produces via (1.3) is complete and transitive, and the
choice function produced by that preference relation via (1.2) is precisely
the choice function produced directly from u via (1.1).

In words, choice behavior (for a finite X) that satisfies finite nonemptiness and
choice coherence is equivalent to preference maximization (that is, formula (1.2))
for complete and transitive preferences, both of which are equivalent to utility
maximization (via formulas (1.1) and (1.3)). However expressed, whether in
terms of choice, preference, or utility, this conglomerate (with the two pairs of



assumptions) is the standard model of consumer choice in microeconomics.
A much-used piece of terminology concerns display (1.3), which connects a

utility function u and a preference relation . When (1.3) holds, we say that
the utility function u represents the preference relation .

In terms of economics, Proposition 1.2 is the story of this chapter. Several
tasks remain:

1.  We prove the proposition.

2.  We consider how (and whether) this proposition extends to infinite X. After
all, in the one example we’ve given, where X = Rk

+, we have an infinite X.
Most economic applications will have an infinite X.

3.  We have so far discussed the binary relation , known as weak
preference, which is meant to be an expression of “ at least as good as.” In
economic applications, two associated binary relations, strict preference
(“ strictly better than”) and indifference (“ precisely as good as”) are used;
we explore them and their connection to weak preference.

4.  We comment briefly on aspects of the standard model: What if A does not
contain all nonempty subsets of X ? What is the empirical evidence for or
against the standard model? What alternatives are there to the standard
model?

1.2. Proving Most of Proposition 1.2, and More
Parts of Proposition 1.2 are true for all X, finite or not.

Proposition 1.3. Regardless of the size of X, if u : X → R, then
a.   the preference relation u defined by x u y if u(x) ≥ u(y) is complete

and transitive, and
b.   the choice function cu defined by cu(A) = {x ∈ A : u(x) ≥ u(y) for all y ∈

A} satisfies finite nonemptiness and choice coherence.

Proof. (a) Given any two x and y from X, either u(x) ≥ u(y) or u(y) ≥ u(x) (since



u(x) and u(y) are two real numbers); hence either x u y or y u x. That is, 

u is complete.

If x u y and y u z, then (by definition) u(x) ≥ u(y) and u(y) ≥ u(z); hence
u(x) ≥ u(z) (because ≥ is transitive for real numbers), and therefore x u z. That
is, u is transitive.

(b) Suppose x, y ∈ A ∩ B and x ∈ cu(A). Then u(x) ≥ u(y). If, moreover, y ∉
cu(A), then u(z) > u(y) for some z ∈ A. But u(x) ≥ u(z) since x ∈ cu(A) implies
u(x) ≥ u(z) for all z ∈ A; therefore u(x) > u(y). Since x ∈ B, this immediately
implies that y ∉ cu(B), since there is something in B, namely x, for which u(y) 

 u(x). This is choice coherence.

If A is a finite subset of X, then {r ∈ R : r = u(x) for some x ∈ A} is a
finite set of real numbers. Every finite set of real numbers contains a largest
element; that is, some r* = u(x*) in the set satisfies r* ≥ r for all the elements of
the set. But this says that u(x*) ≥ u(x) for all x ∈ A, which implies that x* ∈
cu(A), and cu(A) is not empty.

Proposition 1.4. Regardless of the size of X, if  is a complete and transitive
binary relation on X, the choice function c  defined on the set of all nonempty

subsets of X by

c (A): = {x ∈ A : x  y for all y ∈ A}

satisfies finite nonemptiness and choice coherence.

Proof. Suppose x, y ∈ A ∩ B, x ∈ c (A), and y ∉ c (A). Since x ∈ c (A), x 

 y. Since y ∉ c (A), y  z for some z ∈ A. By completeness, z  y. Since

x ∈ c (A), x  z. I claim that y  x: Assume to the contrary that y  x,

then x  z and transitivity of  would imply that y  z, contrary to what



was assumed. But if y  x, then since x ∈ B, y ∉ c (B). That is, c  satisfies

choice coherence.
I assert that if A is a finite (and nonempty) set, some x ∈ A satisfies x  y

for all y ∈ A (hence c (A) is not empty). The proof is by induction2 on the size

of A: if A contains a single element, say, A = {x}, then x  x because  is
complete. Therefore, the statement is true for all sets of size 1. Assume
inductively that the statement is true for all sets of size n – 1 and let A be a set
of size n. Take any single element x0 from A, and let A′ = A ∩ {x0}. A′ is a set
of size n ≥ 1, so there is some x′ ∈ A′ such that x′  y for all y ∈ A′. By
completeness of , either x′  x0 or x0  x′. In the first case, x′  y for all
y ∈ A, and we are done. In the second case, x0  x0 by completeness, and x0 

 y for all y ∈ A′, since x′  y, and therefore transitivity of  tells us that
x0  y. Hence, for this arbitrary set of size n, we have produced an element at
least as good as every other element. This completes the induction step,
proving the result.

Proposition 1.5. Regardless of the size of X, suppose the choice function c
satisfies finite nonemptiness and choice coherence. Define a binary relation 

c on X by

x c y if x ∈ c({x, y}).

Define a new choice function c c by

c c(A) = {x ∈ A : x c y for all y ∈ A}.

Then c is complete and transitive, c c satisfies choice coherence and finite

nonemptiness, and for every subset A of X, either



c(A) =  or c(A) = c c(A).

Before proving this, please note an instant corollary: If X is finite and c satisfies
finite nonemptiness, then c(A) ≠  for all A ⊆ X, and hence c(A) = c c(A) for

all A.

Proof of Proposition 1.5. Since c satisfies finite nonemptiness, either x ∈ c({x,
y}) or y ∈ c({x, y}); hence either x c y or y c x. That is, c is complete.

Suppose x c y and y c z. I assert that choice coherence implies that x
∈ c({x, y, z}). Suppose to the contrary that this is not so. It cannot be that y ∈
c({x, y, z}), for if it were, then x could not be in c({x, y}) by choice coherence:
Take A = {x, y, z} and B = {x, y}; then x, y ∈ A ∩ B, y ∈ c(A), x ∉ c(A), and
hence choice coherence implies that x ∉ c(B), contrary to our original
hypothesis. And then, once we know that y ∉ c({x, y, z}), choice coherence can
be used again to imply that z ∉ c({x, y, z}): Now y, z ∈ {x, y, z} ∩ {y, z}, and
if z ∈ c({x, y, z}), since we know that y ∉ c({x, y, z}), this would imply y ∉
c({y, z}), contrary to our original hypothesis. But if x, y, and z are all not
members of c({x, y, z}), then it is empty, contradicting finite nonemptiness.
Hence, we conclude that x must be a member of c({x, y, z}). But then choice
coherence and finite nonemptiness together imply that x ∈ c({x, z}), for if it
were not, z must be in c({x, z}), and choice coherence would imply that x
cannot be a member of c({x, y, z}). Hence we now conclude that x ∈ c({x, z}),
which means that x c z, and c is transitive.

Since c is complete and transitive, we know from Proposition 1.4 that c

c satisfies finite nonemptiness and choice coherence.

Now take any set A and any x ∈ c(A). Let y be any other element of A. By
finite nonemptiness and choice coherence, x must be in c({x, y}), because, if not,
then y is the sole element of c({x, y}) and, by choice coherence, x cannot be an
element of c(A). Therefore, x c y. This is true for every member y of A;
therefore x ∈ c c(A). That is, c(A) ⊆ c c(A).

Finally, suppose x ∈ c c(A) and that c(A) is nonempty. Let x0 be some



member c(A). By the definition of c c, x c x0, which is to say that x ∈

c({x0, x}). But then x ∉ c(A) is a violation of choice coherence. Therefore, x ∈
c(A), and (assuming c(A) is nonempty) c c(A) ⊆ c(A). This completes the

proof.

1.3. The No-Better-Than Sets and Utility Representations
If you carefully put all the pieces from Section 1.2 together, you see that, to
finish the proof of Proposition 1.2, we must show that for finite X, if c satisfies
finite nonemptiness and choice coherence, some utility function u gives c via the
formula (1.1), and if  is complete and transitive, some utility function u
represents  in the sense of (1.3). We will get there by means of an excursion
into the no-better-than sets.

Definition 1.6. For a preference relation  defined on a set X (of any size)
and for x a member of X, the no-better-than x set, denoted NBT(x), is defined
by

NBT(x) = {y ∈ X : x  y}.

 

In words, y is no better than x if x is at least as good as y. We define NBT(x) for
any preference relation , but we are mostly interested in these sets for
complete and transitive , in which case the following result pertains.

Proposition 1.7. If  is complete and transitive, then NBT(x) is nonempty
for all x. In particular, x ∈  NBT(x). Moreover, x  y if and only if NBT(y)
⊆ NBT(x), and if x  y but y  x, then NBT(y) is a proper subset of

NBT(x). Therefore, the collection of NBT sets nest; that is, if x and y are any
two elements of X, then either NBT(x) is a proper subset of NBT(y), or
NBT(y) is a proper subset of NBT(x), or the two are equal.



This is not hard to prove, so I leave it to you in case you need practice with
these sorts of exercises in mathematical theorem proving.

Proposition 1.8. If X is a finite set and  is complete and transitive, then the
function u : X → R defined by

u(x) = the number of elements of NBT(x)

satisfies u(x) ≥ u(y) if and only if x  y.

Proof. This is virtually a corollary of the previous proposition, but since I failed
to give you the proof of that proposition, I spell this one out. Suppose x  y.
Then by Proposition 1.7, NBT(y) ⊆ NBT(x), so u(y) ≤ u(x); that is, u(x) ≥
u(y).

Conversely, suppose u(x) ≥ u(y). Then there are least as many elements of
NBT(x) as there are of NBT(y). But, by Proposition 1.7, these sets nest; hence
NBT(y) ⊆ NBT(x). Of course, y ∈ NBT(y), abd hence y ∈ NBT(x) so x  y.

To finish off the proof of Proposition 1.2, we need to produce a utility
function u from a choice function c in the case of finite X. Here is one way to do
it: Assume X is finite and c is a choice function on X that satisfies finite
nonemptiness and choice coherence. Use c to generate a preference relation c,
which is immediately complete and transitive. Moreover, if c c is choice

generated from c, we know (since X is finite; hence c(A) is nonempty for
every A) that c c is precisely c). Use the construction just given to produce a

utility function u that represents c. Because, for any A,

c(A) = c c(A) = {x ∈ A : x c y for all y ∈ A},

we know immediately that



c(A) = c c(A) = {x ∈ A : u(x) ≥ u(y) for all y ∈ A}.

Done.

Although a lot of what is proved in this section and in Section 1.2 works
for any set X, in two places we rely on the finiteness of X.

1.  In the proof of Proposition 1.8, if NBT(x) can be an infinite set, defining
u(x) to be the number of elements of NBT(x) does not work.

2.  In several places, when dealing with choice functions, we had to worry
about c(A) =  for infinite A. We could have added an assumption that c(A)
is never empty, but for reasons to be explained, that is a bad idea.

We deal with both these issues in Sections 1.5 and 1.6, respectively, but to
help with the exposition, we first take up issues related to preference relations.

1.4. Strict Preference and Indifference
In terms of preferences, the standard theory of choice deals with a complete and
transitive binary relation , often called weak preference. The statement x  y
means that the consumer judges x to be at least as good as y; that is, either x
and y are equally good or x is better than y.

For any pair x and y, completeness implies that of the four mutually
exclusive possibilities ennumerated in the first paragraph of page 3, one of the
first three must hold, namely

1.  both x  y and y  x, or

2.  x  y but not y  x, or

3.  y  x but not x  y.

In case 1, we say that the consumer is indifferent between x and y and write x ~
y. In case 2, we say that x is strictly preferred to y and write x > y. And in case
3, y is strictly preferred to x, written y ≥ x.



Proposition 1.9. Suppose weak preference  is complete and transitive. Then

a.   x  y if and only if it is not the case the y  x.

b.   Strict preference is asymmetric: If x  y, then it is not the case that y 
x.

c.   Strict preference is negatively transitive: If x  y, then for any third
element z, either z  y or x  z.

d.   Indifference is reflexive: x ~ x for all x.
e.   Indifference is symmetric: If x ~ y, then y ~ x.
f.   Indifference is transitive: If x ~ y and y ~ z, then x ~ z.
g.   If x  y and y  z, then x  z. If x  y and y  z, then x  z.

h.   Strict preference is transitive: If x  y and y  z, then x  z.

Proof. Asymmetry of strict preference is definitional: x  y if x  y and not y 
 x, either of which implies not y ≥ x. Indifference is reflexive because  is

complete; hence x  x for all x. Indifference is symmetric because the definition
of indifference is symmetric. Indifference is transitive because  is transitive: If
x ~ y and y ~ z, then x  y, y  z, z  y, and y  x, and hence x  z and
z  x, so x ~ z. This leaves a, c, g, and h to prove.

For g, if x  y then x  y. If in addition y  z, then x  z by
transitivity. Suppose z  x. Then by transitivity of , y  z  x implies y

 x, contradicting the hypothesis that x  y. Therefore, it is not true that z 
 x, and hence x  z. The other half is similar.

For h, if x  y and y  z, then y  z. Apply part g.

For a, if x  y, then x  y and not y  x by definition, so in particular
not y  x. Conversely, not y  x implies x  y by completeness of , and
these two together are x  y by the definition of .



For c, suppose x  y but not z  y. By part a, the second is equivalent to
y  z, and then x  z by part g.

We began with weak preference  and used it to define strict preference 
and indifference ~. Other textbooks begin with strict preference  as the
primitive and use it to define weak preference  and indifference ~. While the
standard theory is based on a complete and transitive weak preference relation, it
could equally well be based on strict preference that is asymmetric and
negatively transitive:

Proposition 1.10. Suppose a binary relation  is asymmetric and negatively
transitive. Define  by x  y if not y  x, and define ~ by x ~ y if neither x 

 y nor y  x. Then  is complete and transitive, and if we defined ~′ and 
 ′ from  according to the rules given previously,  ~′ would be the same as

~, and  ′  would be the same as .

Proving this makes a good exercise and so is left as Problem 1.9.

1.5. Infinite Sets and Utility Representations
This section investigates the following pseudo-proposition:

If  is a complete and transitive binary relation on an arbitrary set X, then
some function u : X → R can be found that represents ; that is, such that x 

 y if and only if u(x)  u(y).

Proposition 1.3 tells us the converse: If  is represented by some utility
function u, then  must be complete and transitive. But is the pseudo-
proposition true? The answer is no, of course; we would not call this a pseudo-
proposition if the answer were yes. I do not give the standard counterexample
here; it is found in Problem 1.10.

Rather than give the standard counterexample, we look for fixes. The idea is



to add some assumptions on preferences or on X or on both together that make
the proposition true. The first fix is quite simple.

Proposition 1.11.  If  is a complete and transitive binary relation on a
countable set X, then for some function u : X → R, u(x) ≥ u(y) if and only if x 

 y.

(A set X is countable if its elements can be enumerated; that is, if there is a way
to count them with the positive integers. All finite sets are countable. The set of
integers is countable, as is the set of rational numbers. But the set of real
numbers is not countable or, in math-speak, is uncountable. Proving this is not
trivial.)

Proof. Let {x1, x2, …} be an enumeration of the set X. Define d : X → R by
d(xn) = ( )n. Define, for each x,

(The series  is absolutely summable, so the potentially

infinite sum being taken in the display is well defined. If you are unclear on
this, you need to review [I hope it is just a review!] the mathematics of
sequences and series.) Suppose x  y. Then NBT(y) ⊆ NBT(x), so the sum
that defines u(x) includes all the terms in the sum that defines u(y) and perhaps
more. All the summands are strictly positive, and therefore u(x) ≥ u(y).

Conversely, we know that the NBT sets nest, and so u(x) ≥ u(y) only if
NBT(y) ⊆ NBT(x). Therefore u(x) ≥ u(y) implies y ∈ NBT(y) ⊆ NBT(x); y ∈
NBT(x), and hence x  y.

Compare the proofs of Propositions 1.8 and 1.11. In Proposition 1.8, the
u(x) is defined to be the size of the set NBT(x). In other words, we add 1 for



every member of NBT(x). Here, because that might get us into trouble, we add
instead terms that sum to a finite number, even if there are (countably) infinitely
many of them, making sure that the terms are all strictly positive so that more
summands means a bigger sum and so larger utility.

The hard part is to go from countable sets X to uncountable sets. A very
general proposition does this for us.

Proposition 1.12. Suppose  is a complete and transitive preference relation
on a set X. The relation  can be represented by a utility function if and only
if some countable subset X* of X has the property that if x  y for x and y
from X, then x  x*  y for some x* ∈ X*.

Proof. Suppose X* exists as described. Enumerate X* as {x*1, x*2, …} and let
d(x*n) = ( )n. For each x ∈ X, define

If x  y, then NBT(y) ⊆ NBT(x); hence NBT(y) ∩ X* ⊆ NBT(x) ∩ X*. The
sum defining u(x) is over at least as large a set as the sum defining u(y), and all
the summands are positive, so u(x) ≥ u(y).

To show the converse, we use the contrapositive: If not y  x, then not
u(y) ≥ u(x). Not y  x is equivalent to x  y, and not u(y) ≥ u(x) is u(x) > u(y).
But if x  y, then there is some x* in X* such that x  x*  y. Hence x* is
in the sum that defines u(x) but not in the sum that defines u(y). Otherwise,
every term in sum defining u(y) is in the sum defining u(x) (see the previous
paragraph), and therefore u(x) > u(y).

You may wish to avoid on a first reading the proof that if  is represented
by the utility function u, then such a countable set X* exists. This proof is
somewhat technical and filled with special cases.



Let {In} be an ennumeration of all closed intervals with rational endpoints;
that is, each In is an interval of the form 

 are rational numbers. (The set of

rational numbers is countable and the cross product of two countable sets is
countable.) Let u(X) denote the set of real numbers {r ∈ R : r = u(x) for some x
∈ X}. Consider three possibilities:

1.  If u(X) ∩ In is nonempty, pick some single x ∈ X such that u(x) ∈ In and
call this xn.

2.  If u(X) ∩ In is empty, let n = inf{r ∈ u(X) : r > n}. If u(x) = n for
some x ∈ X, choose one such x and call this xn.

3.  If u(X) ∩ In is empty and n ≠ u(x) for all x ∈ X, then do not bother
defining xn.

Let X* be the set of all xn created in cases 1 and 2. Since there are countably
many intervals In and at most one xn is produced for each In, X* is a countable
set.

Now suppose x  y in X. Since u represents , u(x) > u(y). Choose some
rational number q in the open interval (u(y), u(x)). Let  = inf{r ∈ u(X) : r 
q}. Clearly, u(x) ≥ , since u(x) is in the set over which we are taking the
infimum. There are two cases:

1.  If u(x)  , let q′ be some rational number such that u(x)  q′  , and
let n be the index of the interval [q, q′]. By construction, u(X) ∩ [q, q′] ≠ 
(you may have to think about that one for a minute); hence there is x* ∈
X*, namely xn, with u(x*) ∈ [q, q′], which means u(x)  u(x*  u(y).
Done.

2.  If u(x) = , then let q′ be some rational number such that q  q′  u(y),
and let n be the index of the interval [q′, q]. If u(X) ∩ [q′, q] ≠ , then there
i s x* ∈ X* with u(x) ≥ q ≥ u(x*) ≥ q′  > u(y), and therefore x > x* ≥ y.



Alternatively, if u(X) ∩ [q′, q] = , then the interval [q′, q] fits into
category ∈ above, and in particular, there is some x* ∈ X*, namely xn,
such that u(x*) =  = u(x). But for this x*, u(x) = u(x*) > u(y); hence x 
x*  y. Once again, done.

Proposition 1.12 gives a necessary and sufficient condition that, in addition
to  being complete and transitive, provides for a utility representation. This
proposition is, therefore, the most general such proposition we can hope for. But
general or not, it is not hugely useful, because the condition—the existence of
the countable subset X*—is not very practical. How can you tell, in a particular
application, if such a countable subset exists?

For practical purposes, the usual method is to make topological
assumptions about X and . To illustrate this method, and also to take care of
the vast majority of applications you are likely to encounter in a career in
economics, I’ll specialize to the case where X = Rk

+, with the interpretation that
there are k commodities and x ∈ X is a bundle of goods. In this context, the
following definition makes sense:

Definition 1.13. Complete and transitive preferences  on X = Rk
+ are

continuous if, for every pair x and y from X with x  y, we can find an  ∈ >
0 such that for every bundle x′ ∈ X that is less than ∈ distant from x and for
every bundle y′ ∈ X that is less than ∈ distant from y, x′  y′.

In this definition, the distance between two points is the length of the line
segment that joins them; that is, we use Euclidean distance.3

The idea is captured by Figure 1.2. If x  y, then of course x ≠ y. Denote
the distance between them by d. If we take a small enough ∈, say ∈ equal to
1% of d, then everything within ∈ of x will be very close to being as good as x,
and everything within ∈ of y will be very close to being as good (or bad) as y.
Since x  y, if we make the balls small enough, everything in the ball around x
should be strictly better than everything in the ball around y.



Figure 1.2. Continuity of preferences. Suppose x  y, and the distance
between x and y is d. If preferences are continuous, we can put a ball
around x and a ball around y, where you should think of the diameters of
the balls being small relative to d, such that for all x′ in the ball around x
and for all y′ in the ball around y, x′  y′.

This definition of continuity of  provides us with a very nice picture,
Figure 1.2, but is neither mathematically elegant nor phrased in way that is
useful in proofs of propositions that assume continuous preferences. The next
proposition provides some equivalent definitions that are both more elegant and,
in many cases, more useful.

Proposition 1.14. Continuity of preferences  on Rk
+ imply the following,

and any one of the following imply that preferences  on Rk
+ are continuous.

(Therefore, continuity of preferences could equivalently be defined by any one
of the following, each of which implies all the others.)

a.   If {xn} is a sequence from Rk
+ with xn  y for all n, and if limn→∞ xn =

x, then x  y. If {xn} is a sequence from Rk
+ with y  xn for all n, and

if limn→∞ xn = x, then y  x.

b.   If {xn} is a sequence from Rk
+ with limn→∞ xn = x, and if x > y, then for

all sufficiently large n, xn  y. And if limn→∞ xn = x, and y  x, then for
all sufficiently large n, y  xn.



c.   For all x ∈ Rk
+ , the sets NBT(x) and NWT(x) = {y ∈ Rk

+ : y  x} are
both closed sets. (NWT is a mnemonic for No Worse Than.)

d.   For all x ∈ Rk
+ , the sets SBT(x) = {y ∈ Rk

+ : y  x} and SWT(x) =

{y ∈ Rk
+ : x  y} are both (relatively, in Rk

+ ) open sets.4 (SBT is a
mnemonic for Strictly Better Than, and SWT stands for Strictly Worse
Than.)

The proof of this proposition is left as an exercise, namely Problem 1.11.
Providing the proof is a good diagnostic test for whether you understand
concepts of open and closed sets and limits in Euclidean spaces. If you aren’t
sure that you can provide a proof, you should review these basic topological (or,
if you prefer, analytical) concepts until you can prove this proposition; I provide
a written-out proof in the Student’s Guide.

The reason for the definition is probably clear:

Proposition 1.15. If X = Rk
+ and preferences  are complete, transitive, and

continuous on X, then  can be represented by a utility function u; that is,
u(x) ≥ u(y) if and only if x  y.

Proof. The proof consists of showing that there is a countable subset X* of X
that does the trick, in the sense of Proposition 1.12. For instance, let X* be all
bundles x ∈ X all of whose components are rational numbers. There are
countably many of these bundles. Suppose x  y. Look at the line segment that
joins x to y; that is, look at bundles that are convex combinations of x and y, or
bundles of the form ax + (1 – a)y for a ∈ [0, 1]. Let a1 = inf{a ∈ [0, 1] : ax +
(1 – a)y  x}. It is easy to see that a1 > 0; we can put a ball of some size ∈ >
0 around y such that every bundle in the ball is strictly worse than x, and for
small enough a, convex combinations ax + (1 – a)y all lie within this ball. Let
x1 denote a1x + (1 – a1)y; I claim that x1 ~ x. To see this, consider the other
two possibilities (both of which entail a1 ≠ 1, of course): If x1 – x, then there is
a ball of positive radius around x1 such that everything in the ball is strictly
preferred to x, but this would mean that for some convex combinations ax + (1 –



a)y with a < a1, ax + (1 – a)y  x, contradicting the definition of a1. And if x 
 x1, then a ball of positive radius around x1 will be such that everything in

the ball is strictly worse than x. This ball includes all convex combinations ax
+ (1 – a)y with a a bit bigger than a1, again contradicting the definition of a1.

Since x1 ~ x, x1  y. There is a ball of positive radius around x1 such that
everything in the ball is strictly better than y. This includes convex
combinations ax + (1 – a)y that have a slightly smaller than a1. But by the
definition of a1, all such convex combinations must be strictly worse than x.
Therefore, we know for some a2 less than a1, and for x2 = a2x + (1 – a2)y, x 
x2  y. Now we are in business. We can put a ball of positive radius around x2
such that everything in the ball is strictly worse than x, and we can put a ball of
positive radius around x2 such that everything in the ball is strictly better than
y. Taking the smaller of these two radii, everything z in a ball of that radius
satisfies x  z  y. But any ball of positive radius contains bundles all of
whose components are rational; hence some x* ∈ X* satisfies x  x*  y.
Done.

This proof uses the original definition of continuity. Can you construct a
more elegant proof using one of the alternative characterizations of continuity of
preferences given in Proposition 1.14?

Proposition 1.15 says that continuous preferences have a utility
representation. We might hope for something more, namely that continuous
preferences have a utility representation where the function u is itself continuous.
We have not proved this and, in fact, the utility functions that we are producing
in this chapter are wildly discontinuous. (See Problem 1.12.) In Chapter 2, we
see how to get to the more desirable state of affairs, where continuous preferences
have a continuous representation.

1.6. Choice from Infinite Sets
The second difficulty that infinite X poses for the standard theory concerns the
possibility that c(A) =  for infinite sets A. One of the two properties of choice



functions that characterize the standard model is that c(A) is nonempty for finite
sets A; we could simply require this of all sets A; that is, assume away the
problem. But this is unwise: Suppose, for instance, that X = R2

+, and define a
utility function u by u(x) = u((x1, x2)) = x1+x2. Consider the subset of X given
by A = [0, 1) × [0, 1); that is, A is the unit square, but with the north and east
edges removed. The set {x ∈ A : u(x) ≥ u(y) for all y ∈ A} is empty; from this
semi-open set, open on the “ good” sides, no matter what point you choose,
there is something better according to u. If we insisted that c is nonempty
valued for all A, we wouldn’t be consistent with utility maximization for any
strictly increasing utility function, at least for sets A like the one here.

A different approach is to define choice only for some subsets of X and, in
particular, to restrict the domain of c to subsets of X for which it is reasonable to
assume that choice is nonempty; then strengthen finite nonemptiness by
dropping its restriction to finite sets. See Problem 1.15 for more on this
approach.

We can leave things as they are: Proposition 1.5 guarantees that if c satisfies
finite nonemptiness and choice coherence, then for infinite A,

c(A) =  or c(A) = c c(A),

for c defined from c. As long as c(A) is not empty, it gives the “ right”
answer. But still, it would be nice to know that c(A) is not empty for the
appropriate sorts of infinite sets A. For instance, if X is, say, Rk

+ and c generates
continuous preferences, c(A) should be nonempty for compact sets A, at least.
(Why should this be true? See Proposition 1.19.) And in any setting, suppose
we have a set A that contains x and that is a subset of NBT(x). Then c(A) ought
to be nonempty, since it should contain x.

These are nice things to have, but they can’t be derived from finite
nonemptiness and choice coherence; further assumptions will be needed to have
them. To demonstrate this, imagine that c is a well-behaved choice function; it
satisfies finite nonemptiness and choice coherence and is nonempty for all the
“ right” sorts of infinite sets A. Modify c, creating c′, by letting c′(A) =  for an
arbitrary collection of infinite sets A. For instance, we could let c′(A) =  for all



compact sets that contain some given x*, or for all sets A that are countably
infinite, or for all sets that contain x* or are countably infinite but not both.
When I say “ for an arbitrary collection of infinite sets,” I mean “ arbitrary.”
Then c′ satisfies finite nonemptiness (of course, since it is identical to c for such
arguments) and choice coherence. The latter is quite simple: Suppose x, y ∈ A
∩ B, x ∈ c′(A), and y ∉ c′(A). Since c′(A) ≠ , c′(A) = c(A); since c satisfies
choice coherence, y ∉ c(B). If c′(B) ≠  then c′(B) = c(B) and hence y ∉ c′(B). On
the other hand, if c′(B) = , then y ∉ c′(B).

There are lots of assumptions we can add to finite nonemptiness and choice
coherence, to ensure that c is well-behaved on infinite sets. But perhaps the
most general is the simplest. Begin with a choice function c that satisfies finite
nonemptiness and choice coherence. Generate the corresponding preference
relation c. Use that preference relation to generate, for each x ∈ X, NBT

c(x), where I’ve included the subscript c to clarify that we are beginning with
the choice function c. Then,

Assumption 1.16. If x ∈ A ⊆ NBT c(x), c(A) ≠ .

Let me translate this assumption into words: If faced with a choice from some
set A that contains an element x, such that everything in A is revealed to be no
better than x when pairwise comparisons are made (that is, x ∈ c({x, y}) for all
y ∈ A), then the consumer makes some choice out of A. (Presumably that
choice includes x, but we do not need to assume this; it will be implied by
choice coherence.)

Proposition 1.17. A choice function c that satisfies finite nonemptiness and
choice coherence is identical to choice generated by the preferences it generates
—that is, c ≡ c c—if and only if it satisfies Assumption 1.16.

Proof. Suppose c ≡ c c and A is a set with x ∈ A ⊆ NBT c(x). Then by the

definition of c c, x ∈ c c(A). Since c ≡ c c, this implies that c(A) is

nonempty. (Therefore, in fact, c(A) = c c(A) by Proposition 1.5.) Conversely,



suppose c satisfies Assumption 1.16. Take any A. Either c c(A) =  or ≠ .

In the first case, c c(A) = c(A) =  by Proposition 1.5. In the second case, let

x be any element of c c(A). Then x ∈ A and, by the definition of c c, A ⊆

NBT c(x). By Assumption 1.16, c(A) is nonempty, and Proposition 1.5

implies that c(A) = c c(A).

An interesting complement to Assumption 1.16 is the following.

Proposition 1.18. Suppose that c satisfies finite nonemptiness and choice
coherence. If A is such that, for every x ∈ A, A  NBT c(x), then c(A) = .

That is, the collection of sets in Assumption 1.16 for which it is assumed a
choice is made is the largest possible collection of such sets, if choice is to
satisfy finite nonemptiness and choice coherence. The proof is implicit in the
proof of Proposition 1.17: If c(A) ≠ , then c(A) = c c(A) by Proposition 1.5,

and for any x ∈ c(A) = c c(A), it is necessarily the case that A ⊆ NBT c(x).

What about properties such as, c is nonempty valued for compact sets A?
Let me state a proposition, although I reserve the proof until Chapter 2 (see,
however, Problem 1.13):

Proposition 1.19. Suppose X = Rk
+ . Take a choice function c that satisfies

finite nonemptiness, choice coherence, and Assumption 1.16. If the preferences 
c generated from c are continuous, then for any nonempty and compact set

A, c(A) ≠ .

1.7. Equivalent Utility Representations
Suppose that  has a utility representation u. What can we say about other
possible numerical representations?



Proposition 1.20. If u is a utility-function representation of  and f is a
strictly increasing function with domain and range the real numbers, then v
defined by v(x) = f(u(x)) is another utility-function representation of .

Proof. This is obvious: If u and v are related in this fashion, then v(x) ≥ v(y) if
and only if u(x) ≥ u(y).

The converse to this is untrue: That is, it is possible that v and u both
represent , but there is no strictly increasing function f : R → R with v(x) =
f(u(x)) for all x. Instead, we have the following result.

Proposition 1.21. The functions u and v are two utility-function
representations of weak preferences  if and only if there is a function f : R
→ R that is strictly increasing on the set {r ∈ R : r = u(x) for some x ∈ X}
such that v(x) = f(u(x)) for all x ∈ X. Moreover, the function f can be taken to
be nondecreasing if we extend its range to R ∪ {–∞, ∞}.

Problem 1.14 asks you to prove this.
These results may seem technical only, but they make an important

economic point. Utility, at least as far as representing weak preferences is
concerned, is purely ordinal. To compare utility differences, as in u(x) – u(y) >
u(y) – u(z), and conclude that “ x is more of an improvement over y than y is
over z,” or to compare the utility of a point to some cardinal value, as in u(x) <
0, and conclude that “ x is worse than nothing,” makes no sense.

1.8. Commentary
This ends the mathematical development of the standard models of choice,
preference, and utility. But a lot of commentary remains.

The standard model as positive theory
At about this point (if not earlier), many students object to utility
maximization. “ No one,” this objection goes, “ chooses objects after consulting
some numerical index of goodness. A model that says that consumers choose in
this fashion is a bad description of reality and therefore a bad foundation for any



useful social science.”
Just because consumers don’t actively maximize utility doesn’t mean that

the model of utility-maximizing choice is a bad descriptive or positive model.
To suppose that individuals act as if they maximize utility is not the same as
supposing that they consciously do so. We have proven the following: If choice
behavior satisfies finite nonemptiness and the choice coherence, then (as long as
something is chosen) choice behavior is as if it were preference driven for some
complete and transitive weak preference relation. And if the set of objects for
which choice is considered is countable or if revealed preferences are continuous,
then preference-driven choice is as if it were done to maximize a numerical
index of goodness.

Utility maximization is advanced as a descriptive or positive model of
consumer choice. Direct falsification of the model requires that we find
violations of nonemptiness or choice coherence. If we don’t, then utility
maximization is a perfectly fine as-if model of the choices that are made.

Incomplete data about choice
Unhappily, when we look at the choices of real consumers, we do see some
violations of choice coherence and nonemptiness (or, when we ask for preference
judgments, of completeness and transitivity). So the standard model is
empirically falsified. We will discuss this unhappy state of affairs momentarily.

But another problem should be discussed first. The assertion of two
paragraphs ago fails to recognize the empirical limitations that we usually face.
By this I mean, to justify utility maximization as a model of choice, we need to
check the consumer’s choice function for every subset A of X, and for each A we
need to know all of c(A). (But see Problem 1.15 for a slight weakening of this.)
In any real-life situation, we will observe (at best) c(A) for finitely many subsets
of X, and we will probably see something less than this; we will probably see
for each of a finite number of subsets of X one element out of c(A); namely, the
object chosen. We won’t know if there are other, equally good members of A.

To take seriously the model of utility maximization as an empirically
testable model of choice, we must answer the question: Suppose we see c(A), or
even one element from c(A), for each of a finite number of subsets A of X. When
are these data consistent with utility maximization?

The answer to this question at the level of generality of this chapter is left to



you to develop; see Problem 1.16. In Chapter 4, we will provide an answer to a
closely related problem, where we specialize to the case of consumer demand
given a budget constraint.

Now for the bigger question: In the data we see, how does the model do?
What criticisms can be made of it? What does it miss, by how much, and what
repairs are possible? Complete answers to these questions would take an entire
book, but I can highlight several important categories of empirical problems,
criticisms, and alternatives.

Framing
In the models we have considered, the objects or consumption bundles x are
presented abstractly, and it is implicitly assumed that the consumer knows x
when she sees it. In real life, the way in which we present an object to the
consumer can influence how she perceives it and (therefore) what choices she
makes. If you find this hard to believe, answer the following question, which is
taken from Kahneman and Tversky (1979):

As a doctor in a position of authority in the national government,
you’ve been informed that a new flu epidemic will hit your country
next winter and that this epidemic will result in the deaths of 600
people. (Either death or complete recovery is the outcome in each case.)
There are two possible vaccination programs that you can undertake,
and doing one precludes doing the other. Program A will save 400
people with certainty. Program B will save no one with probability 1/3
and 600 with probability 2/3. Would you choose Program A or
Program B?

Formulate an answer to this question, and then try:

As a doctor in a position of authority in the national govenment,
you’ve been informed that a new flu epidemic will hit your country
next winter. To fight this epidemic, one of two possible vaccination
programs is to be chosen, and undertaking one program precludes
attempting the other. If Program X is adopted, 200 people will die with
certainty. Under Program Y, there is a 2/3 chance that no one will die,
and a 1/3 chance that 600 will die. Would you choose Program X or



Program Y?

These questions are complicated by the fact that they involve some uncertainty,
the topic of Chapter 5. But they make the point very well. Asked of health-care
professionals, the modal responses to this pair of questions were: Program A is
strictly preferred to B, while Program X is worse than Y. To be clear, the modal
health-care professional strictly preferred A to B and strictly preferred X to Y.
The point is that Program A is precisely Program X in terms of outcomes, and
Programs B and Y are the same. They sound different because Programs A and
B are phrased in terms of saving people, while X and Y are phrased in terms of
people dying. But within the context of the whole story, A is X and B is Y.
Yet (by the modal response) A is better than B, and X is worse than Y.
Preference judgments certainly depend on frame.

The way bundles are framed can affect how they are perceived and can
influence the individual’s cognitive processes in choosing an alternative. Choice
coherence rules out the following sort of behavior: A consumer chooses apple
pie over cherry if those are the only two choices, but chooses cherry when
informed that peach is also available. Ruling this out seems sensible—the ruled-
out behavior is silly—but change the objects and you get a phenomenon that is
well known to (and used by) mail-order marketers. When, in a mail-order
catalog, a consumer is presented with the description of an object, the consumer
is asked to choose between the object and her money. To influence the
consumer to choose the object, the catalog designer will sometimes include on
the same page a slightly better version of the object at a much higher price, or a
very much worse version of the object at a slightly lower price. The idea is to
convince the consumer, who will compare the different versions of the object,
that one is a good deal, and so worthy of purchase. Of course, this strikes
directly at choice coherence.

The point is simple: When individuals choose, and when they make
pairwise preference judgments, they do so using various processes of perception
and cognition. When the choices are complex, individuals simplify, by focusing
(for example) on particularly salient features. Salience can be influenced by the
frame: how the objects are described; what objects are available; or (in the case
of pairwise comparisons) how the two objects compare. This leads to violations
of choice coherence in the domain of choice, and intransitivities when consumers
make pairwise preference judgments.



Indecision
Indecision attacks a different postulate of the standard model: finite
nonemptiness or, in the context of preference, completeness. If asked to choose
between 3 cans of beer and 10 bottles of wine or 20 cans of beer and 6 bottles of
wine, the consumer might be unable to make a choice; in terms of preferences,
she may be unable to say that either bundle is as good or better than the other.

An alternative to the standard model allows the consumer the luxury of
indecision. In terms of preferences, for each pair of objects x and y the consumer
is assumed to choose one (and only one) of four alternatives:

In such a case, expressed strict preference and expressed indifference are taken as
primitives, and (it seems most natural) weak preference  is defined not as the
absence of strict preference but instead as the union of expressed strict preference
and expressed indifference. In the context of such a model, transitivity of strict
preference and reflexivity of expressed indifference seem natural, transitivity of
expressed indifference is a bit problematic, and negative transitivity of strict
preference is entirely problematic: The whole point of this alternative theory is
that the consumer is allowed to say that 4 cans of beer and 11 bottles of wine is
strictly better than 3 and 10, but both are incomparable to 20 cans of beer and 6
bottles of wine. In terms of choice functions, we would allow c(A) = —“ a
choice is too hard”—even for finite sets A, although we could enrich the theory
by having another function b on the set of subsets of X, the rejected set function,
where for any set A, b(A) consists of all elements of A for which something else
in A is strictly better.

Inconsistency and probabilistic choice
It is not unknown, empirically, for a consumer to be offered a (hypothetical)
choice between x and y and indicate that she will take x, and later to be offered
the same hypothetical choice and indicate that she prefers y. This can be an issue



of framing or anchoring; something in the series of questions asked of the
consumer changes the way she views the relative merits of x and y. Or it can be
a matter of indecision; she is not really sure which she prefers and, if forced to
make a choice, she does so inconsistently. Or it could be simple inconsistency.
Whatever it is, it indicates that when we observe the choice behavior of real
consumers, their choices may be stochastic. The standard model assumes that a
consumer’s preferences are innate and unchanging, which gives the strong
coherence or consistency of choice (as we vary the set A) that is the foundation of
the theory. Perhaps a more appropriate model is one where we suppose that a
consumer is more likely or less likely to choose a particular object depending
on how highly she values it “ innately,” but she might choose an object of lower
“ utility” if the stars are in the right alignment or for some other essentially
random reason.

To deal empirically with the choices of real consumers, one needs a model
in which there is uncertainty in how they choose—how can you fit a model that
assumes rigid consistency and coherence to data that do not exhibit this?—the
likelihood functions just do not work—and so, especially in the context of
discrete choice models, microeconomists have developed so-called random
utility or probabilistic-choice models. In these models, choice in different
contexts exhibits coherence or consistency statistically, but choices in specific
instances may, from the perspective of the standard model, appear inconsistent.

The determinants of preference
The standard model makes no attempt to answer the question, Where do
preferences come from? Are they something innate to the individual, given (say)
genetically? Or are they a product of experience? And if they are a product of
experience, is that experience primarily social in character? Put very baldly,
does social class determine preferences?

These questions become particularly sharp in two contexts that we reach in
this book. The first concerns dynamic choice. If the consumer’s experiences
color her preferences for subsequent choices, having a model of how this happens
is important for models of how the consumer chooses through time. This is true
whether her earlier choices are made in ignorance of the process or, more
provocatively, if her earlier choices take into account the process. We will visit
this issue briefly in Chapter 7, when we discuss dynamic choice theory; it arises



very importantly in the context of cooperation and trust in dynamic
relationships (and is scheduled for discussion in that context in Volume 3).

These questions are also important to so-called welfare analysis, which we
meet in Chapter 8. Roughly, a set of institutions will be “ good” if they give
consumers things they (the consumers) prefer. Those who see preferences as
socially determined often balk at such judgments, especially if, as is sometimes
supposed, members of an oppressed class have socially determined tastes or
preferences that lead them to prefer outcomes that are “ objectively” bad. In this
book, we follow the principles of standard (western, or capitalist, or
neoclassical) economics, in which the tastes and preferences of the individual
consumer are sovereign and good outcomes are those that serve the interests of
individual consumers, as those consumers subjectively perceive their own
interests. But this is not the only way one can do economics.

The range of choices as a value
To mention a final criticism of the standard model, some economists (perhaps
most notably, the Nobel Laureate Amartya Sen) hold that standard theory is too
ends-oriented and insufficiently attentive to process, in the following sense: In
the standard theory, suppose x ∈ c(A). Then the individual is equally well off if
given a choice from A as if she is simply given x without having the
opportunity to choose. But is this correct? If individuals value being able to
choose, and there is ample psychological evidence that they do (although there
is also evidence that too much choice becomes bad), it might be sensible to use
resources to widen the scope of choice available to the individual, even if this
means that the final outcome chosen is made a bit worse evaluated purely as an
outcome.

I call the standard model by that name because it is indeed the standard,
employed by most models in microeconomics. The rise of behavioral
economics and the development of random-choice models in empirical work
make this less true than it was, say, a decade ago. But still, most models in
microeconomics have utility-maximizing or preference-maximizing consumers.
Certainly, except in a very few and brief instances, that is what is assumed in
the remainder of this book.

My point, then, in raising all these caveats, criticisms, and possible



alternatives to the standard model is not to indicate where we are headed.
Instead, it is to remind you that the standard model starts with a number of
assumptions about human choice behavior, assumptions that are not laws of
nature. Too many economists learn the standard model and then invest in it a
quasi-religious aura that it does not deserve. Too many economists get the idea
that the standard model defines “ rational” behavior and any alternative involves
irrational behavior, with all the pejorative affect that the adjective “ irrational”
can connote. The standard model is an extremely useful model. It has and
continues to generate all manner of interesting insights into economic (and
political, and other social) phenomena. But it is just a model, and when it is
time to abandon it, or modify it, or enrich it, one should not hesitate to do so.

Bibliographic Notes
The material in this chapter lies at the very heart of microeconomics and, as
such, has a long, detailed, and in some ways controversial history. Any attempt
to provide bibliographic references is bound to be insufficient. “ Utility” and
“ marginal utility” were at first concepts advanced as having cardinal significance
—the units mean something concrete—but then theory and thought evolved to
the position that (more or less) is taken here: Choice is primitive; choice reveals
preference; and utility maximization is solely a theoretician’s convenient
mathematical construct for modeling coherent choice and/or preference
maximization. If you are interested in this evolution, Robbins (1998) is well
worth reading. Samuelson (1947) provides a classic statement of where
economic thought “ wound up.” Samuelson’s development is largely in the
context of consumer choice in perfect markets, subject to a budget constraint;
that is, more germane to developments in Chapters 4 and 11. As I mentioned
within the text of the chapter, to the best of my knowledge, Arrow originated
what I have called “ choice coherence” and its connection to preference orderings
in the abstract setting of this chapter; this was done while writing Arrow
(1951a), although the specific results were published in Arrow (1959).

Problems
Most problems associated with the material of this chapter involve proving
propositions or constructing counterexamples. Therefore, these problems will
give you a lot of drill on your theorem-proving skills. If you have never



acquired such skills, most of these problems will be fairly tough. But don’t be
too quick to give up. (Reminder: Solutions to problems marked with an
asterisk [such as *1.1] are provided in the Student’s Guide , which you can
access on the web at the URL
http://www.microfoundations1.stanford.edu/student.)

 *1.1. A friend of mine, when choosing a bottle of wine in a restaurant, claims
that he always chooses as follows. First, he eliminates from consideration any
bottle that costs more than $40.

Then he counts up the number of bottles of wine still under consideration (price
$40 or less) on the wine list that come from California, from France, from Italy,
from Spain, and from all other locations, and he chooses whichever of these five
categories is largest. If two or more categories are tied for largest number, he
chooses California if it is one of the leaders, then France, Italy, and Spain, in
that order. He says he does this because the more bottles of wine there are on the
list, the more likely it is that the restaurant has good information about wines
from that country. Then, looking at the geographical category selected, he
compares the number of bottles of white, rosé, and red wine in that category that
cost $40 or less, and picks the type (white/rosé/red) that has the most entries.
Ties are resolved: White first, then red. He rationalizes this the same way he
rationalized geographical category. Finally, he chooses the most expensive
bottle (less than or equal to $40) on the list of the type and geographical
category he selected. If two or more are tied, he doesn’t care which he gets.

Assume every bottle of wine on any wine list can be uniquely described by its
price, place of origin, and color (one of white/rosé/red). The set of all wine
bottles so described (with prices $40 or less) is denoted by X, which you may
assume is finite. (For purposes of this problem, the same bottle of wine selling
for two different prices is regarded as two distinct elements of X.) Every wine list
my friend encounters is a nonempty subset A of X. (He never dines at a
restaurant without a wine list.)

The description above specifies a choice function c for all the nonempty subsets
of X, with c(A) ≠  for all nonempty A. (You can take my word for this.) Give
an example showing that this choice function doesn’t satisfy choice coherence.

http://www.microfoundations1.stanford.edu/student


 1.2. Two good friends, Larry and Moe, wish to take a vacation together. All
the places they might go on vacation can be described as elements x of some
given finite set X.

Taken as individuals, Larry and Moe are both standard sorts of homo
economicus. Specifically, each, choosing singly, would employ a choice
function that satisfies finite nonemptiness and choice coherence. Larry’s choice
function is cLarry , and Moe’s is cMoe.

To come to a joint decision, Larry and Moe decide to construct a “ joint choice
function” c* by the rule

c*(A) = cLarry(A) ∪ cMoe(A), for all A ⊆ X.

That is, they will be happy as a pair with any choice that either one of them
would make individually.

Does c* satisfy finite nonemptiness? Does c* satisfy choice coherence? To
answer each of these questions, you should either provide a proof or a
counterexample.

 *1.3. Disheartened by the result (in Problem 1.2) of their attempt to form a
joint choice function, Larry and Moe decide instead to work with their
preferences. Let Larry  be Larry’s (complete and transitive) preferences
constructed from cLarry , and let Moe be Moe’s. For their “ joint” preferences 

*, they define

x * y if x Larry  y or x Moe y.

In words, as a pair they weakly prefer x to y if either one of them does so. Prove
that * is complete. Show by example that it need not be transitive.

 1.4. What is the connection (if any) between c* from Problem 1.2 and *
from Problem 1.3?



 1.5. Amartya Sen suggests the following two properties for a choice function
c:

Paraphrasing Sen, (α) says “ If the best soccer player in the world is Brazilian,
he must be the best soccer player from Brazil.” And (β) says: “ If the best soccer
player in the world is Brazilian, then every best soccer player from Brazil must
be one of the best soccer players in the world.”

Suppose (for simplicity) that X is finite. Show that choice coherence and finite
nonemptiness imply (α) and (β) and, conversely, that (α) and (β) together imply
choice coherence.

 *1.6. Suppose X = Rk
+ for some k ≥ 2, and we define x = (x1, …, xk)  y =

(y1, …, yk) if x ≥ y; that is, if for each i = 1, …, k, xi ≥ yi. (This is known as the
Pareto ordering on Rk

+; it plays an important role in the context of social choice
theory in Chapter 8.)

(a) Show that  is transitive but not complete.

(b) Characterize  defined from  in the usual fashion; that is, x  y if x 
y and not y  x. Is  asymmetric? Is  negatively transitive? Prove your
assertions.

(c) Characterize ~ defined from  in the usual fashion; that is, x ~ y if x  y
and y  x. Is ~ reflexive? Symmetric? Transitive? Prove your assertions.

 *1.7. Suppose that X = R3
+, and we define weak preference by x  y if for at

least two out of the three components, x gives as much of the commodity as
does y. That is, if x = (x1, x2, x3) and y = (y1, y2, y3), then x  y if xi ≥ yi for
two (or three) out of i = 1, 2, 3.



(a) Prove that this expression of weak preference is complete but not transitive.

(b) Define strict preference from these weak preferences by the usual rule: x  y
i f x  y but not y  x. Show that this rule is equivalent to the following
alternative: x  y if x gives strictly more than y in at least two components. Is 

 asymmetric? Is  negatively transitive?

(Hint: Before you start on the problem, figure out what it means if y is not
weakly preferred to x in terms of pairwise comparison of the components of x and
y. Once you have this, the problem isn’t too hard.)

 1.8. Prove Proposition 1.7.

 1.9. Prove Proposition 1.10.

 *1.10. Consider the following preferences: X = [0, 1] × [0, 1], and (x1, x2) 
(x′1, x′2) if either x1 > x′1 or if x1 = x′1 and x2 ≥ x′2. These are called
lexicographic preferences, because they work something like alphabetical order;
to rank any two objects, the first component (letter) of each is compared, and
only if those first components agree are the second components considered.
Show that this preference relation is complete and transitive but does not have a
numerical representation.

 *1.11. Prove Proposition 1.14.

1.12. Propositions 1.12 and 1.15 guarantee that continuous preferences on Rk
+

have a utility representation. This problem aims to answer the question, Does
the construction of the utility representation implicit in the proofs of these two
propositions provide a continuous utility function? (The answer is no, and the
question really is, What sort of utility function is produced?) Consider the
following example: Let X = [0, 1] (not quite the full positive orthant, but the
difference won’t be a problem), and let preferences be given by x  y if x ≥ y.
The proof of Proposition 1.12 requires a countable subset X*; so take for this set
the set of rational numbers, enumerated in the following order:



First prove that this set X* suits; that is, if x  y, then x  x*  y for some
x* from X*. Then to the best of your ability, draw and/or describe the function u
produced by the proof of Proposition 1.15. This function u is quite
discontinuous; can you find a continuous function v that represents ?

 *1.13. (This problem should only be attempted by students who were
enchanted by their course on real analysis.) Proposition 1.19 states that if
preferences c generated from choice function c are continuous on X = Rk

+ and
if c satisfies finite nonemptiness, choice coherence, and Assumption 1.16, then
c(A) ≠  for all compact sets A. In Chapter 2, this is going to be an easy
corollary of a wonderful result known as Debreu’s Theorem, which shows that
continuous preferences can always be represented by a continuous function; with
Debreu’s Theorem in hand, proving Proposition 1.19 amounts to remembering
that continuous functions on nonempty and compact sets attain their supremum.
(Well, not quite. I’ve included Assumption 1.16 here for a reason. What is that
reason?) But suppose we try to prove Proposition 1.19 without Debreu’s
Theorem. One line of attack is to enlist Proposition 1.14: If preferences are
continuous, then for every x, the set {y ∈ X : x  y} is (relatively, in X) open.
Use this to prove Proposition 1.19.

 1.14. Concerning Proposition 1.21, suppose throughout that u and v are two
utility representations of (complete and transitive) preference relations u and 

v on a given set X.

(a) Show that if f : R → R is such that v(x) = f(u(x)) for all x ∈ X and if f is
strictly increasing on u(X), then u and v are identical.

(b) Show that if f : R → R is such that v(x) = f(u(x)) for all x in X and if u and

v are identical, then f is strictly increasing on u(X).

(c) Suppose that X = [0, ∞), v(x) = x, and



Show that if f : R → R is such that v(x) = f(u(x)) for all x, then f cannot be a
strictly increasing function on all of R.

(d) Suppose that u and v are the same. For each r ∈ R, define Xr = {x :
u(x) ≤ r} and f(r) = sup{v(x) : x ∈ Xr}. Prove that f composed with u is v (that
is, f(u(x)) = v(x) for all x ∈ X) and that f is strictly increasing on u(X). Prove
that f is nondecreasing on all of R. Why, in the statement of Proposition 1.21,
does it talk about how f might have to be extended real-valued (that is, f(r) =
±∞)?

 1.15. As we observed on page 16, one approach to the “ problem” that choice
on some subsets of a set X might be infinite is to restrict the domain of the
choice function c to a collection A of subsets of X where it is reasonable to
assume that c(A) ≠  for all A ∈ . So suppose, for a given set X, we have
a collection of nonempty subsets of X, denoted A, and a choice function c : 

→ 2X \  with the usual restriction that c(A) ⊆ A. Note that we just assumed
that c(A) ≠  for all A ∈ A! Suppose that c satisfies choice coherence, and
suppose that A contains all one-, two-, and three-element subsets of X. Prove:
For every pair x, y ∈ X, define x c y if x ∈ c({x, y}). Then for every A ∈
A, c(A) = {x ∈ A : x c y for all y ∈ A}. In words, as long as c satisfies
choice coherence and  contains all the one-, two-, and three-element sets
(and possibly others in addition), choice out of any A ∈  is choice
according to the preferences that are revealed by choice from the one- and two-
element subsets of X.5

 *1.16. Proposition 1.5 provides the testable restrictions of the standard model
of preference-driven choice for finite X; it takes a violation of either finite
nonemptiness or choice coherence to reject the theory. But this test requires tht
we have all the data provided by c(·); that is, we know c(A) in its entirety for



every nonempty subset of X.

Two problems arise if we really mean to test the theory empirically. First, we
will typically have data on c(A) for only some subsets of X. Second, if c(A)
contains more than one element, we may only get to see one of those elements
at a time; we see what the consumer chooses in a particular instance, not
everything she would conceivably have been happy to choose.

(a) Show that the second of these problems can reduce the theory to a virtual
tautology: Assume that when we see x ∈ A chosen from A, this doesn’t
preclude the possibility that one or more y ∈ A with y ≠ x is just as good as x.
Prove that in this case, no data that we see (as long as the consumer makes a
choice from every set of objects) ever contradict the preference-based choice
model. (This is a trick question. If you do not see the trick quickly, and you
will know if you do, do not waste a lot of time on it.)

(b) Concerning the first problem, suppose that, for some (but not all) subsets A
⊆ X, we observe all of c(A). Show that these partial data about the function c
may satisfy choice coherence and still be inconsistent with the standard
preference-based choice model. (Hint: Suppose X has three elements and you
only see c(A) for all two-element subsets of X.)

(c) Continue to suppose that we know c(A) for some but not all subsets of X.
Specifically, suppose that we are given data on c(A) for a finite collection of
subsets of X, namely for A1, …, An for some finite integer n. From these data,
define

x r y if x ∈ c(Ak) and y ∈ Ak, for some k = 1, …, n, and

x r y if x ∈ c(Ak) and y ∉ c(Ak) for some k = 1, …, n.

The superscript r is a mnemonic for “ revealed.” Note that x r y implies x r

y.

Definition 1.22. The data {c(Ak) ; k = 1, 2, …, n} violate the Simple
Generalized Axiom of Revealed Preference (or SGARP), if there exists a finite
set {x1, …, xm} ⊆ X such that xi 

rxi+1 for i = 1, …, m – 1 and xm r x1 .



The data satisfy SGARP if no such set can be produced.

Proposition 1.23. If the data {c(Ak); k = 1, 2, …, n} violate SGARP, then no
complete and transitive  gives rise (in the usual fashion) to these data. If
the data satisfy SGARP, then a complete and transitive  can be produced to
rationalize the data.

Prove Proposition 1.23. (This is neither easy nor quick. But it is important for
things we do in Chapter 4, so you should at least read through the solution to
this problem that is provided in the Student’s Guide.)

 1.17. In this problem, we consider an alternative theory to the standard
model, in which the consumer is unable/unwilling to make certain preference
judgments. We desire a theory along the following lines: There are two
primitive relations that the consumer provides, strict preference  and positive
indifference ~. The following properties are held to be desirable in this theory:

1.   is asymmetric and transitive;

2.  ~ is reflexive, symmetric, and transitive;

3.  if x  y and y ~ z, then x  z; and

4.  if x ~ y and y  z, then x  z.

For all parts of this problem, assume that X, the set on which  and ~ are
defined, is a finite set.

(a) Prove that 1 through 4 imply: If x  y, then neither y ~ x nor x ~ y.

(b) Given  and ~ (defined for a finite set X) with the four properties listed,
construct a weak preference relationship  by x  y if x  y or x ~ y. Is this
weak preference relationship complete? Is it transitive?

(c) Suppose we begin with a primitive weak preference relationship  and
define and ~ from it in the usual manner: x > y if x  y and not y  x, and x ~



y if x  y and y  x. What properties must  have so that  and ~ so
defined have properties 1 through 4?

(d) Suppose we have a function U : X → R and we define x > y if U(x) > U(y) +
1 and x ~ y if U(x) = U(y). That is, indifferent bundles have the same utility; to
get strict preference, there must be a “ large enough” utility difference between
the two bundles. Do  and ~ so constructed from U have any/all of the
properties 1 through 4?

(e) Suppose we have  and ~ satisfying 1 through 4 for a finite set X. Does
there exist a function U : X → R such that U(x) = U(y) if and only if x ~ y and
U(x) > U(y) + 1 if and only if x > y? To save you the effort of trying to prove
this, I will tell you that the answer is no, in general. Provide a counterexample.

(f) (Good luck.) Can you devise an additional property or properties for  and ~
such that we get precisely the sort of numerical representation described in part
d? (This is quite difficult; you may want to ask your instructor for a hint.)

 

1 If it isn’t clear to you that this restatement is equivalent to b in the
definition, you should verify it carefully. Stated in this alternative form, Mas-
Colell, Whinston, and Green (1995) call property b the weak axiom of revealed
preference, although their setting is a bit different; cf. Problem 1.15. In previous
books, I have called property b Houthakker’s Axiom of Revealed Preference, but
I no longer believe this is a correct attribution; the first appearance of this
property for choice out of general sets (that is, outside the context of price-and-
income-generated budget sets) of which I am aware is Arrow (1959).

2 See Appendix 1.
3 This is the first time that the distance between two bundles is mentioned,

so to be very explicit: Suppose we are looking at the two bundles (10, 20, 30)
and (11, 18, 30) in R3. The most “ natural” way to measure the distance
between them is Euclidean distance, the square root of the sum of the squares of
the distances for each component, or 



 But it is

equivalent in terms of all important topological properties, to measure the
distance as the sum of absolute values of the differences, component by
component—in this case, |11 10|+|20 18|+|30 30|  = 1+2+0 = 3—or to
measure the distance as the maximum of the absolute values of the differences,
component by component, or max{|11 – 10| , |20 – 18| , |30 – 30|} = 2. For
each of these distance measures, two bundles are “ close” if and only if they are
close in value, component by component; this is what makes these different
ways of measuring distance topologically equivalent. It is sometimes useful to
have these different ways of measuring distance—so-called norms or metrics—
because a particular proposition may be easier to prove using one rather than the
others. For more on this, and for many of the real analytic prerequisites of this
book, see Appendix 2.

4 The set Y is relatively open in another set X if Y is the intersection of X and
an open set in the “ host space” of X. Since  is assumed to be defined on Rk

+,

which is a closed set in Rk, we need the notion of “ relatively open” here. It is
perhaps worth noting, in addition, that while Definition 1.13 and this
proposition are constructed in terms of preferences  defined on Rk

+, they both
generalize to binary relations defined on more general sets X. But if you are
sophisticated enough to know what I have in mind here, you probably already
realized that (and just how far we can push this form of the definition and the
proposition).

5 With reference to footnote 1, this is how Mas-Collel et al. tackle the
connection between choice and preference.



Chapter Two



Structural Properties of Preferences and Utility Functions

If you have taken a course in microeconomics, you almost surely have
encountered the picture of Figure 2.1, in which a consumer’s preferences are
depicted by indifference curves. Chapter 1’s categories of choice, preference, and
utility establish the basic justification for this sort of picture, but the picture as
typically drawn exhibits a number of characteristics that are not the product of
anything in Chapter 1. Specifically,

1.  In the usual picture, indifference curves are just that, curves; they aren’t
“ thick” in the sense of containing an open set of points.

2.  Moving northeast (increasing either or both components) takes you to a
higher indifference curve.

3.  Indifference curves are convex to the origin—more precisely, the set of
points as good as a given point is convex—which is important when it
comes to finding the consumer’s demand.

4.  Indifference curves are continuous; they don’t jump around or run out
except on the axes. (You may suspect, correctly, that this is connected to
continuity of preferences, which was discussed in Chapter 1.)

Figure 2.1. A consumer’s indifference curves

This chapter ultimately concerns these properties and others like them.



Throughout we consider the case X = Rk
+ for some integer k; preferences are

defined over bundles of a list of k commodities, where the amount of each
commodity in any bundle is required to be nonnegative. Consumer preferences
are the fundamental primitive; complete and transitive weak preferences  on X
are given, from which strict preferences  and indifference ~ are defined. Choice
per se will not be an issue in this chapter, but think of choice as related to
preferences in the fashion of Chapter 1.

This chapter makes extensive use of simple real analysis and the
mathematics of convexity of sets and functions. Appendices 2 and 3 survey what
you will need to know.

2.1. Monotonicity
In many cases, it is reasonable to assume that consumers prefer more to less—or
at least they do not strictly prefer less to more. We have the following
definitions and results:

Definition 2.1. Preferences  are monotone (or nondecreasing) if for any

two bundles x and y such that x ≥ y, x  y. 1 Preferences  are strictly
monotone (or strictly increasing) if for any two bundles x and y such that x ≥
y and x ≠ y, x  y.2

A function u : X → R is nondecreasing if for any two bundles x and y such
that x ≥ y, u(x) ≥ u(y). And u is strictly increasing if for any two bundles x and
y such that x > y and x ≠ y, u(x) > u(y).

Proposition 2.2. If u represents preferences , these preferences are
monotone if and only if u is nondecreasing, and these preferences are strictly
monotone if and only if u is strictly increasing.

The proof involves only a comparison of definitions and so is omitted.
Please take careful note of the implicit quantifiers in this result. The first part

says that if some nondecreasing u represents , then  is monotone, while if 
 is monotone, then every u that represents  is nondecreasing. Therefore, if



some u that represents a consumer’s preferences is nondecreasing, every other u′
that represents these preferences is nondecreasing. The second half implies the
same sort of thing for strictly monotone preferences and strictly increasing utility
representations. Problem 2.1 asks you to clarify all subsequent results along
these lines.

Strictly monotone preferences for strict increases in the bundle
Also take careful note of how monotonicity and strict monotonicity of
preferences are defined. In particular, note that in strict monotonicity, any
increase in any one of the components of x (with no decreases in any
components) leads to a strict preference improvement. An “ intermediate” sort of
monotonicity that is applied in some economic contexts is called “ strict
monotonicity for strict increases in the bundle,” meaning that if x > y (if x
exceeds y in every component), then x  y. For instance, suppose preferences
are represented by the utility function u(x) = mini=1,…,k ui(xi), where each ui : R+
→ R is a strictly increasing function. The corresponding preferences are not
strictly monotone (why?), but they are strictly monotone for strict increases in x
(why?). Compare with, for instance, the classic Cobb-Douglas utility function 

. The

corresponding preferences are not strictly monotone (why?), but they are strictly
monotone for strict increases in x (why?), and they are strictly monotone away
from the axes in Rk (why?).

Global and local insatiability
Some commodities, such as week-old fish or contaminated water, are noxious;
increased consumption makes the consumer worse off. Other goods are pleasant
only up to some limit; very sweet foods are examples. Hence, it is preferable to
avoid assuming strict monotonicity and even monotonicity if possible. But, for
many important results to come, we will need to assume that the consumer is
insatiable. Two versions of this assumption are used.

Definition 2.3.



a.   Preferences  are globally insatiable if, for every x ∈ X, y  x for
some other bundle y ∈ X.

b.   Preferences  are locally insatiable if, for every x ∈ X and for every
number ∈ > 0, there exists y ∈ X that is no more than ∈ distant from x,
such that y  x.

Note that becoming satiated in one commodity or positively disliking another
does not pose a problem for either global or local insatiability. All that is
needed, for instance, for local insatiability is that, starting from any
consumption bundle, the consumer would prefer a small increase (or decrease) in
some of the commodities. These properties do not translate in any meaningful
fashion into a statement about utility representations, except to restate the
definition in those terms.

It is perhaps worth noting that if preferences are both locally insatiable and
monotone, then they are (also) strictly monotone for strict increases in x, and if
they are strictly monotone for strict increases in x, then they are locally
insatiable. (You are asked to prove these two results and more besides in
Problem 2.6, with the solution provided in the Guide.)

2.2. Convexity
The next set of properties that we consider revolves around the notion of
convexity of preferences.

Definition 2.4.

a.   Preferences  are convex if for every pair x and y from X with x  y
and for every number a ∈ [0, 1], the bundle ax + (1 – a)y  y.

b.   Preferences  are strictly convex if for every x and y, x ≠ y, such that x 
 y, and for every a ∈ (0, 1), ax + (1 – a)y  y.

c.   Preferences  are semi-strictly convex if they are convex and if for every



pair x and y with x  y and for every a ∈ (0, 1), ax + (1 – a)y  y.

Why would one ever think that preferences are or should be convex? The story,
such as it is, relates to the classic ideal of “ moderation in all things.” Under the
assumption x  y, we know that in moving along the line segment from y to x
we will reach a point (x) at least as good as the point (y) from which we started.
The various forms of convexity are variations on the general notion that at each
step along this path, we are never worse off than where we began. That,
precisely, is convexity. Semi-strict convexity maintains that if x  y, so we
will be better off at the end of the journey, then we are strictly better off at each
step than at the start. And strict convexity holds that even if x ~ y, if we are
strictly between the two, we are better off than at the extremes.

Convexity of preferences is sometimes defined a bit differently. For each
point x ∈ X, define the set NWT(x) = {y ∈ X : y  x}. (NWT is a
mnemonic for No Worse Than.)

Proposition 2.5. Preferences  are convex if and only if, for every point x,
the set NWT(x) is convex.

The proof of this proposition is left as an exercise.

The benefits of convexity
Convexity is very convenient mathematically, because of what it says about a
consumer who is choosing a consumption bundle from a convex set A.

Proposition 2.6. If  is convex, the set of -best points in a convex set A—
that is, c (A)—is convex. (Of course, if A is infinite, c (A) =  is not

precluded.)3 If  is strictly convex, then c (A) contains at most one point; the

consumer either chooses a single bundle or none at all.

Proof. If both x and y are in c (A), then x ~ y. For any a ∈ [0, 1], convexity of

A guarantees that ax+(1 a)y ∈ A, and convexity of  guarantees that ax+(1 a)y



 x (and y). Since x ∈ c (A), x  z for all z ∈ A, and so by transitivity,

ax+(1 – a)y  z for all z ∈ A; hence ax + (1 – a)y ∈ c (A). The set c (A) is

convex.
Suppose  is strictly convex and x and y are distinct points in c (A).

Then for any a ∈ (0, 1), ax + (1 – a)y ∈ A because A is convex and ax + (1 –
a)y  x, contradicting the -optimality of x and y in A.

Convexity and numerical representations
Now for the consequences of convexity of preferences in terms of utility
representations. Begin with some definitions, which are repeated from Appendix
3:

Definition 2.7. A function f : A → R, where A is a convex set, is:

a.   concave if for all x, y ∈ A and a ∈ [0, 1], f(ax + (1 – a)y) ≥ af(x) + (1 –
a)f(y);

b.   strictly concave if for all x, y ∈ A, x ≠ y, and a ∈ (0, 1), f(ax + (1 – a)y)
> af(x) + (1 – a)f(y);

c.   quasi-concave if for all x, y ∈ A and a ∈ [0, 1], f(ax+(1 – a)y) ≥
min{f(x), f(y)};

d.   semi-strictly quasi-concave if it is quasi-concave and, for all x, y ∈ A,
such that f(x) > f(y) and a ∈ (0, 1), f(ax + (1 – a)y) > f(y); and

e.   strictly quasi-concave if for all x, y ∈ A, x ≠ y such that f(x) ≥ f(y) and a
∈ (0, 1), f(ax + (1 – a)y) > f(y).

Proposition 2.8.

a.   Preferences  represented by a concave function u are convex.
Preferences represented by a strictly concave function u are strictly convex.



b.   Suppose that u represents preferences . The utility function u is quasi-
concave if and only if the preferences  are convex; u is strictly quasi-
concave if and only if preferences  are strictly convex; and u is semi-
strictly quasi-concave if and only if preferences  are semi-strictly
convex.

It is semantically unfortunate that convex preferences go together with (quasi-)
concave utility functions. Things would be easier to remember if we talked
about concave preferences. But, in Proposition 2.6, convexity of the NWT sets
plays the crucial mathematical role. For this reason, preferences with convex
NWT sets are said to be convex, even though they have (quasi-) concave
representations.

Proof. I do not prove all of this, but here is enough to give you a taste of how
the proofs run. Suppose u represents  and is concave. For any x, y ∈ A such
that x  y and a ∈ [0, 1], u(ax+(1 –a)y) ≥ au(x)+(1 a)u(y) ≥ min{u(x), u(y)} =
u(y); hence ax + (1 – a)y  y, and preferences are convex. If u is only quasi-
concave, the inequality u(ax + (1 – a)y) ≥ min{u(x), u(y)} is directly implied;
hence preferences are still convex.

Conversely, if preferences  are convex and u represents , then for any x,
y ∈ X such that u(x) ≥ u(y), x  y and thus for all a ∈ [0, 1], ax + (1 – a)y 

 y; hence u(ax + (1 – a)y) ≥ u(y) = min{u(x) , u(y)}, and so u is quasi-
concave. And so on, for all the other parts.

Note that part a of Proposition 2.8 runs in one direction only; if preferences
have a concave representation, they are convex. But convex preferences can have
numerical representations that are not concave. To see how, suppose that u is a
concave function that represents . We know from Proposition 1.19 that if f :
R → R is a strictly increasing function, then the function v defined by v(x) =
f(u(x)) is another utility representation of . But it is quite easy to construct,
for a given concave function u, a strictly increasing function f such that f(u(·)) is



not concave. Create such an example, if this isn’t obvious to you.
In contrast, part b of the proposition says that every representation of convex

preferences  is quasi-concave. Hence, we conclude that if u is a quasi-concave
function and f is strictly increasing, f(u(·)) is also quasi-concave.

One question is left open. We know (or, rather, you know if you constructed
the example requested two paragraphs ago) that convex preferences can have
numerical representations that are not concave functions. But perhaps we can
show that if preferences  are convex, they admit at least one concave
numerical representation. In fact, we cannot show this; examples of convex
preferences that admit no concave representation can be constructed (see Problem
2.8).4

2.3. Continuity
I n Chapter 1, continuity of preferences was defined and used as a sufficient
condition for showing that preferences on infinite sets can have utility
representations. But one might hope for more; namely, for a continuous utility
representation u. Continuity is not preserved by strictly increasing rescalings of
utility, so not every representation of continuous preferences will be continuous.
Indeed, the representation produced in the proofs of Propositions 1.12 and 1.15
is typically discontinuous (cf. Problem 1.12). But some representations are
continuous:

Proposition 2.9 (Debreu’s Theorem). If a continuous function u represents 
, then  is continuous. Conversely, if  is continuous, it has a

continuous utility representation.5

As with convexity, continuity of preferences has economic implications.
Perhaps the most important is Proposition 1.19: If A is a compact set and
preferences are continuous, then c (A) is nonempty. In other words, some x ∈

A satisfies x  y for all y ∈ A. This can be proved directly; see the proof given
in the solution to Problem 1.13 in the Student’s Guide . But with Debreu’s
Theorem in hand, a simple proof is possible as long as you know the
mathematical result that a continuous function attains its supremum on a



compact set: If  is continuous, it has a continuous representation u. Since u
is continuous, for some x* ∈ A, u(x*) = max{u(y) : y ∈ A}, or u(x*) ≥ u(y) for
all y ∈ A; hence x*  y for all y ∈ A and so x* ∈ c (A).

Proving Debreu’s Theorem
It is relatively easy to prove the first sentence in Debreu’s Theorem. Although it
is somewhat clumsy, I use the original definition of continuity provided in
Chapter 1. If x > y and u is the continuous representation of , then u(x) >
u(y). Let δ = u(x) – u(y). By standard properties of continuous functions, we can
put balls of positive diameter around x and around y so that for all x′ in the ball
around x, |u(x) – u(x′)|  ≤ δ /3, and for all y′ in the ball around y, |u(y) – u(y′)|  ≤
δ /3. Therefore, for all x′ and y′ in the two respective balls, u(x′) – u(y′) = u(x′) –
u(x) + u(x)– u(y)+ u(y) – u(y′) ≥ u(x) – u(y) – |u(x′) – u(x)|  – |u(y) – u(y′) ≥ |  δ  –
δ /3 – δ /3 = δ /3; hence x′  y′. (The first inequality in this chain is justified as
follows: Since b ≥ – |b|  for all real numbers b, a + b + c ≥ a – |b|  – |c|  for all a,
b, and c.)

Proving the second part of Debreu’s Theorem is relatively simple and
intuitive if we add a further assumption; namely, that preferences are monotone
and strictly monotone for strict increases in the consumption bundle.6 Without
this additional assumption, the proof is quite difficult. So I will walk you
through the steps of the proof with the additional assumption, emphasizing
intuition and omitting details. Then I provide the details for the proof under the
additional assumption. In the final problem of this chapter, I suggest how to
prove the result without the additional assumption. A sketch of the details is
then given in the Student’s Guide. Only readers with considerable mathematical
sophistication should attempt the problem or even try to follow the sketched
proof in the Guide.

In X = Rk
+, the ray consisting of x = (x1, x2, …, xk) where x1 = x2 = … = xk,

is called the diagonal and is denoted by D. Let d denote the vector (1, 1, …, 1)
so that, for α ∈ R+, αd is the diagonal vector (α, α, …, α).

For any x ∈ Rk
+, we let I(x) denote the indifference class of x; that is, I(x) =

{y ∈ X : y ~ x}.



Now for the walk-through. There are five steps.

Step 1. Begin with a lemma:

Lemma 2.10. Suppose  is continuous and x  x′  x″. Let ϕ : [0, 1] → X
be a continuous function with ϕ(0) = x and ϕ(1) = x″. Then for some t ∈ [0,
1], ϕ(t) ~ x′.

This has the following interpretation. Think of the function  as tracing a path
through X that starts at x = ϕ(0) and ends at x″ = ϕ(1). Because ϕ is continuous,
this path is continuous. The lemma says that if preferences are continuous and x 

 x′  x″, this path must cross through I(x′). Graphically, if you start in the
region above the indifference curve of x′ and go continuously along any path
until you get to some point below this indifference curve (above and below
defined in terms of preference), then continuity ensures that at some point along
the way you must have crossed this indifference curve.

Step 2. Use the lemma and the assumption that preferences are monotone to
show that every bundle x ∈ X is indifferent to some diagonal bundle y ∈ D.
Graphically, every indifference curve cuts through the diagonal.

Step 3. Because preferences are strictly monotone for strict increases in the
bundle, if y and y′ are any two bundles from D, then y  y′ if and only if y is
further out along the diagonal. Therefore, if we define uD : D → R by uD(αd) =
α, uD represents  on D. Obviously, uD is continuous on D.

Step 4. Define u : X → R by the following procedure. For each x ∈ X, let (α(x),
α(x), …, α(x)) be the bundle along the diagonal indifferent to x. (Use Step ∈ to
see that at least one diagonal bundle exists having this property and Step 3 to
show that there can be no more than one.) Then define u(x) = α(x). That is,
measure the “ utility” of any bundle by following its indifference curve into the
diagonal, then set its utility equal to the place on the diagonal that is hit.

Step 5. Confirm that u so defined represents  (easy) and is continuous (a little



harder).

That does it. To contruct a continuous representation of preferences, we measure
how good x is by where its indifference curve hits the diagonal. Figure 2.2
shows this in a picture.

Figure 2.2. Debreu’s Theorem with an extra assumption. With the extra
assumption that preferences are monotone and strictly monotone along the
diagonal, Debreu’s Theorem is proved as follows. Any point such as x
lies somewhere between the two points marked on the diagonal with open
circles in terms of preference. Hence, by continuity, there is some point
α(x)d along the diagonal that is indifferent to x; in other words, the
indifference curve through x hits the diagonal at α(x)d. The value of α(x) is
unique because preference is strictly monotone along the diagonal.
Similarly, for a point such as y, we can find the point α(y)d along the
diagonal indifferent to y. Now α(x)d  α(y)d if and only if α(x) > α(y);
strict monotonicity along the diagonal is used again. Hence by
transitivity, x  y if and only if α(x) > α(y). Therefore, if we set u(x) =
α(x) for each x, we have our utility function. We must prove that this α(·)
function is continuous, but that can be done, completing the proof.



Now for the details. First we prove the lemma. For the function ϕ as in the
statement of the lemma, if ϕ(0) = x ~ x′ or if ϕ(1) = x″ ~ x′, there is nothing to
prove, so we can assume that x  x′  x″. Let T* be the set {t ∈ [0, 1] : x′ 

 ϕ(t)}, and let t* = inf (T*). Note that 0 ∉ T*, because ϕ(0) = x  x′.
Moreover, since  is continuous, we can put an open ball around x such that
every point in the ball is strictly preferred to x′, and so we know that t* > 0. On
the other hand, 1 ∈ T*, since x′  ϕ(1) = x″.

I assert that ϕ(t*) ~ x′. To see this, note that for the sequence {tn} where tn =
(n – 1)t*/n, tn < t*; hence ϕ(tn)  x′, by construction. But then by continuity
of the function ϕ, limn→∞ ϕ(tn) = ϕ(t*), so by continuity of preferences, ϕ(t*) 
x′. On the other hand, there is some (nonincreasing) sequence of values {t′n}
where t′n ∈ T* (therefore, x′  ϕ(t′n)) for each n and limn t′n = t*; this follows
from the definition of the infimum of a set of real numbers. By continuity of ϕ,
limn ϕ(t′n) = (t*), and by continuity of preferences, x′  ϕ(t*). So x′  ϕ(t*) 

 x′, or x′ ~ ϕ(t*). This completes the proof of the lemma and step 1.

For Step 2, note that for any x = (x1, x2, …, xk), if  = max {xj; j = 1, …,
k} and  = min {xj; j = 1, …, k}, then d  x  d because preferences
are monotone. By the lemma, some point on the line segment joining d to 

d is indifferent to x. This line segment is a piece of the diagonal D, and hence
some point on the diagonal is indifferent to x.

Step 3 is a simple matter of marshalling definitions. For Step 4, we must
show that for any x ∈ X, a unique y ∈ D satisfies y ~ x. That y ~ x for some y
∈ D is Step 2. Suppose x ~ y and x ~ y′ for distinct points y and y′ from D. By
transitivity, y ~ y′, contradicting Step 3.

Finally we have Step 5. Suppose x and x′ are arbitrarily selected points from
X. Then x ~ u(x)d ∈ D, and x′ ~ u(x′)d ∈ D. By transitivity of , x  x′ if
and only if u(x)d  u(x′)d which, by Step 3, is true if and only if u(x) ≥ u(x′).
Thus u gives a representation of .

To show that u is continuous, suppose {xn} is a sequence in X with limit x.



We need to show that lim n u(xn) = u(x). If not, then for some δ  > 0 and some
subsequence {n′}, lim xn′ = x, and either u(xn′) > u(x) + ϕ for all n′ ≥ N for some
large N, or u(xn′) < u(x) – ϕ for all n′ ≥ N for some large N. Take the former
case. For all n′ > N, xn′ ~ u(xn′)d  (u(x) + ϕ)d and thus, by continuity of
preferences, x  (u(x) + ϕ)d. But x ~ u(x)d, which would contradict Step 3.
The second case, where u(xn′) < u(x) – ϕ for all sufficiently large n′, is similar. It
follows that lim u(xn) = u(x), completing the proof with the extra assumptions.

2.4. Indifference Curve Diagrams
Consider the standard indifference curve diagram from intermediate
microeconomics, depicted in Figure 2.1. There are two commodities; that is, X
= R2

+. The figure depicts a consumer’s indifference curves, the sets I(x) for
various x. At the start of this chapter, several characteristics of this diagram are
listed, which can now be justified.

1.  The indifference classes are “ thin” curves; they have no depth; they contain
no ball of positive radius. This is a consequence of local insatiability:
Suppose there was a ball of radius ∈ wholely contained within some
indifference curve. Let x denote the center of the ball. If preferences are locally
insatiable, there is some y within ∈/2—that is, within the ball—that is
strictly preferred to x, a contradiction.

2.  The indifference curves are strictly decreasing as we move from left to right.
In symbols, if y = (y1, y2) ~ x = (x1, x2) and y1 > x1, then y2 < x2. This is
true if preferences are strictly monotone: If y1 > x1 and y2 ≥ x2 (and
preferences are strictly monotone), then (y1, y2)  (x1, x2).

3.  The indifference curves are continuous and don’t “ run out” or end abruptly
except on the boundaries of X. That is, if we start at any point x ≥ x′ and
follow a continuous path to a point x″ ≤ x′, we cross the indifference curve of
x′. This is true if preferences are monotone and continuous; if they are
monotone, x ≥ x′ ≥ x″ implies x  x′  x″; hence Lemma 2.10 applies.
Continuity of preferences alone is insufficient; see Problem 2.7.



4.  The indifference curves are strictly convex. That is, if distinct points x and
y lie along the same indifference curve and a ∈ (0, 1), then ax + (1 – a)y
lies on a higher indifference curve. This, of course, is strict convexity.

The indifference curves in Figure 2.1 have one further property: They are
smooth, without kinks or sudden changes in derivatives. Nothing that we have
said or done in this chapter gets us to this sort of property, although we see in
later chapters that this property has some nice consequences.

2.5. Weak and Additive Separability
We now turn to properties of preferences and utility functions that are useful
analytically. These properties turn up frequently in examples, but they are rarely
justified. I hope that the discussion of these three properties convinces you that
they involve strong assumptions indeed.

The first sort of property is associated with the term separability. To
motivate this, suppose that consumption bundles x ∈ Rk

+ consist of bundles of
foodstuffs and other items. Specifically, for x = (x1, …, xk), items 1 through j are
levels of food, while j + 1 through k (for some j < k) are items of clothing,
housing, recreation (other than eating), and so on. You might imagine that how
a consumer feels about various combinations of food—so many steaks, so much
corn, so many potatoes, so much lettuce—is all bound together in a
complicated fashion, but how the consumer feels about different combinations of
food doesn’t depend on the amounts of other items (clothing, housing) that she
consumes. If she prefers two steaks, two ears of corn, three potatoes, and no
lettuce, to one steak, five ears of corn, no potatoes, and three kilograms of
lettuce, she has those preferences whether she is wearing a skirt or a pair of
jeans.

A ton of notation is required to formalize this idea in reasonable generality.
Write K for the set {1, …, k}; that is, K is the list of commodity names. For
any subset J ⊆ K, write xJ for a commodity vector for the commodities named
in the list J. So, for example, if K = {1, 2, 3}, thinking of the three
commodities as cans of beer, bottles of wine, and loaves of bread, respectively,
and if J = {1, 3}, the bundle xJ = (4, 5) means four cans of beer and five loaves
of bread. For any x ∈ Rk

+, write xJ for the components of x on the list J, and



we write RJ
+ for the set of all such sub-consumption bundles (consisting only of

commodities from the list J). That is, if x = (4, 3, 5) and J = {1, 3}, then xJ =
(4, 5). Note that xK is just the same as x, in this peculiar system of notation. If J
and J′ are disjoint subsets of K, write (xJ, xJ′) for the commodity bundle with
commodity levels specified by xJ for commodities named in list J and by xJ′ for
those named in list J′. For J ⊆ K, write JC for the complement of J in K. Thus
(xJ, xJc) is a completely specified commodity bundle (levels specified for every
commodity named on the list K = {1, …, k}).

Definition 2.11. Let J1, …, JN be a list of N mutually exclusive subsets of K.
That is, Jn ∩ Jm =  for n ≠ m. Preferences  are weakly separable into J1,

…, JN if for any n = 1, …, N, xJn and  from , and  and 

 from 

 
To paraphrase, think of Jn as the list of food indices. Then, if (xJn, xJcn) 

(x′Jn, xJcn), this means that the food sub-bundle xJn is preferred (weakly) to the

food sub-bundle x′Jn when the full bundle is filled out with xJcn. When we

compare (xJn, x′Jcn) and (x′Jn, x′Jcn), we are changing how we fill out the full

bundle, but we are comparing the same two food sub-bundles. The definition
says that the comparison of food sub-bundles doesn’t change with the filling-
out. And it says more besides: The same property holds separately for each of
the sub-bundle lists J1, …, JN.

Proposition 2.12. Suppose that u represents . Preferences  weakly

separable into J1 through JN, if and only if there exist functions un : RJn+ → R



(for n = 1, …, N) and, for un(R+
Jn) the images set of 

such that v is strictly increasing in its first N arguments, and

It looks much worse than it is. Think of N = 2, J1 being the list of food items,
and J2 being the list of, say, clothing items. Therefore, (J1 ∪ J2)C is the list of
all nonfood, nonclothing items. Suppose we have preferences that are weakly
separable into food and clothing items. Then we can find sub-utility functions
u1 and u2 defined for food and clothing sub-bundles, respectively, so that overall
utility is given by a function of food sub-utility, clothing sub-utility, and the
amounts of the other items, in a way that is strictly increasing in both food and
clothing sub-utility levels. (All that stuff about the image set is just saying that
we are only defining v for values that are needed for the representation.)

Proof. If we have a utility representation u taking this form, weak separability is
shown as follows: For any 

implies that  which implies 

 for all x′JCn.

For the converse, suppose u represents , and  is weakly separable into

J1 through JN. Fix some bundle x*. For each n, define a function un : RJn+ → R
by un(xJn) = u(xJn, x*JCn). For (r1, …, rN) such that rn = un(xJn) for some xJn

(for each n), and for any xK′ where K′ is used as temporary shorthand for (J1 ∪…
∪JN)C, define v(r1, …, rN, xK′) = u(xJ1, …, xJN, xK′). The key step in the proof

is to show that this definition doesn’t depend on the particular xJn chosen (as

long as un(xJn) = rn). That is, if {x′Jn} is another collection of sub-bundles with



un(x′Jn) = rn for each n, then u(xJ1, …, xJN, xK′) = u(x′J1, …, x′JN, xK′). This is

where weak separability comes in:

i m p l i es . Apply weak

seperability, replacing x*JCN with 

, and

we get

Note that there are n indifference relations here, for n = 1, …, N, and that the
right-hand term in the n th of them is the left-hand term in the n + 1. Thus the
left-hand term in the first is indifferent to the right-hand term in the N th, by
transitivity of indifference. This is

(xJ1, …, xJN, xK′) ~ (x′J1, …, x′JN, xK′),

which is just what we want.
It remains to show that v so defined is strictly increasing in its first N

arguments. I leave this to you. Begin with the hypothesis that un(xJn) = rn ≥ r′n
= un(x′Jn) for each n, with a strict inequality for some n. You have to show

under this hypothesis that (xJ1, …, xJN, xK′)  (x′J1, …, x′JN, xK′), and

(therefore) u((xJ1, …, xJN, xK′)) > u((x′J1, …, x′JN, xK′)). To do this, repeat the

argument in the previous paragraph, but with a chain of  s and one  in



place of all the ~ s.

Next comes additive and strong separability. The property on preferences is
called strong separability; additive separability refers to the structure of the
representation.

Definition 2.13. Let J1, …, JN partition K. That is, Jn ∩ Jm =  for n ≠ m,
and J1 ∪ … ∪ JN = K. Preferences  are strongly separable in J1, …, JN if
for every L = Jn1 ∪ Jn2 ∪ … Jnl for some set of indices {n1, …, nl} drawn

from {1, …, N}, (xL, xLC)  (x′L, xLC) for some xLC implies that (xL, x′LC) 
(x′L, x′LC) for all x′LC.

In words, we have strong separability when we have weak separability not only
for the individual groups of commodities (food, clothing, shelter, etc.), but also
for all unions formed out of those groups (food and clothing together are weakly
separable from everything else). Not only is the consumer’s preference over food
items independent of what he wears and what quality housing he has, but the
trade-offs he makes between food and clothing are independent of his housing,
the trade-offs he makes between food and housing are independent of his
clothing, and the trade-offs he makes between housing and clothing are
independent of his food. All this independence adds up to a very nice result.

Before giving the result, we need a minor definition. Suppose we have
strong (or even weak) separability with commodity index sets J1 through JN.
For each of the Jn, we say that  is nontrivial on Jn if there exists a pair of Jn
sub-bundles xJn and x′Jn and some full bundle x* such that (xJn, x*JCn)  (x′Jn,

x*JCn). (Weak separability tells us that the bundle x* used to “ fill out” the sub-

bundles is actually irrelevant to this definition.)

Proposition 2.14. Suppose preferences  are continuous and strongly
separable in J1 through JN. Suppose further that  is nontrivial on at least
three of the commodity index sets J1 through JN. (Therefore, N ≥ 3 is certainly



required.) Then we can find continuous functions un : R+
Jn → R such that

is a utility representation of . Conversely, if preferences are represented by
a utility function u taking the form 

 then

preferences are strongly separable.

In words, with strong separability into three or more sets of indices, we can find
an additively separable utility function, where to find the utility of an entire
bundle, we sum the sub-utilities of the sub-bundles (for special sub-utility
functions).

One direction—that an additively separable representation implies strong
separability of preferences—is easy to prove, but the converse is difficult. I
won’t try even to sketch its proof; see Debreu (1960).

2.6. Quasi-linearity
Quasi-linearity is a functional form for utility that is extensively used in
applications. It involves a commodity space, RK

+ that is divided into two
pieces, a single distinguished commodity, and all the others. We will assume
that the distinguished commodity is the K th, and we will write commodity
bundles as (x, m), where x ∈ R+

K – 1 gives the levels of all but the last
commodity, and m ∈ R+ gives the last. The symbol m is a mnemonic for
money: In the usual application of quasi-linearity, the consumer’s preferences are
specified for a (usually small) subset of the commodities and money left over to
buy the others; that is, x gives the levels of consumption of the small subset,
and m the amount of money left over to buy everything else. Since this is
overwhelmingly the standard application of quasi-linearity, the terminology
“ money left over” is used here.



Definition 2.15. Preferences  on RK
+ are quasi-linear in the K th

commodity if they can be represented by a utility function of the form

U(x, m) = u(x) + m,

for some sub-utility function u : R+
K–1 → R. In such cases, we also say that

the utility function U has a quasi-linear form.

In words, the utility of a bundle (x, m) is the sub-utility of the sub-bundle x plus
the amount m of money left over.

Proposition 2.16. Preferences  on RK
+ have a quasi-linear representation

in the K th commodity if and only if the following properties hold:

a.   For every x ∈ R+
K–1 and m and m′ ∈ R+, (x, m)  (x, m′) if and only if

m ≥ m′.

b.   For every x and x′ ∈ R+
K–1 and m and m′ ∈ R+, (x, m)  (x′, m′) if and

only if (x, m + m″)  (x′, m′ + m″) for all m″ ∈ R+.

c.   For every x and x′ ∈ R+
K–1, (x, m) ~ (x′, m′) for some m and m′ ∈ R+.

The proof is left as an exercise. See Problem 2.11 for hints (which make the
proof fairly simple), and the Student’s Guide for the detailed proof.

Property b is the key in terms of economics. It says that trade-offs between
the other goods and money don’t change with equal increases in the amount of
money; in other words, there are no “ wealth effects.” If the consumer is willing
to trade x and $10 to get x′, he is willing to make this same net trade whether it
leaves him with $0 (hence (x′, 0)  (x, 10)) or it leaves him with $100,000
(hence (x′, 100,000)  (x, 100,010)). This powerful property simplifies
analysis tremendously in applications. Of course, it is also quite a dubious
property on first principles; if you use it in applications, you must justify doing
so.



While we have emphasized b, the roles of a and c should be discussed
briefly. Property a says that more money is better than less, which is easy to
accept. Property c combines two ideas: First, no matter how much better than x′
is the sub-bundle x, some amount of money compensates for getting x′ instead of
x. That is, notwithstanding the old cliché, money can buy happiness.
Moreover, money can be used to calibrate the difference in worth of any two sub-
bundles of the other goods; by adjusting the amount of money used in
compensation, we can always get precise indifference.

Back in Chapter 1, we said that it didn’t make sense to ascribe meaning to
differences in utility; that is, if u(x, m) – u(x′, m′) > u(x′, m′) – u(x″, m″), we
shouldn’t conclude that the difference from (x, m) to (x′, m′) is “ bigger” than the
difference from (x′, m′) to (x″, m″). But if our utility function is quasi-linear,
differences in utility on that particular scale have a very concrete interpretation:
u(x, m) – u(x′, m′) is the amount of money left over needed to compensate the
consumer for going from (x, m) to (x′, m′). That is, letting m* = u(x, m) – u(x′,
m′), (x, m) ~ (x, m′ + m*).

2.7. Homotheticity
The final special property for preferences and utility functions that we explore is
homotheticity.

Definition 2.17. Preferences  are homothetic if x  y implies λx  λy
for all x, y ∈ X and λ ≥ 0.

Homotheticity is not a very natural property intuitively, at least in a world
where there are some goods that promote the consumer’s well-being (taken in
moderation) and others that are and remain “ fun.” To take an example, imagine
that k = ∈ and the two goods are cod liver oil (measured in teaspoons) and
manna (measured in kilograms). Imagine that this particular form of manna lacks
a single mineral that promotes health, a mineral that can be obtained from a
single teaspoon of cod liver oil. But except for that mineral, manna is much
more desirable than cod liver oil, being tastier. Then it is reasonable to suppose
that (1, 2)  (0.2, 2.8) (where the first component is the amount of cod liver
oil, measured in teaspoons)—the consumer prefers to get her teaspoon of cod
liver oil—and yet (5, 10)  (1, 14)—this consumer doesn’t want more than



one teaspoon of the oil.
Despite its lack of intuitive appeal, homotheticity has its value for some

types of analysis, so we investigate its consequences for utility representations.
We begin with mathematical definitions.

Definitions 2.18. A subset A of Rk is a cone if x ∈ A implies λx ∈ A for all
scalars λ ≥ 0.

If A is a cone in Rk, a function f : A → R is homogenous of degree α ≥ 0 if
f(x) = λαf(x) for all λ ≥ 0 and x ∈ A. In the case α = 1, we often say (simply)
that the function is homogeneous.

Proposition 2.19. Preferences  are continuous and homothetic if and only if
they can be represented by a continuous and homogeneous utility function.

The proof is left for you to do as Problem 2.12.

Bibliographic Notes
Most of the results in this chapter are relatively straightforward; there is no
particular place to send you for further reading. But the exceptions are Debreu’s
Theorem on continuous representations of continuous preferences, and
Proposition 2.14, on strong and additive separability, which is also due to
Debreu. The classic references are Debreu (1954) and (1960), respectively.

Problems
 *2.1. The form-of-representation results that are at the heart of this chapter

take different forms because corresponding to each  are many different
representing utility functions U. In one direction, we have results such as
Preferences  are monotone implies all utility function representations are
nondecreasing; but we also have results for different properties of  and U
where the all is replaced by some. In the converse direction, a typical result is
that Preferences are monotone is implied if some utility function representation
is nondecreasing. So that you have all such results compiled in one place, fill
in the table in Table 2.1 following the example in the first line.





Table 2.1. Problem 2.1: Fill in the table (but see the notes below first)

Notes: 1. Do not attempt to fill in the box marked ????. You were not given
this information in the chapter. (In fact, I don’t know what is correct to put in
this box.)
2 . u takes the form 

for v strictly increasing in its first N arguments.
3. u takes the form .

4. U takes the form u(x) + m.
5. In this row, a maintained hypothesis is that preferences are continuous.

 2.2. Proposition 2.6 leaves open the unhappy possibility that, for convex
preferences and a convex set A, c (A) = ; there are no -best elements of A.

This is a real possibility: Consider A = (1, 5) or A = (3, ∞) as subsets of R+,
with strictly monotone preferences. But suppose A is convex and compact?

Show by example that even if preferences are strictly convex, it is possible that c
(A) =  for a compact set A. (Hint: Examples are possible with X = R+.

Obviously, these preferences cannot be continuous, and the real point of this
problem is to have you think about how convexity of preferences connects with
continuity of preferences.)

 *2.3. Prove that if preferences  are globally insatiable and semi-strictly
convex, then they are locally insatiable. Show by example that this isn’t true for
globally insatiable preferences that are only convex.

 2.4. Prove Proposition 2.5.

 *2.5. (a) Give an example of a concave function u : Rk
+ → R (for some

integer k) and a strictly increasing function f : R → R such that f(u(·)) is not
concave. (Examples with k = 1 are certainly possible.)



(b) Give an example of a continuous function u : Rk
+ → R (for some integer k)

and a strictly increasing function f : R → R such that f(u(·)) is not continuous.

 *2.6. Prove that continuous preferences are strictly monotone for strict
increases in all components—that is, if x and y are such that xi > yi for all i, then
x > y—if and only if preferences are monotone and locally insatiable. What can
you say along these lines if we remove the assumption that preferences are
continuous?

 2.7. Most pictures of indifference curves have the property that if x ≥ x′ ≥ x″,
then any continuous path from x to x″ cuts through the indifference curve of x′.
That is, if ϕ : [0, 1] → Rk

+ is a continuous function with ϕ(0) = x and ϕ(1) =
x″, and if x ≥ x′ ≥ x″, then there is some t ∈ [0, 1] such that ϕ(t) ~ x′. We
remarked in the text that this is true if preferences are monotone and continuous;
if preferences are monotone, x ≥ x′ ≥ x″ implies x  x′  x″, then continuity of
preferences combined with Lemma 2.10 gives the result. Show by example that
continuity of preferences is insufficient for this result; if you can, show that even
if preferences are continuous and locally insatiable, this result fails.

 2.8. Part a is not too hard if you know the required mathematics. Part b is
extremely difficult.

(a) Consider the following two utility functions defined on R2
+ :



Show that the corresponding two preferences are both convex. Show that neither
could be represented by a concave utility function. Are either or both of the
corresponding preferences semi-strictly convex? Are either or both of the
corresponding preferences continuous?

(b) There are preferences that are both semi-strictly convex and continuous but
that don’t admit any concave numerical representations. One such utility
function is

Prove that preferences given by this utility function cannot be represented by any
concave function.

 *2.9. (a) Consider the utility function on X = R2
+ given by u(x) = u((x1, x2))

= αx1 + βx2, for α and β strictly positive constants. What do the indifference
curves corresponding to this utility function look like? Are these preferences
monotone? Strictly monotone? Locally insatiable? Convex? Strictly convex?
Semi-strictly convex? Continuous?

(b) Consider the utility function on X = R2
+ given by u(x) = u((x1, x2)) =

min{x1/α, x2/β}, for α and β strictly positive constants. What do the indifference
curves corresponding to this utility function look like? Are these preferences
monotone? Strictly monotone? Locally insatiable? Convex? Strictly convex?



Semi-strictly convex? Continuous?

 2.10. (This one is for math jocks.) In Chapter 1, we proved that continuous
preferences had a representation in two steps. We showed (in the proof of
Proposition 1.15) that if preferences  defined on Rk

+ are continuous, then the

set of points with rational coefficients (which we can write as Qk
+, where Q

stands for the rationals) is order-dense, in the sense of Proposition 1.12. And
then we relied on the proof of Proposition 1.12. This means that, if we let {q1,
q2, …} be an ennumeration of Qk

+ (we know that Q is countable, so Qk
+ is also

countable), and we define

for x ∈ Rk
+, then u : Rk

+ → R represents . Prove that, if  is continuous
(and complete and transitive), then u defined in this manner is upper semi-
continuous.

 *2.11. Prove Proposition 2.16. If you would like a challenge, try to prove it
without reading the following hint, which gives the game away. (Hint: Fix
some x′ . For each x, use property c from the proposition to find m and m′ such
that (x, m) ~ (x′ , m′). Define u(x) = m′ – m.)

 2.12. Prove Proposition 2.19. It simplifies matters to assume that the
preferences involved are strictly monotone, as well as continuous, and you may
make this assumption if you wish, although it isn’t necessary to the proof.
(Hint: Given this assumption, mimic the proof of Debreu’s Theorem given in
this chapter.)

 2.13. Suppose k = 2, and we have a consumer whose preferences are
continuous and strictly monotone. If you are given a single indifference curve for



this consumer, how much of her preferences can you construct if her preferences
are also homothetic? What if, in addition to being strictly monotone and
continuous, her preferences are quasi-linear in the second commodity?

 *2.14. The objective in this problem is to prove Debreu’s Theorem without
the extra assumption that preferences are monotone and strictly monotone along
the diagonal. (The extra assumption was stated a bit differently in the text, but
this is what it comes down to.) The proof for the general case takes a fair
amount of work, but if you are able to do real analysis, there is nothing
particularly fancy about it. I outline the proof here; in the Student’s Guide , I
provide a few more of the details.

To set the stage, let us briefly review the two places we used the extra
assumption in the proof given in the text. First, it was used to ensure that for
every x ∈ X, there exist y and y′ from D such that y  x  y′. This, together
with Lemma 2.10, ensured that we could find for each x ∈ X some α(x)d ∈ D
such that x ~ α(x)d. Thus once we produced a numerical representation of  on
D, we could extend it to all of X. Second, the assumption made it very easy to
produce a continuous utility function on the diagonal: We could simply define
UD(αd) = α.

The general proof will follow this basic line of attack. First, we produce a one-
dimensional continuous “ curve,” which we denote by Z, such that for all x ∈ X
there exists z and z′ from Z such that z  x  z′.

(a) You should begin by producing such a Z. Use the fact that  has a
numerical representation (albeit not necessarily continuous) and think in terms
of a “ curve” Z that looks something like a connect-the-dots diagram. (Further
hint: Consider the following two-by-two collection of cases: For V a numerical
representation, either sup V (Z) is attained or is not, and either inf V (Z) is
attained or is not. If both the sup and inf are attained, your connect-the-dots
picture will consist of one line segment. If either is not attained, you will have
countably many dots to connect.)

(b) Now apply the lemma to conclude that for every x ∈ X there is some z(x) ∈



Z such that x ~ z(x).

(c) Using part (b), prove that if UZ is a continuous representation of 
restricted to Z, you can extend UZ to all of X to get a continuous representation
of  on X.

So what remains is to produce a continuous representation on Z.

Let Z′ be a countable dense subset of Z. If Z contains a best and/or a worst
element, be sure that these are in Z′. Ennumerate Z′ as {z′1, z′2, …}. Take each
z′n in turn and define UZ′ (z′n) as follows: If z′n ~ z′m for m < n, then UZ′ (z′n) =
UZ′ (z′m) (which was defined in an earlier step). If z′n  z′m for all m < n, let UZ′
(z′n) = maxm<n UZ′ (z′m) + 1. If z′m  z′n for all m < n, let UZ′ (z′n) = minm<n
UZ′ (z′m) – 1. And if z′n satisfies z′m  z′n  z′p for m, p < n but z′n is
indifferent to nothing that has lower index, define

That is, give z′n a value halfway between the values of next lowest and next
highest points whose values have already been assigned.

(d) Show that this produces a numerical representation of  on Z′.

(e) Let I be the smallest interval containing UZ′ (z′) for all z′ ∈ Z′. Show that
the set of values {r = UZ′ (z′); z′ ∈ Z′} is dense in I.

(f) Take any z ∈ Z and let {z′n} be a sequence out of Z′ with limit z. Show that
lim supn UZ′ (z′n) = lim infn UZ′ (z′n). Then show that lim UZ′ (z′n) (which we
now know exists) is finite. (Hint: Use continuity of  and steps (d) and (e).)



(g) Define UZ : Z → R by UZ(z) = lim UZ′ (z′n) for any sequence {z′n} out of Z′
with limit z. Why is this well defined? (Invoke (f).) Prove that UZ so defined
gives a continuous representation of  on Z.

 2.15. (This problem requires that you know some measure theory.) In
Chapter 1, we proved the existence of numerical representations of complete and
transitive preferences on finite sets by counting the size of NBT(x) and, on
countable sets, by computing Σy∈ NBT(x) a(y), where {a(y) : y ∈ X} was a
summable sequence of numbers. In roughly that spirit, suppose that X = Rk

+, 
 is complete, transitive, and continuous, and µ is a finite and positive

measure on X such that µ(A) > 0 for every (measurable) set A that has positive
Lebesgue measure. In this setting, define u : X → R by u(x) = µ(NBT(x)). Prove
that u is a utility representation of  and is upper semi-continuous, but not
necessarily continuous. Can you find further conditions on  that will imply
that u is continuous?

 

1 For k -dimensional vectors x and y in Rk, x ≥ y means each component of x
is at least as large as the corresponding component of y. When every component
of x is strictly larger than the corresponding component of y, we will write x > y.

2 In mathematics, “ monotone” could mean increasing or decreasing. It would
be more precise to say that preferences with the property of the definition are
monotonically increasing (or nondecreasing). Indeed, while in this chapter I use
“ monotone” for preferences and “ nondecreasing” for utility functions, later in the
book I use “ nondecreasing” more often than “ monotone” and “ strictly
increasing” more often than “ strictly monotone” when describing preferences.

3 Both by a strict interpretation of the definition and by convention, the
empty set  is a convex set.

4 In Chapter 6, we give an intuitive property about the consumer’s preferences
o n lotteries of consumption bundles that ensures these preferences admit a



concave numerical representation.
5 I remind you that, throughout this chapter, we are assuming that the

domain for preferences is Rk
+, the positive orthant of finite-dimensional

Euclidean space. Many of the results in this chapter generalize beyond this
setting, and many of the proofs apply to more general settings directly. But in
proving Debreu’s Theorem, we use some of the topological properties of
Euclidean space in ways that may not be obvious to you if you don’t
understand all the details.

6 If preferences are both continuous and strictly monotone for strict increases
in x, then they are monotone—cf. Problem 2.6—so in fact in the context of
Debreu’s Theorem, where preferences are continuous, the assumption that
preferences are monotone is redundant once we assume that they are strictly
monotone for strict increases.



Chapter Three



Basics of Consumer Demand

The prototypical application in economics of the material from Chapters 1 and 2
is to consumer demand in a competitive marketplace. The individual consumer
chooses a consumption bundle x ∈ Rk

+, subject to a budget constraint. This
chapter gives the basics of the model; many following chapters contribute further
pieces to this story.

3.1. The Consumer’s Problem
The consumer’s problem—the focus of this chapter and many to follow—is
formulated as follows:

•   The space of consumption bundles X is Rk
+, the positive orthant of k-

dimensional Euclidean space, where k, a positive integer, is the number of
commodities.

•   The consumer has a fixed amount of money to spend on her consumption
bundle. This amount of money is commonly referred to as the consumer’s
income and is denoted here by y.1 We assume y is nonnegative throughout.

•   The price of a unit of the j th commodity is denoted by pj, for j = 1, 2, …,
k. We write p for a typical price vector (p1, …, pk). Throughout this chapter,
all prices are assumed to be strictly positive; therefore p is an element of
Rk

++, the strictly positive orthant in Rk.

•   The consumer takes prices as given. She assumes she can buy any amount
of a commodity at its market price, without changing that market price.
Therefore, if prices are given by the price vector p = (p1, p2, …, pk), the
total cost of the commodity bundle x = (x1, x2, …, xk) is p1x1 + p2x2 + … +
pkxk = p · x, where p · x is the dot or scalar or inner product of the two k -
vectors p and x.

•   The consumer operates under the constraint that the bundle she purchases
costs no more than the income she has to spend, or p · x ≤ y. Also, the
consumer is constrained to consume nonnegative amounts of each
commodity, or x ≥ 0. For given prices p and income y, we denote by B(p, y)



the set {x ∈ Rk
+ : p · x ≤ y}, calling this the budget set or the set of

budget-feasible consumption bundles.

•   Subject to these constraints, the consumer endeavors to select the best
bundle she can, according to her preferences. Following developments in
Chapter 1, we assume that the consumer has complete and transitive
preferences , which are always continuous in this chapter. This guarantees

the existence of a continuous function u on the domain Rk
+ that represents 

 (cf. Proposition 2.9).

Therefore, the consumer’s problem (abbreviated CP) given prices p, income y,
and her utility function u, is to choose x to

Note that three things “ define” a particular CP: the consumer’s utility function
u, the price vector p, and the consumer’s income y.

You are probably familiar with the picture that goes with the CP; for
purposes of comparison with other pictures later, I reproduce it here. For a two-
commodity world, preferences are depicted by indifference curves, and the budget
set is a triangle with vertices at (0, 0), (y/p1, 0), and (0, y/p2). The consumer
tries to find the highest indifference curve that still intersects the budget set.
Figure 3.1 captures all this.



Figure 3.1. The consumer’s problem (or the CP) in a picture

The assumption of constant prices
The assumption that the consumer faces constant prices—she pays pjyj for yj
units of good j, no matter what is the size of yj and no matter what are her other
consumption decisions—has two components.

1.  The consumer believes (and it is in fact true in the model) that her
consumption decisions are on such a small scale that they do not affect the
prices pj that are charged for various commodities.

2.  The consumer receives no quantity discounts, nor does she pay a premium
for large-scale purchases. In the jargon of economics, she faces linear prices.
Being “ small” in the sense of the previous paragraph doesn’t guarantee this;



m y personal household consumption of water and telephone services is
small on the scale of my local water utility and phone company, yet I pay
an increasing amount on the margin the more water I use, and the average
cost to me of phone services decreases with the number of phone calls I
make. Very small consumers sometimes face nonlinear prices.
     Despite these examples, linear prices are the starting point for most
economic theory, rationalized by the possibility of resale. If a single
consumer could lower her average price by purchasing more and more, some
consumer (the rationale goes) would purchase in bulk and resell the goods
to other consumers at a profit. If a single consumer faces higher prices as her
scale of purchases increases, she would get friends to purchase in small lots
and resell to her. To maintain nonlinear prices, the vendor must be able to
control resale (which both my water utility and phone company can do, to a
large extent). For now we assume the vendor cannot control resale and, for
that reason if for no other, prices are linear.

Savings
The CP makes no provision for savings. The consumer has an amount of
income y to spend, every penny of which is spent on consumption if this
maximizes utility. This is neither reasonable nor descriptive. A consumer
taking a trip to her local grocery rarely spends every penny in her pocket or in
her checking account on groceries. Considerations of savings and trips to one
store among many take us into the realm of dynamic choice, which we study
only in Chapter 7. For now, think of CP as describing the shopping expedition
of a mythical consumer who makes one trip to one store in her lifetime, then
spends the rest of her life consuming her one-time purchases.

3.2. Basic Facts about the CP
Figure 3.1 is the typical picture drawn for the CP but is special in three ways:

1.  The CP has a solution.

2.  The solution is unique.

3.  The solution involves spending all the consumer’s income.



Drawing a picture where the CP has no solution is a challenge—you need very
strange (essentially, discontinuous) indifference curves—but it is easy to draw
pictures where the CP has multiple solutions or where the solutions involve
spending less than y; see Figures 3.2a, b, and c.

On the other hand, it is easy to give conditions that guarantee 1 through 3.

Proposition 3.1. Fix a continuous utility function u, and consider the CP for
various strictly positive prices p and nonnegative income levels y.

Figure 3.2. Variations on Figure 3.1. In panel a, the CP has two
solutions because preferences are not convex. In panel b, preferences are
convex but not strictly convex, and the CP has a convex set of solutions.
In panel c, preferences are not locally insatiable, and the solution to the
CP is interior to the budget set (that is, at the solution, the consumer
spends less than y).

a.   If x is a solution of the CP for a given p and y, then x is also a solution
for (λp, λy), for any strictly positive scalar λ.

b.   The CP for each p and y has at least one solution; some x ∈ B(p, y)
maximizes u(x) over B(p, y).



c.   If u is quasi-concave (preferences are convex), the set of solutions to the
CP for any p and y is convex. If u is strictly quasi-concave (if preferences
are strictly convex), then the CP for each p and y has a unique solution.

d.   If preferences are locally insatiable and if x is a solution to the CP at (p,
y), then p · x = y.

Proof.

a.   For any strictly positive λ, p · x ≤ y if and only if λp · x ≤ λy; hence B(p, y)
= B(λp, λy). The objective function doesn’t change with λ; hence the set of
solutions for (p, y) is the same as the set of solutions for (λp, λy).

b.   If we show that B(p, y) is nonempty and compact (closed and bounded),
then b follows from the continuity of u. Nonemptiness of B(p, y) is trivial;
0 ∈ B(p, y) for all p and y. To show that B(p, y) is compact, note first that
x → p · x is a continuous function. Hence for any convergent sequence {xn}
of points from B(p, y) with limit x, p·xn ≤ y and xn ≥ 0 for each n imply that
p·x ≤ y and x ≥ 0. Therefore, x ∈ B(p, y), and B(p, y) is closed. Let δ  =
min {pi; i = 1, …, k}; since prices are strictly positive, δ  > 0. If x ∈ B(p,
y), then p · x ≤ y; hence for each i, pixi ≤ y (because the cost of all other
goods cannot be negative), so each xi ≤ y/pi ≤ y/δ . Therefore if x ∈ B(p, y),
xi ≤ y/δ  for all i, and B(p, y) is bounded.

c.   The constraint set B(p, y) is convex because convex combinations of
nonnegative vectors are nonnegative and the function p·x is linear in x.
Therefore, if p·x ≤ y and p · x′ ≤ y, for any a ∈ [0, 1], p · (ax + (1 – a)x′) =
a(p · x) + (1 – a)(p · x′) ≤ ay + (1 – a)y = y. Now apply either Proposition
2.6 or Proposition A3.21.

d.   Suppose preferences are locally insatiable and x solves the CP, but p · x <
y. Let β = y – p · x, γ = max {pi; i = 1, …, k}, and ∈ = β/(kγ). By local
insatiability, some x′ within ∈ of x is strictly preferred to x; that is, u(x′) >
u(x). But 



. That is, x′ is affordable at prices b with wealth y, and it is strictly preferred
to x, contradicting the supposed optimality of x for prices p and income y.

A simple picture goes with the proof of part d. See Figure 3.3 and the
accompanying caption.

Figure 3.3. The picture for the proof of Proposition 3.1d. If p · x < y, then
x lies “ below” the budget line, and we can put a ball of strictly positive
radius around x such that p · x′ ≤ y for every x′ inside the ball. Local
insatiability ensures that no matter how small the radius of this ball, as
long as it is strictly positive, some (nonnegative) point inside the ball
must be strictly better than x, which contradicts the optimality of x at the
given prices and income.

3.3. The Marshallian Demand Correspondence and Indirect Utility
Function

Fix the utility function u for a particular consumer. Assume u is continuous,
reflecting this consumer’s continuous preferences. For each set of strictly
positive prices p and nonnegative income level y, we have a version of the CP



for this consumer. By virtue of Proposition 3.1b, we know that the CP has a
solution. Let D(p, y) denote the set of solutions for the fixed u, as a function of p
and y, and let v(p, y) denote the value of the optimal solution; that is, v(p, y) =
u(x*) for any x* ∈ D(p, y). (D is a mnemonic for demand.)

Definition 3.2. Fixing u, the set D(p, y) is called Marshallian demand at
prices p and income y, and the correspondence (p, y) ⇒ D(p, y) is called the
Marshallian demand correspondence. The number v(p, y) is called the
indirect utility at p and y, and the function  (p, y) → v(p, y) is called the
indirect utility function.

Proposition 3.3 (Berge’s Theorem applied to the consumer’s problem).

a.   For all p ∈ Rk
++, y ≥ 0, and λ > 0, D(p, y) = D(λp, λy) and v(p, y) =

v(λp, λy).

b.   The Marshallian demand correspondence is upper semi-continuous. If, for
some open set of prices and income, Marshallian demand is singleton
valued (that is, the CP has a unique solution for all price-income pairs
inside that open set), then the function that describes the solution as a
function of (p, y) is a continuous function.

c.   The indirect utility function is continuous.

If the notion of a correspondence or an upper semi-continuous correspondence is
new to you, or if you have never heard of Berge’s Theorem, also known as the
Theorem of the Maximum, please consult Appendix 4 before attempting to
understand either the statement of this proposition or its proof.

Proof. Part a of the proposition is a simple corollary of Proposition 3.1a. As for
parts b and c, these come from a straightforward application of Berge’s
Theorem, given in Appendix 4 as Proposition A4.7. Since this is our first
application of this important general result, I spell out the details: The
consumer’s problem is a parametric constrained maximization problem

maximize u(x), subject to x ∈ B(p, y).



The variable in the problem is x, and the parameter is the vector (p, y). Berge’s
Theorem tells us that the solution correspondence is nonempty valued if, for
each set of parameters, the constraint set is nonempty and compact and the
objective function is continuous in the variables; moreover, the solution-set
correspondence is upper semi-continuous and the value-of-the-solution function
is continuous, both in the parameters, as long as the objective function is
jointly continuous in the variables and the parameters and the constraint-set
correspondence is locally bounded and continuous in the parameters. (The
version of Berge’s Theorem given in Appendix 4 is somewhat more robust than
this simple rendition, but the simple rendition is adequate for now.)

In this particular application, the objective function is independent of the
parameters and assumed continuous in the variables. Therefore, the objective
function presents no problem. We already showed that each B(p, y) is nonempty
and compact. So once we show that (p, y) ⇒ B(p, y) is a continuous and locally
bounded correspondence, the conditions of Berge’s Theorem are met, and its
conclusions are established. To begin with local boundedness, fix a pair (p, y),
and let

For all (p′, y′) within ∈ of (p, y), x ∈ B(p′, y′) must solve p′ · x ≤ y′. Since in
the sum p′ · x each term is nonnegative and y′ ≤ y + ∈, this inequality implies
t h a t p′ixi ≤ (y + ∈); hence 

; therefore xi ≤ (y + ∈)/(2∈), which provides a uniform bound for x ∈ B(p′, y′).
Continuity of the constraint correspondence is shown by proving separately

that the correspondence is upper and lower semi-continuous. To show upper
semi-continuity (having shown local boundedness), we take a sequence {(xn, pn,
yn)} with xn ∈ B(pn, yn) for each n and with limit {(x, p, y)}.2 (We are using
superscripts here because subscripts denote components of the vectors x and p.)
Of course, xn ≥ 0 for each n, and since the positive orthant is closed, this
implies that x ≥ 0. Moreover, pn · xn ≤ yn for each n; using continuity of the dot



product, this implies that the limit of the left-hand side, p · x, is less than or
equal to the limit of the right-hand side, y. Therefore, p · x ≤ y and x ∈ B(p, y).
This establishes upper semi-continuity.

To show lower semi-continuity, for each sequence {( pn, yn)} with limit (p,
y) and a point x ∈ B(p, y), we must produce a sequence {xn} with limit x and
such that xn ∈ B(pn, yn) for each n. If y = 0, then x = 0 (prices are strictly
positive); therefore xn = 0 for all n works. If x = 0, the same choice of xn will do.
Therefore, we can assume that y > 0, x ≠ 0 and, by going far enough out in the
sequence, that the pn · x are uniformly bounded away from zero. Let

Since yn → y and pn → p, continuity of the dot product implies that xn → x. It
remains to show that xn ∈ B(pn, yn). Nonnegativity of xn is no problem, since
xn is just a scale copy of x. Moreover,

3.4. Solving the CP with Calculus
When economists build models populated by consumers, it is common practice
to specify the individual consumer’s utility function and to solve the CP
analytically, using calculus. (It is also common to begin directly with the
consumer’s demand function, or even with a demand function that aggregates
the demands of a population of consumers. We discuss these alternative
practices in later chapters.) To build and work with such models, you must be
able to carry out this sort of analytical exercise. In this section, we discuss how
this is done, and (more important to future developments) how to interpret
pieces of the exercise.

The CP is a problem of constrained optimization: A numerical objective



function (utility) is to be maximized, subject to some inequality constraints (the
budget constraint, and all variables nonnegative). Assuming the objective
function and constraint functions are differentiable and otherwise well behaved,
the standard theory of constrained optimization establishes necessary and
sufficient conditions for a solution. The rudiments of the general theory (or,
rather, those rudiments that are germane to applications in this book) are given
in Appendix 5. Adapting them to this context yields the following.

Definition 3.4. Consider the CP for a differentiable utility function u, strictly
positive prices p, and strictly positive income y. 3 A consumption bundle x* is
said to satisfy the (first-order/complementary-slackness) optimality conditions
for the problem if:

a.   p · x* ≤ y;

b.   for some λ ≥ 0,

with equality if xj > 0; and

c.   if p · x* < y, then λ = 0.

Proposition 3.5. Consider the CP for a differentiable utility function u,
strictly positive prices p, and strictly positive income y.

a.   If x* is a solution of this problem, then the optimality conditions must
hold at x*.

b.   If u is concave and if x* satisfies the optimality conditions, then x* solves
the CP.

To paraphrase, the optimality conditions are necessary for a solution, and they
are sufficient for concave utility functions.4



Compared to the general form of first-order/complementary-slackness
conditions given in Appendix 5, the optimality conditions are given here in
somewhat compact form. In case you are new to constrained optimization, it
may help to derive these specific conditions following the step-by-step recipe
from the appendix.

Step 1. Form the Lagrangian. Let λ be the multiplier on the budget constraint
p · x ≤ y and let µi (for j = 1, …, k) be the multiplier on the constraint xj ≥ 0.
The Lagrangian is

Step 2. Obtain the first-order conditions for the xj variables. These are

Step 3. List all constraints, including constraints on the multipliers. The
multipliers are all constrained to be nonnegative and, of course, the solution
must obey the original constraints p · x ≤ y and x ≥ 0.

Step 4. Give the complementary-slackness conditions:

λ(y – p · x) = 0 and µjxj = 0 for j = 1, …, k.

Now to simplify these conditions. Since µj ≥ 0, the first-order condition for
xj can be rewritten



where the difference λpj – u/ xj is just µj. The complementary-slackness
condition µjxj = 0 is, therefore, λpj = u/ xj if xj > 0. Finally, the
complementary-slackness condition λ(y – p · x) = 0 can be rephrased, If y > p ·
x, then λ = 0. This gives the specific optimality conditions defined above.

Parts a and b of the proposition, therefore, correspond to Propositions A5.3
and A5.4, respectively. To apply Proposition A5.3, we must ensure that the
constraint qualification holds. The details are left to you; strict positivity of p
and y is the key. To apply Proposition A5.4, we must check that the constraint
functions are all quasi-convex. Here they are linear, so we have no problems
with quasi-convexity. A few remarks on the formulation are in order:

1.  Differentiability of the utility function means continuous differentiability.
Similar results can be given for utility functions that have left- and right-
hand (partial) derivatives everywhere; after you absorb the discussion of the
intuition of these conditions that follows, you may wish to formulate this
sort of result.

2.  Differentiability also entails finite partial derivatives everywhere.

3.  On the boundaries of the consumption region—where xj = 0 for some or
several j—continuous differentiability is defined as follows: Right-hand
partial derivatives along the boundary exist, are continuous, and are
approached continuously by partial derivatives along paths from the interior.
It is common in parametric specifications of utility functions for u to have
infinite partial derivatives along the boundary. For example, the simplest
standard parameterization of a consumer’s utility function is the Cobb-
Douglas utility function, .

Supposing, as is common, that αj < 1, the partial derivative of u in xj at xj
= 0 (and all other components strictly positive) is infinity.
      Infinite derivatives at the boundary (only) pose no problem in the
following sense. If u/ xj = ∞  at x*, the optimality condition requires



that λ = ∞ . Therefore, p · x* = y. Assuming y > 0, this means that x*j > 0
for some j. Assuming u doesn’t have infinite partial derivatives in xj for x*j
> 0, the optimality conditions could not hold for j with λ = ∞ , a
contradiction. In other words, when in specific parameterizations (such as
Cobb-Douglas utility) the finite-derivative condition is violated along the
boundary of the positive orthant, solutions to the optimality conditions are
never found along those boundaries.

A simple example: Cobb-Douglas utility
To see Proposition 3.5 in action, imagine a consumer whose utility function
takes the Cobb-Douglas form

for strictly positive constants α1 through αk. Note that if xj = 0 for any
component j of x, u(x) = 0, whereas (for any strictly positive y) positive
expenditure on each good gives strictly positive utility; we know a priori that
the solution x* to the CP for any p and y > 0 will be strictly positive in all
components. Therefore, if λ is the multiplier on the budget constraint, the
combined first-order, complementary-slackness optimality condition for xj is

Evaluating the partial derivative for this utility function u, we get



and multiplying the right and left sides of this equation by x*j, we find that (as a
necessary condition for optimality),

It is clear that λ > 0. (Hence we know that the consumer must spend all of y,
although we know this on first principles anyway, since u is locally insatiable.)
We can divide both sides by λ and get, as a necessary condition for optimality,

The left-hand side of this last equation is independent of j (is the same for every
j), so a necessary condition for optimality is

or

The consumer must spend all of her income, or

y = p1x*1 + p2x*2 + … pkx*k.

In this last equation, substitute (αj′/αj)pjx*j for pj′  x*j′ (for j′ = 1, …, k), to get y
= Σj′ (αj′/αj)pjx*j, which can be solved for x*j :



In other words, the monetary expenditure pjx*j on good j at the solution is
proportional to y, the level of income, where the constant of proportionality is
obtained by “ normalizing” the coefficient αj (dividing αj by Σj′ αj′, so that the
sum of the constants of proportionality is one).

Do we know this is the solution? We do indeed, and two arguments show
this. First, if Σj αj ≤ 1, the function u is concave, and the optimality conditions
are sufficient for a solution. “ What,” you may be asking, “ if the sum exceeds
1?” Then replace αj by αj / Σj′ αj′.

5 This is a strictly monotone transformation of
the utility function (why?), so it gives the same preferences and choices (hence
the same solutions to the CP), and the transformed utility function is concave.
(Of course, the solution x* we derived is unchanged by this transformation.)

Or, if that argument doesn’t appeal to you, try this one: Because u is
continuous, we know that the CP has a solution. We know that the optimality
conditions are necessary; they must hold at the solution. But the optimality
conditions uniquely yield the solution x* derived above. So this uniquely
derived x* must be the solution.

Note in passing that a Cobb-Douglas consumer has remarkably simple
demand. For each good, a fixed percentage of her income goes to purchase that
good, regardless of the price of the good or the prices of other goods. Of course,
the price of the good enters into the amount of the good purchased: If (say) α1 /
Σj αj = 0.1, then 10% of the consumer’s income goes to good 1, and the
amount of good 1 purchased is 0.1y/p1. But the amount of good 1 purchased is
utterly independent of the prices of other goods.

Because of the simplicity of demand by a Cobb-Douglas consumer, this
particular utility function is much favored by economists who wish to illustrate
simple points about consumer demand and who need little flexibility in the
actual proper-ties of demand. On the other hand, it is remarkably inflexible for
some purposes; notably, as a parametric family of utility functions



(parameterized by the coefficients αj), it will rarely fit actual consumer demand
very well. For econometric purposes, it is too simple. In the problems, you are
asked to solve the CP for other utility functions that give slightly more flexible
demand. The cost of this flexibility, of course, is that you must to work a bit
harder to solve the CP.

Interpreting the optimality conditions
If we know that λ > 0, the optimality conditions can be rewritten as follows: If
goods i and j are consumed in positive amounts at the optimum,

In words, the ratio of marginal utilities equals the ratio of prices. This may be
familiar to you from intermediate microeconomics, or you may recall The
marginal rate of substitution of good i for good j (along an indifference curve)
equals the ratio of their prices, which is the same thing. Even if λ = 0 we have
this relationship, as long as we recognize that when λ = 0, the first-order
conditions read that u/ xi = 0 for goods that are consumed in positive
amounts, and we interpret 0/0 as being any number we wish.

Whether or not λ > 0, yet another way to rewrite and interpret the
optimality conditions involves the ratio of u/ xj to pj. Let MUj denote u/

xj and let MUj(x) denote this partial derivative evaluated at the point x. MUj
here is a mnemonic for the marginal utility of good j, or the rate at which
utility accrues per unit increase in the amount of good j consumed.

Call the ratio MUj(x)/pj the bang for the buck of good j (at the point x). The
reason for this name is: Suppose the consumer spends $1 more on good j, where
I use the dollar as the numeraire. $1 more spent on good j means an increase of
1/pj in the amount of good j consumed. To a first-order approximation, this
means (MUj(x))(1/pj) more units of utility. Hence MU j(x)/pj is the bang in
utility for the (extra) buck spent on good j.



The optimality conditions can be paraphrased: If xj and xj′ are both strictly
positive, then MUj(x)/pj = MUj′ (x)/pj′ = λ, and if xj > 0 and xj′ = 0, then
MUj(x)/pj = λ ≥ MUj′ (x)/pj′. Or, in words, at the solution to the CP, the bangs
for the buck of goods consumed in strictly positive amounts should be equal,
and these bangs for the buck must be at least as large as the bangs for the buck
of goods whose level of consumption is zero. Or, to rephrase in words one final
time, if good j is consumed at a strictly positive level, its bang for the buck
must be at least as large as the bang for the buck of any other good (whether
consumed or not).

Why? Suppose this failed. That is, suppose that at some feasible
(nonnegative and budget-feasible) consumption bundle x*, x*j > 0, but the bang
for the buck of good j was strictly less than that of some other good, say good i.
Consider spending δ  > 0 dollars less on good j and δ  dollars more on good i,
where δ  is small. This means δ /pj less of good j, and δ /pi more of good i.
Because x*j > 0, for some small enough δ , this reduction in the consumption of
good j is feasible; the constraint xj ≥ 0 won’t be violated. (None of the other
nonnegativity constraints can be violated, since we are adding to the amount of
good i consumed, and we are leaving the rest alone.) Also, this small change
does not affect budget feasibility; we are spending just as much as we were
before. By Taylor’s Theorem, we know that the impact of this variation on the
level of utility is to move us from u(x*) to

(If you don’t know Taylor’s Theorem or the mathematical language of little-
o’s, all that this says is, The utility level changes, to a first-order
approximation, by the change in the amount of good j times its marginal
utility, plus the change in the amount in good i times its marginal utility.)
Therefore, the change in utility is



By assumption, MUi(x*)/pi > MUj(x*)/pj, and so this is strictly positive for
sufficiently small δ . Therefore, x* cannot be the solution to the consumer’s
problem.

Note well, if you can cross i’s and dot t’s when it comes to using Taylor’s
Theorem, we just proved Proposition 3.5a: The argument just given says that if
the optimality conditions fail at x*, then x* cannot be a solution to the CP.
This is the contrapositive to, The optimality conditions are necessary at a
solution. (If p · x* < y, then the bangs for the buck must all be 0, which is λ.
Can you see how to adapt the argument above to show this?) And whether you
can cross i’s and dot t’s, the intuition should be apparent: If good j has a lower
bang for the buck than good i at x*, the consumer will do better to decrease the
consumption of good j and spend the money saved on good i. The only thing
that can prevent this is if the consumption of good j cannot be decreased, which
is to say, if x*j = 0.

Let me ring one further change on this. Suppose the consumer has y to
spend and, at the given prices, finds that the optimal consumption bundle for
her is x*. Suppose that we then give her $1 more to spend (where you should
think of $1 as small on the scale of y). What should she do with the extra $1?
To a first-order approximation, she can divide the extra $1 among all the goods
j with x*j > 0 in any fashion she pleases, and she is close to the optimum. More
precisely, if she allocates any of the extra $1 to a good whose bang for the buck
is less than the bang for the buck of some other good, she will be doing less
well than she might. Now recall that λ, the multiplier on the budget constraint,
is (by the optimality conditions) just this maximal bang for the buck. The
marginal utility accruing from an extra bit of income is just the multiplier on
the budget constraint. If you increase the consumer’s income by $3 and if she
spends the extra optimally, her utility will rise by 3λ, to a first-order
approximation. (If you have had prior exposure to constrained optimization, you
may recall that the multiplier on a constraint is the “ shadow value” on that
constraint; that is, the rate at which the objective function improves per unit



relaxation of the constraint. If you have never seen or heard this, you have now
seen it in a specific context.)

Assuming you understand intuitively the previous paragraph, let me now
warn you, it isn’t quite correct. Assuming u is differentiable, the loose and
informal argument given there can be tightened down to a formal proof (with a
formal statement) if we know that the optimal solution to the CP at income y +
1 is “ close” to the solution at income level y. The reason we need to know this
is that the argument, when fleshed out, works (only) for small changes in
consumption levels from x*. But what if the solution jumps discontinuously?
(Can the solution jump discontinuously?) This takes us deeply into the
mathematics of constrained optimization problems, which I want to leave alone
until Chapter 10. So for now, I hope the intuition behind the previous paragraph
is clear, and (as well) that you recognize that, as an argument that is relying on
calculus, it is only about how the objective function responds to local variations
in the consumption bundle.

Differentiability of utility
Throughout this section, we have assumed that u is (continuously)
differentiable. Nothing like this appeared in Chapter 1 or 2, so a few remarks on
this assumption are in order.

Differentiability of u is not easy to justify. If u is differentiable, for strictly
increasing f : R → R, v(x) = f(u(x)) may not be, so no property of preferences6

will guarantee differentiability of every numerical representation. Of course, the
same is true about continuity; we are content in that case with the result that if
preferences are continuous, they have at least one continuous representation.
Similarly, we would be content with If preferences have property (fill in the
blank), they have a continuously differentiable representation. Unhappily, I
know of no reasonably intuitive property that fills the blank and makes this
statement correct.7

Differentiability of u, then, should be regarded solely as an analytical
convenience; one that holds in all manner of parametric specifications of utility
that economists use, but not one with a firm axiomatic basis.

Bibliographic Notes



The theory of the consumer is one of the cornerstones of microeconomic theory,
and a full bibliographic note would run for many pages. I’m unable to do full
justice to the subject here, and so will refrain from trying altogether.

Almost every textbook on microeconomic theory will have a chapter or
more devoted to the subject. My recommendations here (and throughout the rest
of our discussion of these ideas) are: Kreps (2004) for readers who desire an
“ intermediate micro” level treatment of the subject; Mas-Colell, Whinston, and
Green (1995) and Varian (1992) for alternative treatments at roughly the level of
this book; and Katzner (1970) for a full-blown, all-the-math development.

Problems

 *3.1. Imagine a consumer whose preferences are strictly decreasing. That is, if
xi ≤ x′i for all commodities i, with a strict inequality for at least one commodity,
then x  x′. The solution to the CP for this consumer, for any prices p and
income level y, is clearly to consume the bundle 0 = (0, 0, …, 0). Hence from
part d of Proposition 3.1, we know these preferences are not locally insatiable.
Give a direct argument for this implication.

 3.2. Suppose that in a world with k goods, a locally insatiable consumer’s
preferences  have the following property. Her preferences are strictly convex in

the first j goods. That is, if x1 and x2 are two distinct bundles of goods with x1 
 x2 and x1

i = x2
i for all i = j + 1, j + 2, …, K, and if a ∈ (0, 1), then ax1 +

(1 – a)x2  x2. And she has no use whatsoever for the goods with index above
j. If x1 and x2 are two bundles of goods with x1

i = x2
i for i = 1, 2, …, j, then x1

~ x2. Show that if prices are strictly positive, this consumer’s solution to the
CP is unique.

 3.3. (a) Suppose that , where βi > 0.

Fixing prices p and income y, what is the consumer’s demand?

(b) How does your answer to part a compare with demand by a consumer with
Cobb-Douglas utility?



(c) In footnote 5, I suggested that you look at this problem. What was I
thinking of? How could you rewrite the paragraph in the text that contains this
footnote, in view of your answer to part b?

 *3.4. Suppose that k = 3, u(x) = ln(x1 + 2) + ∈ ln(x2 + 3) + 4 ln(x3 + 2). If
prices are p1 = 2, p2 = 3, and p3 = 1, what does the consumer demand at y = 5?
At y = 16.4? At y = 100?

 3.5. Suppose that , for strictly

positive constants βj and nonnegative constants γj (j = 1, …, k). Describe a
procedure (graphical or algebraic) to find the consumer’s demand at prices p and
income y. (Hint: Warming up to this problem with Problem 3.4 might help.)

 *3.6. (a) Suppose that , for strictly positive

constants αj. What is consumer demand at prices p and income y ?

(b) Suppose that u(x) = min {α1x1, …, αkxk}, for strictly positive constants αj.
What is consumer demand at prices p and income y ? (Note that this utility
function isn’t differentiable, so you can’t use Proposition 3.5.)

 3.7. Suppose that , for strictly

positive constants αj, j = 1, …, k, and µ < 1, µ ≠ 0. What is consumer demand
at prices p and income y? What happens when µ = 1? What happens as µ
approaches zero? (This utility function is called the constant elasticity of
substitution, or CES, utility function.)

 *3.8. Suppose , where each ui

is strictly concave, continuously differentiable, and strictly increasing, with
u′i(0) < ∞ . Devise a graphical procedure for finding x(p, y), given p and y.



 *3.9. Suppose ,

where each ui is strictly concave, continuously differentiable, and strictly
increasing, and with u′i(0) < ∞ . Describe to the fullest extent you can what this
consumer will demand at prices p and income level y.

 3.10. (a) Which of the utility functions in the problems 3.3 through 3.9
represent homothetic preferences?

(b) Complete and prove the following proposition: Suppose a consumer has
homothetic preferences. If she demands x at prices p and income y (i.e., if x
solves the CP at these prices and income level), then her demand at prices p
and income y′ is…

 3.11. Proposition 3.5b says that for concave utility functions u, the
optimality conditions are sufficient for solutions of the CP; i.e., if for a given x
there exists a multiplier λ such that x and λ satisfy the optimality conditions,
then x solves the CP. But as we saw in Chapter 2, concavity of u is not
“ natural”; convexity of preferences goes more naturally with quasi-concavity of
the utility function.

a) Suppose u is quasi-concave and u/ x1 > 0, at all levels of consumption.
Prove that the combined first-order/complementary-slackness conditions are
sufficient to guarantee optimality.

(b) Show by example that if u is locally insatiable and quasi-concave, being a
solution of the combined first-order/complementary-slackness conditions is not
sufficient to guarantee optimality. (Hint: The simplest example you can give is
for the case k = 1!)

 *3.12. It is a useful thing to know, a priori, that the multiplier λ found in
solving the CP will be strictly positive. Give an example to show that this is
something to worry about; specifically, give a utility function u that is strictly
increasing and represents strictly convex preferences, strictly positive prices p,
and a strictly positive income level y0, such that at the unique solution to the



CP at prices p and income y, the multiplier λ must be zero. (Hint: This can be
done with a very small number of commodities.)

 3.13. Suppose that u is not continuously differentiable, but it is “ piecewise
differentiable.” That is, at every x ∈ Rk

+ and for every j = 1, …, k, u has right-
and left-hand partial derivatives in xj. (You should assume that u is continuous.)
In the spirit of Proposition 3.5a, give necessary conditions for an optimal
solution to the CP.

 3.14. Robinson Crusoe is marooned on a desert island with only a supply e
of seedcorn. He will be rescued two years from now (he knows this), and so his
problem is to allocate the e units of seedcorn between current consumption and
planting for second-period consumption. If he plants x units of corn, he will get
back a crop of size f(x), for a function f that is nondecreasing and satisfies f(0) =
0. So if he chooses to plant x units, his consumption stream will be e – x in the
first period and f(x) in the second, for total utility U(e – x, f(x)), and his
maximization problem is

Maximize U(e – x, f(x)) in the variable x, subject to 0 ≤ x ≤ e.

a.   What can you tell me about the existence and character of a solution to this
problem, for fixed e? That is, make whatever assumptions you need to
prove that a solution exists.

b.   Find assumptions that guarantee that the set of solutions to this problem is
convex.

c.   Find assumptions that guarantee that this problem has a unique solution.
(There is more than one answer to this part, so see if you can find multiple
answers.)

d.   Let v(e) be the value of the solution as a function of e and let X*(e) be the
set of solutions. What can you tell me (about continuity, upper- and/or
lower-semicontinuity) about v and X* ? That is, find assumptions that
guarantee that v is a continuous function and X* is an upper semi-
continuous correspondence. How about assumptions that make X* lower



semi-continuous?

 

1 The use of the term “ income” is traditional, although “ wealth” or
“ resources” may give more appropriate connotations.

2 In proving upper and lower semi-continuity, we look at sequences of
parameters—in this case, sequences {pn, yn}—that converge to points in the
domain of the correspondence. Therefore, the limit price vector p here must be
strictly positive.

3 If y = 0, the problem is trivial. The only budget-feasible bundle is x = 0.
4 See Problem 3.11 for a partial extension of part b to quasi-concave utility

functions.
5 Or see Problem 3.3.
6 Except x  y for all x and y.
7 (1) The blank can be filled in by asking the consumer for her preferences

over gambles with prizes in X; see Chapters 5 and 6. (2) If preferences can be
represented by a concave function u, then we are almost there: A concave
function u is “ almost everywhere” continuously differentiable. But convexity of 

 is insufficient to guarantee that a concave u can be found to represent ,
and in any case this doesn’t give us differentiability everywhere.



Chapter Four



Revealed Preference and Afriat’s Theorem

This chapter concerns a consumer who, we hypothesize, is solving the CP for a
number of different prices and incomes. We observe the consumer’s choices and
ask, What can we say about this consumer? In particular, are her choices
consistent with the standard model of preference-driven, utility-maximizing
choice? What patterns can we expect to see in the choices she makes, as we
(say) vary one price only or her level of income? The emphasis here is on what
can be discerned from a finite number of actual choices; Chapter 11 concerns the
entire array of choices the consumer might make, for every possible level of
income and every possible set of prices.

4.1. An Example and Basic Ideas
The main point of this chapter is illustrated by the following example. Imagine
a consumer who lives in a three-commodity world and makes the following
three choices.

•   When prices are (10, 10, 10) and income is 300, the consumer chooses the
consumption bundle (10, 10, 10).

•   When prices are (10, 1, 2) and income is 130, she chooses the consumption
bundle (9, 25, 7.5).

•   When prices are (1, 1, 10) and income is 110, she chooses the consumption
bundle (15, 5, 9).

Are these choices consistent with the standard model of the CP, in which the
consumer has complete and transitive preferences and solves the CP for each set
of prices and income?

This question is somewhat artificial. The story of the CP is that the
consumer makes a single consumption choice, at one time, for all time. How
then could we observe three different choices that she makes? The best we can
do is to suppose that we have posed a set of hypothetical questions to the
consumer of the form, If prices were p and your income was y, what would you
purchase?1

Setting this artificiality to one side, a trivial affirmative answer to the
question is possible. Imagine a consumer who is indifferent among, say, all



bundles that give her less than 1000 units of each of the three goods. Since at
these three sets of prices, the incomes she has are insufficient to purchase any
bundle with 1000 units of each good, any choices—in particular, the choices she
has made—are consistent with utility maximization, as long as they respect her
budget constraint, which these do. This trivial answer may seem fanciful, but
the point is not. To falsify the standard model, we must be able to use the data
to conclude that some bundle is strictly preferred to some other(s). Otherwise,
complete indifference is consistent with any pattern of choice that satisfies
feasibility.

One way we might proceed is to ask whether the choices observed are
consistent with preference maximization for strictly convex preferences. If a
consumer with strictly convex preferences chooses the bundle x* when prices are
p and income is y, then the consumer strictly prefers x* to any other bundle x
such that p · x ≤ y, since we know that with strictly convex preferences and a
convex choice set, the chosen bundle is strictly preferred to all feasible
alternatives.

We take a slightly different path in this chapter, asking whether the observed
choices are consistent with preference maximization for locally insatiable
preferences. Local insatiability gives us cutting power according to the following
lemma.

Lemma 4.1. Suppose a consumer with complete, transitive, and locally
insatiable preferences  chooses the consumption bundle x* facing prices p
with income y. Then we know that x*  x for all bundles x such that p · x =
y. And we know that x*  x for all bundles x such that p · x < y.

Proof. The first part is obvious: If p · x = y, x is feasible. Since x* is chosen, it
must be at least as good as x. The second part uses local insatiability: If p · x <
y, local insatiability ensures that there is some bundle x′ near enough to x so
that p·x′ ≤ y, with x′  x. This means x′ is feasible; hence x*  x′. But then x*

 x′  x gives the desired conclusion.

Now back to the example. From the data given above, we calculate the cost



of each of the three selected bundles at each of the three sets of prices. This is
done for you in Table 4.1.

Table 4.1. Cost of three bundles at three sets of prices.

In each case, the bundle selected exhausts the income of the consumer. This
is required for these choices to be consistent with local insatiability: A locally
insatiable consumer always spends all of her income; if a consumer ever chooses
a bundle that costs strictly less than the income she has available, she cannot be
maximizing locally insatiable preferences.

Beyond this, the important things to note are:

•   When (10, 10, 10) was chosen (at prices (10, 10, 10) and income 300), the
bundle (15, 5, 9) could have been purchased with some money left over.
Apparently, this consumer strictly prefers (10, 10, 10) to (15, 5, 9).

•   At the second set of prices (10, 1, 2), since (10, 10, 10) and (9, 25, 7.5)
both cost 130 and (9, 25, 7.5) was selected, the latter must be at least as
good as (10, 10, 10).

•   At the third set of prices (1, 1, 10), the bundle (9, 25, 7.5) costs 109, while
(15, 5, 9) costs 110. And we are told that with income 110, the consumer
chose (15, 5, 9). Hence, (15, 5, 9)  (9, 25, 7.5).

The data tell us that (10, 10, 10)  (15, 5, 9), that (9, 25, 7.5)  (10, 10,
10), and that (15, 5, 9)  (9, 25, 7.5). We can string these three deductions
from the data together in the order (10, 10, 10)  (15, 5, 9)  (9.25, 7.5) 
(10, 10, 10), which by transitivity (if the consumer has complete and transitive



preferences) tells us that (10, 10, 10)  (10, 10, 10). These data are therefore
inconsistent with consumer behavior based on the standard preference-
maximization model with locally insatiable preferences. On the other hand,
suppose the third piece of data was instead:

•   At prices (1, 2, 10) and income 115, the bundle selected is (15, 5, 9).

Then we would have come to no negative conclusions. At the first set of prices
and income, the bundles (10, 10, 10) and (15, 5, 9) are affordable, and as the
first bundle is selected and the (15, 5, 9) does not exhaust the budget constraint,
(10, 10, 10) is revealed to be strictly preferred to (15, 5, 9). At the second set of
prices and income level, (10, 10, 10) and (9, 25, 7.5) are precisely affordable and
(9, 25, 7.5) is selected, so it is revealed to be weakly preferred to (10, 10, 10).
This is just as before. But now, at the third set of prices and income level, of
the three bundles only (15, 5, 9) is affordable. Knowing that it is selected tells
us nothing about how it ranks compared to the other two; it could well come at
the bottom of the heap. In fact, the other two choices tell us that (15, 5, 9) must
come bottom among these three; the data are consistent with preferences among
the three bundles that have (9, 25, 7.5)  (10, 10, 10)  (15, 5, 9), as well as
preferences where (9, 25, 7.5) ~ (10, 10, 10)  (15, 5, 9).

Of course, this argument doesn’t tell us for sure that these three pieces of
data are consistent with locally insatiable preference maximization; we need
locally insatiable preferences for all of R3

+ that support these three choices. But
it is not hard to imagine that we can fill in preferences consistent with these
data. The main result of this chapter, Afriat’s Theorem, shows that we can
construct preferences supporting these choices that are complete, transitive, and
locally insatiable, and, in addition, strictly increasing, convex, and continuous.

4.2. GARP and Afriat’s Theorem
To generalize the example, three definitions are needed. The setting throughout
is one with k commodities, so that consumption bundles lie in Rk

+, prices are
from Rk

++, and income levels come from R+.

Definition 4.2.



a.   Take any finite set of (feasible) demand data: x1 ≥ 0 chosen at (p1, y1), x2

≥ 0 chosen at (p2, y2), …, and xJ ≥ 0 chosen at (pJ, yJ), where, in addition,
pj · xj ≤ yj for each j. If pi · xj ≤ yi, the data reveal directly that xi is weakly
preferred to xj, written xi d xj. And the data reveal directly that xi is

strictly preferred to xj, written xi d xj, if pi · xj < yi. (The superscript d is
for directly.) Note that xi d xj implies xi d xj.

b.   Suppose that for some xi and xj, there is a chain of direct revelations of
weak preferences that start with xi and end with xj. That is, for some xi1,
…, xim, xi d xi1 d xi2 d … d xim – 1 d xim d xj. Then the

data indirectly reveal that xi is weakly preferred to xj, written xi r xj. If
some one or more of the steps in the chain is a direct relevation of strict
preference, the data indirectly reveal that xi is strictly preferred to xj,
written xi r xj. (The superscript r is for revealed.) In this definition, we
allow for the case in which no intervening steps are required; xi d xj

implies xi r xj, and xi d xj implies xi r xj.

c.   The data satisfy the Generalized Axiom of Revealed Preference,
abbreviated GARP, if no strict revealed preference cycles exist. That is, for
no xi is it the case that xi r xi.

Part c sometimes confuses students, so let me be explicit on two grounds. First,
suppose that for some xi, pi, and yi, pi · xi < yi. Then according to part a of the
definition, xi d xi; hence by part b, xi r xi, and hence GARP is violated. In
words, GARP is violated if any bundle chosen at given prices and income costs
less at those prices than the level of income. Second, suppose xi r xj and,

simultaneously, xj r xi, for some pair xi and xj. That is, there is a chain of
revealed weak preferences from xi to xj and a chain of revealed weak preferences,
at least one of which is also strict, from xj back to xi. Then according to part b of
the definition, xi r xi and xj r xj, and this is also true for any element in
either of the two chains of revealed preference. The two chains join together in a



cycle, so there is a chain going from any link in the chain back to that link,
with one of the links direct strict preference. Satisfaction of GARP is
equivalently stated as: No such cycle can be found in the data.

Proposition 4.3 (Afriat’s Theorem). If a finite set of demand data violates
GARP, these data are inconsistent with choice according to locally insatiable,
complete, and transitive preferences. Conversely, if a finite set of demand data
satisfies GARP, these data are consistent with choice according to complete,
transitive, strictly increasing (hence, locally insatiable), continuous, and
convex preferences.

Before giving the proof, two comments are in order.

1.  GARP concerns weak and strict revealed preferences among the finite
collection of bundles that are chosen. We need not compare chosen bundles
with those that never are chosen. No violations of GARP among the set of
chosen bundles is necessary and sufficient for standard (locally insatiable)
preferences for all of Rk

+.

2.  If the data contain a violation of GARP, then no locally insatiable,
complete, and transitive preferences can rationalize or explain the data. But
if the data satisfy GARP, then not only can we produce locally insatiable,
complete, and transitive preferences, but preferences which in addition are
strictly increasing, continuous, and convex. In other words, given a finite
collection of demand data, we cannot falsify the hypothesis that the
consumer’s preferences are strictly increasing or continuous or convex
without throwing away the entire model of choice by locally insatiable,
complete, and transitive preferences. The three extra properties add no
testable restrictions.
     Please be careful in interpreting this. This does not say that it is
impossible to falsify strictly increasing or convex preferences empirically.
(I’m unwilling to make a claim one way or the other about continuity;
whether continuity can be tested empirically depends on your definition of a
valid empirical test.) Suppose, for instance, I ask a consumer to rank order
the three distinct bundles x, x′, and 0.5x + 0.5x′, and she says the convex
combination is definitely the worst of the three. Then we know she doesn’t



have convex preferences. Suppose I ask her to rank order three distinct
bundles x, x′, and x″ where x′ and x″ are both ≥ x and neither x′ ≥ x″ nor x″ ≥
x′, and she says x′ is worst of the three. Then we can reject the hypothesis
that she has strictly increasing preferences (and even nondecreasing
preferences), without (yet) rejecting local insatiability. The point is, these
are not questions about market demand data. What is asserted here is that,
with a finite collection of market demand alone, I can’t reject the three
properties without simultaneously rejecting that her preferences are
complete, transitive, and locally insatiable.

The proof of Afriat’s Theorem
The first “ half” of the proposition is easy. If the data are generated from locally
insatiable, complete, and transitive preferences , then xi d xj implies xi 

xj, and xi d xj implies xi  xj. The argument is the one given in Lemma 4.1.

Therefore, by standard transitivity properties of strict and weak preferences, xi 
r xi implies xi  xi, which violates the asymmetry of strict preference.

The proof of the second half of the proposition is long and very technical.
The proof I am about to give is due to Varian (1982). I am unaware of any other
use for these proof techniques in economics; to my knowledge, they give you no
technique that can be usefully transferred to any other situation you will
enounter. Therefore, I think you can almost surely skip this proof without risk
of missing something later on. On the other hand, if you are an aficionado of
very elegant proofs, this is one to see. Assume throughout that we have J
demand choices—xj ≥ 0 chosen at prices pj with income yj, such that pj · xj ≤ yj,
for j = 1, …, J—that collectively satisfy GARP.

As we remarked informally a page ago, for each j, pj · xj = yj; if pj · xj < yj,
then xj d xj according to the definition, which is a violation of GARP.

Lemma 4.4. For each i, let n(i) be the number of indices j such that xi r xj.

a.   If n(i) < n(j), then pi · xi < pi · xj.

b.   If n(i) = n(j), then pi · xi ≤ pi · xj.
c.   At least one i satisfies n(i) = 0.



Proof. For both a and b, we prove the contrapositives. (a) If pi · xi ≥ pi · xj = yj,
then xi d xj by definition. But then if xj r xk for any k, it follows that xi r

xk, and hence the set of indices k such that xj r xk is a subset of the indices
such that xi r xk; n(j) ≤ n(i) follows immediately.

(b) And if pi · xi > pi · xj, then xi d xj. We know that every k such that xj r

xk also satisfies xi r xk, and there is at least one k, namely j itself, such that xi 
r xj but not xj r xj. (If xj r xj, GARP is violated.) Hence n(i) > n(j). The

contrapositive to this that n(i) ≤ n(j) implies pi ·xi ≤ pi ·xj, and b then follows as
a special case.

(c) If n(i) ≥ 1 for every i, then for each i we can produce another index j such that
xi r xj. Starting from any i, this gives us a chain xi = xi1  r xi2  r xi3  r

…. Since there are only J possible values for the bundles, this chain must
eventually cycle, which would violate GARP.

Lemma 4.5. Real numbers vi and αi > 0 for i = 1, …, J can be found such
that, for all i and j,

Proof. We use induction on J. The result is trivially true for J = 1. Suppose it
is true for all sets of data of size J – 1 or less. Take a set of data of size J (with
no violations of GARP), and (renumbering if necessary) let 1 through I be the
indices with n(i) = 0. By Lemma 4.4c we know that I ≥ 1. Therefore, the set of
indices I + 1, …, J gives us J – 1 or fewer pieces of data (with no violations of
GARP). (The case where I = J is handled by an easy special argument.) Hence
we can produce vi and αi as needed for i from I + 1 to J, and inequality (4.1)
holds for i and j both from I + 1 to J.

We extend to a full set of vi and αi as follows. Set



By this definition, (4.1) will hold for i from 1 to I and j from I + 1 to J.
To get (4.1) for i from I + 1 to J and j from 1 to I, we use αj. Note that by

Lemma 4.4a, for such i and j, since n(i) > 0 and n(j) = 0, we know that pj · xi >
pj · xj. Therefore, we can select (for each j = 1, …, I) αj large enough so that
these strictly positive terms give us the desired inequalities.

Finally, Lemma 4.4b tells us that for i and j both from 1 to I, pj · xi ≥ pj ·
xj. Therefore, since vi = vj, no matter what (positive) values we chose for αj, we
have (4.1). This completes the induction step and the proof of Lemma 4.5.

The rest is easy. Define

Note that u is the minimum of a finite set of strictly increasing, affine functions;
hence u is strictly increasing, concave, and continuous. (Math facts: The (point-
wise) minimum of a finite set of strictly increasing functions is strictly
increasing. The minimum of a finite set of concave functions is concave. The
minimum of a finite set of continuous functions is continuous. If you did not
know these facts, prove them.)

From (4.1), u(xi) = vi. This is a simple matter of comparing (4.1) with the
definition of u.

We are done once we show that u rationalizes the data. To do this, take any
observation (xj, pj, yj). Because GARP is satisfied, pj · xj = yj. We know that xj

gives utility vj. And it is evident from the definition of u that for any x such that
pj · x ≤ yj = pj · xj,

That does it.

WARP: The Weak Axiom of Revealed Preference



In many economic textbooks, the so-called Weak Axiom of Revealed Preference,
or WARP, is discussed. It may be helpful to make (brief) connections with what
we have done here.

The Weak Axiom of Revealed Preference says that if x* is chosen at (p, y),
then x* is strictly preferred to any other bundle x such that p · x ≤ y. This is
almost a special case of GARP. It is a special case because it refers only to
direct revelation of preference. GARP, on the other hand, looks at chains of
revealed preference. But it is only almost a special case because it is a bit
stronger than local insatiability allows; following Lemma 4.1, we can conclude
only that when x* is chosen at (p, y), then x* is strictly preferred to any other
bundle x such that p · x < y, and is weakly preferred to x if p · x = y.

The difference comes about because we are augmenting the standard model of
preference maximization with local insatiability; WARP “ works” if we augment
the standard model with the maintained hypothesis that solutions to the CP are
always unique, for example, if preferences are strictly convex.

4.3. Comparative Statics and the Own-Price Effect
Comparative statics is a term used by economists for questions (and answers to
those questions) of the form, How does some economic quantity change as we
change underlying parameters of the situation that generates it? Much of the
empirical content of economics lies in the comparative statics predictions it
generates. If within a model we can show that quantity x must rise if parameter z
falls, and if the data show a falling z accompanied by a falling x, then we reject
the original model.

In terms of consumer demand, the natural comparative statics questions are:
How does demand for a particular good change with changes in income, holding
prices fixed? How does demand for a good change with changes in the price of
some other good, holding all other prices and income fixed? And—the so-called
own-price effect—how does the demand for one good change with changes in
the price of that good, holding other things fixed?

Everyday experience indicates that the theory on its own will not have much
to say about income effects. There are goods the consumption of which declines
as the consumer’s wealth increases, at least over some ranges—public
transportation is a commonly cited example. And there are goods the
consumption of which rises with the consumer’s wealth—taxicab rides, or



skiing trips to the Alps. Goods whose consumption falls with wealth are called
inferior goods, while those whose consumption rises with wealth are called
superior. Moreover, when the percentage of income expended on a good rises as
wealth rises, the good is called a luxury good; nonluxury goods are called
necessities.

Of course, most goods do not fall neatly into a single one of these
categories. Demand for public transportation by a given consumer rises as the
consumer moves away from improverishment, and then falls as the consumer
moves toward being rich. Indeed, since demand for all goods must be zero when
y = 0, only a good that is never consumed in positive levels could qualify for
always being inferior. Hence while a superior good is one the consumption of
which never falls with rising income, an inferior good is one where the level of
consumption sometimes falls with rising income.

As for the effect on the consumption of commodity i of a change in the price
of commodity j, there is (again) little the bare theory of preference maximization
can tell us. Demand for nails falls as the price of lumber rises, and the demand
for corn rises with increases in the price of wheat. Roughly speaking, nails and
lumber are complementary goods, while corn and wheat are substitutes. (This is
rough for reasons that are discussed in later chapters, when precise definitions
will be given.)

The best hope for a strong comparative statics prediction from the standard
theory concerns own-price effects; everyday experience suggests that a consumer
will demand less of a good as its own price rises. This is so strongly suggested
by most people’s experiences that goods for which this is true are called
normal, while goods that are not normal—the demand for which sometimes
rises as the price of the good rises—are called Giffen goods (named for Scottish
economist Sir Robert Giffen, to whom the notion is attributed by Alfred
Marshall).

The question is, if we look at demand by a preference-maximizing
consumer, will demand for a good inevitably fall as the price of that good rises,
holding everything else fixed? The answer, which you probably know from
intermediate microeconomics, is no. One can draw pictures of indifference curves
that support an increase in the consumption of a good as its own price rises.

With Afriat’s Theorem, we can rigorize these pictorial demonstrations. Fix
prices p, income y, and demand x at these prices and income. Choose some



commodity (index i), and let p′ be a price vector where all the prices except for
good i are the same as in p, and p′i > pi. Let x′ be demand at p′ and y. Since
(assuming local insatiability) p · x = y and p′ is greater than p, as long as xi > 0,
p′·x > y. As long as p′·x′ = y, it doesn’t matter what x′ is—in particular, it
doesn’t matter whether x′ i ≤ xi or x′i > xi—GARP will not be violated by these
two data points. Afriat’s Theorem tells us that convex, strictly increasing, and
continuous preferences can be found to support the existence of a Giffen good.
Indeed, if we have any finite sequence of demand data for a fixed income level y
and a succession of prices that involve (successive) rises in the price of good i
only, as long as the demanded bundles satisfy the budget constraint with
equality, GARP will not be violated.

A positive result
Consider the following alternative comparative statics exercise. Ask the
consumer for her choice at prices p and income y. Suppose x is her choice. Now
replace p with p′, where p′ is the same as p, except that the price of good i has
been strictly increased, and simultaneously replace y by y′ = p′ · x. Let x′ be the
chosen bundle at p′ and y′. Suppose x′i > xi.

Since x is feasible at (p′, y′) by construction, we know that x′ must be
weakly preferred to x. But at the same time,

Rewrite the inner two terms as

invoking the fact that p′j = pj for j ≠ i. Since p′i > pi and x′i > xi, we know that
(p′i – pi)x′i > (p′i – pi)xi; subtract the larger left-hand term from the left-hand side



of the previous display, and the smaller right-hand term from the right-hand side
of the display, and we see that p · x′ < p · x. Therefore, for locally insatiable
preferences, x is strictly preferred to x′. Oops. This demonstrates the following
formal result.

Proposition 4.6. Suppose x is chosen by the consumer facing prices p and
income y, and x′ is chosen at prices p′ and income p′ · x, where p′ is p except
for an increase in the price of good i. If these choices are made according to
the standard model with locally insatiable preferences, then x′i ≤ xi.

In other words, if we ask this pair of questions of a consumer and find the
consumption of good i rising, we have refuted (for this consumer) the standard
model, augmented with local insatiability.

Giffen goods must be inferior
Before commenting on the result just derived, let me gather up one more “ fact.”

Proposition 4.7. Suppose i is a Giffen good for some preference-maxiziming
consumer with locally insatiable preferences. That is, for some income level y,
price vectors p and p′ such that p is identical to p′ except that pi < p′i, and
consumption bundles x and x′ such that x is chosen at (p, y), x′ is chosen at (p′,
y), x′i > xi. Then good i must be (sometimes) inferior for this consumer. More
specifically, y′ = p · x′ < y, and if x″ is a choice by the consumer facing  (p, y′),
then x″i > xi.

Proof. Since p′ · x′ = y and x′i > xi ≥ 0, we know that y′ = p · x′ < y. Now
suppose x″ is a bundle chosen at (p, y′). (To be completely rigorous about this,
we ought to have insisted on augmenting the standard model of complete and
transitive preferences with local insatiability and continuity, the latter to ensure
that some bundle is chosen at every price and income combination.) Comparing
x′ and x″, we have that x′ is chosen at (p′, y), and x″ is chosen at (p, p · x′),
where p is p′ except for a reduction in the price of good i. By an argument
similar to that in the proof of Proposition 4.6, we conclude that x″i ≥ x′i. But x′i
> xi by assumption; therefore x″i > xi.



Discussion
Why are Giffen goods possible? How could the consumption of good i rise with
increases in its price? Roughly, the reason is that when the price of good i rises,
two things happen. The relative price of good i, relative to the prices of other
goods, is increased. Our expectations that the consumption of good i will fall
(or, at least, not rise) stems from this; as the relative price of good i rises, the
consumer ought to substitute other goods for it. But also the “ level of real
wealth” of the consumer falls; her income y is no longer sufficient to purchase
the bundle x that she chose before the rise in pi. A poorer consumer may choose
more of good i because good i is inferior, and this implicit income effect may
overcome the effect of the increased relative price of good i.

Indeed, the first alleged instance of a Giffen good concerned potatoes in
Ireland during the great potato famine: The shortage of potatoes caused the price
of potatoes, the staple crop of the working class, to rise precipitously. This so
impoverished the working class that their diet came to consist almost entirely of
… potatoes; they could no longer afford to supplement potatoes with other
goods. The effect was so strong, it was claimed, that they purchased more
potatoes. (Careful empirical evidence has been offered to refute that this did in
fact happen.)

Proposition 4.7 supports this intuitive explanation, by showing that if a
good is Giffen, it must be inferior. Or, to put it the other way around, if the
good is superior—if there is no chance that reduced income leads to an increase
in its consumption—then it cannot be Giffen; a rise in its price cannot lead to a
rise in its level of consumption.

And Proposition 4.6 pretty much clinches the argument. Recall how the
comparative statics exercise worked. We began with prices p, income level y,
and a choice x by the consumer. The price of good i was increased, giving new
prices p′. This makes the consumer worse off in real terms—she can no longer
afford x (if xi > 0)—so to compensate her, we increase her wealth to y′ = p′ · x,
just enough so that she could purchase x if she wanted to. Now the income effect
of lower real wealth is controlled for, leaving only the relative price effect, and
the consumer must choose a bundle x′ with no more of good i than before.

Compensating the consumer in this fashion—giving her enough income so



that at the new prices she can purchase the bundle at the original prices—is
called Slutsky compensation. We pick up the story of compensated demand in
Chapter 10, but for now we conclude with a final proposition, which is left for
you to prove.

Proposition 4.8. For a consumer with locally insatiable, complete, and
transitive preferences, suppose that x is chosen at prices (p, y), and x′ is chosen
at prices p′ and income p′ · x, for any other price vector p′. Then (p′ – p) · (x′ –
x) ≤ 0.

Coming attractions
We are far from finished with the classic theory of consumer demand, but we are
going to take a break from it for a while. My personal prejudices are to
undertake further foundations of models of choice—under uncertainty, dynamic,
and social—before finishing the story. You (or your instructor) may feel
differently about this, in which case you may wish to move to Chapters 10 and
11, concerning the dual consumer’s problem, Roy’s identity, the Slutsky
equations, and integrability. But if you do this, a warning: The mathematical
developments in Chapters 10 and 11 build on methods first employed in the
theory of the profit-maximizing firm, in Chapter 9. So you should probably
tackle Chapter 9 before Chapters 10 and 11.

Bibliographic Notes
Afriat’s Theorem is given in Afriat (1967). The proof given here is taken
directly from Varian (1982). The axioms of revealed preference discussed here are
applied as well in the literature to demand functions, full specifications of
consumer demand for all strictly positive prices and income levels; this part of
the literature will be discussed in Chapter 11.

Problems

 *4.1. In a three-good world, a consumer has the Marshallian demands given
in Table 4.2 . Are these choices consistent with the usual model of a locally
insatiable, utility-maximizing consumer?



Table 4.2. Four values of Marshallian demand.

 4.2. There are a few details to clean up in the proof of Afriat’s theorem. First,
show that the minimum over a finite set of concave functions is concave, the
minimum over a finite set of strictly increasing functions is strictly increasing,
and the minimum over a finite set of continuous functions is continuous.
Second, show how to proceed if, in the proof of Lemma 4.5, you find that n(i) =
0 for all i, and (hence) I = J.

 4.3. For a two-good world, create an indifference curve diagram that shows
the (theoretical) possibility of a Giffen good.

 *4.4. Prove Proposition 4.8.

 

1 A different way to try to make the story realistic is to suppose (1) that the
consumer shops, say, each week, (2) has a fixed budget for each week, and (3)
has preferences that are weakly separable from one week to the next and that are
unchanging from week to week. Then our three pieces of data could be the
results of three weeks of shopping. But suppositions 2 and 3 are rather
incredible.



Chapter Five



Choice under Uncertainty

Economic decisions often have uncertain consequences. When you purchase a
car, you don’t know its quality. When you choose an education, you are unsure
about your abilities, later opportunities, and the skills of your instructors. In
financial and insurance markets, uncertainty is almost the essence of the
transaction.

The theory of consumer choice developed so far can be applied directly to
such commodities. A can of Olympia beer is a definite thing—a share of General
Motors is another—and we can work with consumer’s preferences for bundles
that contain so many cans of beer, so many shares of GM, and so on. But
because “ a share of GM” has a special structure (or, rather, because we can
model it as having a special structure), we are able to enlist specialized models
of choice that take advantage of that structure.

In this chapter and the next, we develop and then apply the standard
specialized models. This chapter concerns the basic theories of choice in
uncertain situations; Chapter 6 provides applications.

5.1. Two Models and Three Representations
This is a very long chapter and it is easy to get lost in the details. To help you
keep track, I begin with a discussion of where we are headed and how,
conceptually, we get there.

The state-space model
The first thing to settle is how to model things with uncertain consequences. In
economics, two standard models of uncertainty are used. The first is variously
called the state-space, states-of-nature, or contingencies model. (It is also called
the model with subjective uncertainty, but the explanation for this name comes
only when we get to the representation theorem.)

In this approach, the consumer chooses from a set of available actions or
acts. Each act has uncertain consequences, depending on the realization of
uncertain factors. The formal model consists of a set X of consequences (or
prizes) and another set S of states of nature or contingencies. Each state of
nature gives a complete description of how all pertinent uncertainty resolves—



what is the weather, the results of whatever coin flips might be taken, and so on.
The state space S is a list of states s that are both mutually exclusive—at most
one s ∈ S will occur—and exhaustive—at least one s ∈ S will occur. Because
each s ∈ S is a complete description of all relevant uncertainty, the state and the
act taken completely determine the consequences. Therefore, each act a is
described by a function from S to X, where a(s) = x means that the act a gives
outcome a(s) = x if the state of nature is s. The set of functions from S to X,
denoted XS, is called the (universal) space of acts, denoted by A.

A given consumer has preferences  over the space of acts A. In choosing
from a subset of A, the consumer selects some -best element of the set of
available acts, as in Chapter 1. As in Chapter 1, we seek a utility function
representation of , a function u : A → R such that u(a) ≥ u(a′) if and only if a 

 a′ (where, remember, both a and a′ are functions). As in Chapter 2, we
assume more of  than that it is complete and transitive, and we hope in
consequence to get out a nicer utility representation.

As a concrete example, suppose the acts under consideration are various bets
on a two-horse horse race, where the two horses are Secretariat and Kelso. The
amount won or lost in a given bet or act is determined by the winner of the race,
where a dead heat (tie) is a real possibility. We have

S = {Secretariat wins, Kelso wins, dead heat}.

I’ll abbreviate these three states as s1, s2, and s3, respectively.
Suppose each act results in a dollar prize from the set X = {$−2, $0, $1.20,

$3}, where $−2 means a net loss of $2. A typical bet or act would be a′, given
by



In words, a′ is a bet of $2 that pays back $3.20, so you net $1.20, if Secretariat
wins, nothing if Kelso wins, and returns your stake if the race ends in a dead
heat.

Acts can be depicted as in Figure 5.1: We draw a chance node (or circle with
three arms coming out of it), where each arm represents and is labeled by one of
the three states; at the end of each arm we give the prize. Hence the act in Figure
5.1a is the bet a′ from the previous paragraph, while the act in Figure 5.1b is
the constant act that gives prize $3 no matter how the race ends.

Figure 5.1. Two acts or gambles

The consumer, of course, can access only a few of all possible acts. For
instance, it is the rare race track that will offer the $3-net-prize-no-matter-how-
the-race-ends bet. But we imagine that the consumer has preferences over all
conceivable acts—she will probably like the $3-for-sure act rather a lot—and we
seek a utility function representation for those preferences.

Two representations for the state-space model
In Chapter 1, we settled for any numerical representation of . In this chapter,
following the general idea of Chapter 2, we look for additional properties of 
that guarantee a “ nice” numerical representation. In particular, we look for one of
two sorts of representations. (Assume for now that S is finite.) The first is
additively separable across states:



For each s ∈ S, there is a function us : X → R such that

represents .

The second, which is a special case of the first, is called a subjective expected-
utility representation:

For some probability distribution p on S and function U : X → R,

represents .

This is a special case of an additively separable representation, because, in (5.2),
each state-specific sub-utility function us of (5.1) is a scaled copy p(s)U of some
single utility function U.

Savage’s Sure-Thing Principle
What does it take to get either of these representations? We already know that 

 must be complete and transitive, so the question really is, What more? The
classic answer is given in Savage (1954). This is a relatively complex result,
and we settle (in Section 5.3) for the simpler development in Anscombe and
Aumann (1963). But a brief discussion of the most important of Savage’s
axioms—which he calls the Sure-Thing Principle1—is in order.

From our discussion in Section 2.5 of additive separability, you should be
able to anticipate this axiom: Think of each act a as a vector of consequences,
where each component corresponds to a state s ∈ S. For additive separability
state-by-state, it must be that preference is separable into T and TC, for every



subset T of S. (Recall that TC is the complement of T.) To write this more
formally:

Axiom 5.1 (Savage’s Sure-Thing Principle). Suppose a, a′, b, and b′ are
four acts, and T ⊆ S is a subset of the state space, such that a(s) = a′(s) and
b(s) = b′(s) for all s ∈ T, and a (s) = b(s) and a′(s) = b′(s) for all s ∈ TC.
Then a  b if and only if a′  b′.

This is really quite simple. The supposition is that a and b agree on TC. Hence
if we compare a and b, it is “ natural” to look at how they differ where they
differ, namely on T. But a′ and b′ also agree on TC, and since a ≡ a′ and b ≡ b′
on T, how a and b differ where they differ is identical to how a′ and b′ differ
where they differ. Hence the ranking of a and b should be the same as that of a′
and b′.

Or to put it more in the language of weak separability, a and b are identical
on TC. The axiom says that how they are the same doesn’t matter. If we change
both of them on TC so that they continue to agree there, without changing how
they (potentially) disagree on T, and hence getting to a′ and b′, we haven’t
affected how they compare.

When we introduced weak and strong separability in Chapter 2, we
proposed them as very special properties. Now we are proposing a form of
strong separability as being entirely natural and intuitive. The difference can best
be seen by comparing two situations: acts based on the two-horse race; and
meals composed of an entrée, a main course, and dessert. To take the latter first,
we think of meals that are three-dimensional vectors, such as (shrimp, steak,
cake), meaning shrimp for an entrée or appetizer, steak for a main course, and
cake for dessert. In this setting, separability of the first two components from the
third is not natural: How the consumer feels about shrimp vs. melon for a starter
depends on whether there is fruit for dessert. That is, it is entirely natural to
suppose that



In this setting, the consumer gets all three components to eat, and interactions
between them may (very naturally and intuitively) matter. But if we write acts
based on the two-horse race as three-dimensional vectors, such as (10, −5, −1),
meaning win 10 in state is s1, lose 5 in state s2, and lose 1 in state s3, then in
this setting the consumer gets only one of the three components. Suppose the
consumer proclaims

(5, − 2, − 1)  (2, 2, − 1),

and then we tell her, You can still have your choice between those two
acts/gambles, except that if the race is a dead heat (state s3), we will give you 2
instead of taking 1 from you. Since the race is either a dead heat or not, and
since her choice doesn’t affect her prize if it is a dead heat in either case, she
naturally won’t change her ranking:

(5, −2, 2)  (2, 2, 2).

Or so Savage’s Sure-Thing Principle—and the two representations—would
have us assume.

Two examples where the representations fail
To sharpen your understanding of the two representations and what they entail,
consider the following two examples.

1.  Imagine you are marketing a particular product and trying to decide how
much advertising to do. To keep things simple, imagine that the product
will either sell 1000 units or 10,000. If it sells 1000, you will lose $1000,
not including the cost of advertising. If it sells 10,000, you will make
$3000 less the cost of any advertising. You can either advertise a lot or not



at all. Not advertising costs you nothing, while advertising a lot costs you
$1000.

Create the following model. The prize is your net profit. Possible
values are $−2000, $−1000, $2000, and $3000, so these four dollar
amounts constitute X. The states are your level of sales: You sell 1000
units (state s1) or 10,000 (state s2). Hence there are two states in S. The two
acts you can consider are: “ advertise,” which we denote by a, where a(s1) =
$−2000 and a(s2) = 2000; and “ don’t advertise,” which we denote by a′,
where a′(s1) = $−1000 and a′(s2) = $3000.

As long as your state-dependent utility functions us are increasing in
profits, if an additively separable representation holds you never choose to
advertise. Whether the state is s1 or s2, a′ always gives a better outcome (by
the $1000 cost of advertising). The problem is easiest to see if we look at
the representation (5.2). In this story, your choice of an act presumably
influences how many units you sell. But in (5.2), the probabilities of the
states do not depend on the act chosen. That is, we don’t write p(s; a) or
anything like that. In an additively separable representation this is a bit
more subtle, but (essentially) the same problem arises: The functions us are
not affected by the overall act you take. So in cases where acts themselves
influence the state that arises, we couldn’t expect representations of either
form to hold.

(In this example, a simple cure is available. We need three states: s1,
the state that the product sells 1000 units whether you advertise or not; s2,
the state that the product sells 1000 units if you don’t advertise and 10,000
units if you do; and s3, the state that the product sells 10,000 whether you
advertise or not. [If there is a chance that advertising will anger potential
customers, we would add a fourth state.] The question of whether to
advertise becomes one of how likely is the state s2, in which you increase
your profits by $3000 if you do advertise, compared to the “ lost” $1000 in
advertising fees in states s1 and s3.)

2.  A second example shows the difference between (5.1) and (5.2). Imagine



that you are thinking of undertaking one of two acts. In the first, you will be
given an umbrella if it is raining and suntan lotion if the sun is shining. In
the second, you are given the umbrella if the sun is shining and suntan
lotion if it is raining. We create a model of this with states of nature that
describe the possible states of the weather and with prizes that include
umbrella and suntan lotion.

Do we expect the representation (5.2) to hold in this case? Suppose in
our model there are two states, s1 for rain and s2 for sunny. And suppose
that you assess that these two states are equally likely. Then representation
(5.2) would require that you are indifferent between the two acts; each gives
you probability 0.5 of having an umbrella and probability 0.5 of having
suntan lotion, and whatever are the (state-independent!) utilities of those
two prizes, the expected utilities of the two acts are identical. But, of
course, the first act is preferable (unless you have perverse preferences),
because the umbrella is better than suntan lotion when it rains, while suntan
lotion is better than the umbrella when the sun is shining. The first act is
better state by state, so it is better overall.

This would not be a problem in the representation (5.1). It is natural to
think that us1(umbrella) > us1(suntan lotion), since s1 is rain, and
us2(umbrella) < us2(suntan lotion), since s2 is sunny. As long as this is so,
the first act is better than the second, per any representation of the form
(5.2).

In (5.1), but not in (5.2), the value of a prize can depend on the state in
which it is received. Representation (5.2) is appropriate only when prizes are
modeled in a way that makes their relative values independent of the state in
which they are received. If, instead of umbrella and suntan lotion, the prizes
were things like dry but sunburned, wet and without sunburn and dry
without a sunburn, (5.2) might be reasonable. It is getting a bit ahead of
ourselves, to material that belongs to Chapter 6, but it is worth saying at
this point: In a lot of economics, model (5.2) is used, where the prizes are
money: you gamble (or invest), and your reward is, depending on the state
of nature, so many dollars, which presumably are used to purchase
consumption goods. You should be wary of such applications, insofar (for
instance) as the money prizes have different consumption-good-purchasing-



power in different states of nature in the model. An investment that pays a
big nominal return when overall economic times are good and a smaller
return when times are bad may be less risky than models of the (5.2) variety
indicate, if good economic times are accompanied by a higher cost of living.
(But the same investment may be worth less than (5.2) indicates, if good
economic times mean that other sources of income that you have are higher;
see the discussion at the end of this chapter on portfolio or correlation
effects.)

Objective probabilities and von Neumann–Morgenstern expected utility
The second standard model of choice under uncertainty is usually referred to as
the model with objective uncertainty, and the representation as (objective)
expected utility or von Neumann–Morgenstern expected utility.

In this approach, the choices available to the consumer are represented by
probability distributions over a given prize space; these objects are called
lotteries and gambles, as well as probability distributions. Formally, we have a
space X of prizes or consequences (just as in the first approach), out of which a
space P of probability distributions/lotteries/gambles over X is formed. The
consumer’s preferences are given by a preference relation  on the space P, and
we seek well-structured numerical representations of those preferences.

To keep the discussion simple, we will work (until the end of Section 5.2)
with probability distributions that have only finitely many possible prizes:

Definition 5.2. A simple probability distibution π on X is specified by
a.   a finite subset of X, called the support of π and denoted by supp(π), and
b.   for each x ∈ supp(π) a number π(x) > 0, with Σx∈supp(π) π(x) = 1.

The set of simple probability distributions on X will be denoted by Π. For π ∈
Π, we “extend” the domain of π to all of X, writing π(x) = 0 for any x ∉
supp(π).

For x ∈ X, we let δ x be that element of Π with supp(δ x) = {x} and (of course)
δ x(x) = 1.

Please note: The set X can be infinite in this definition. But we only look at



probability distributions on X with finite support.
We will depict simple probability distributions by chance nodes in the style

of Figure 5.2 (where the prize space X = ); there is a chance node (circle)

with as many arms emerging as there are elements of the support of the
distribution, the prizes are listed at the ends of the arms, and the probabilities of
the prizes are given in parentheses along the arms. So, for example, the chance
node in Figure 5.2 represents the simple lottery π with supp(π) = {(10, 2), (4,
4)}, π((10, 2)) = 1/3, and π((4, 4)) = 2/3.

Figure 5.2. A simple probability distribution

Compare this model with the state-space model described previously. In
particular, imagine that the consumer must decide between three bets on the
horse race: (a) bet $2 on Secretariat to win, where a win pays $3.20; (b) bet $2
on Kelso to win, where a win pays $5.00; and (c) make no bet. In the state-
space model, we formalize this by forming the three-element state space
described earlier and supposing that the consumer must choose between the
three acts or gambles depicted in Figure 5.3. The consumer has preferences over
all of A, and she chooses whichever of the three she most prefers.

In this second model (or model technique), we assume that each of the three
gambles can be described adequately by a probability distribution over monetary
prizes, for instance as in Figure 5.4. The consumer has preferences over Π. And
she chooses whichever probability distribution she most prefers.



Figure 5.3. Three state-contingent acts/bets

Figure 5.4. Three probability distributions/gambles

The obvious question concerning the second model technique is, Where did
the probabilities come from? Moreover, I’ve written out probability
distributions where the probabilities of a $0 prize in the first and second gamble
are equal, and where the probability of getting $1.20 in the first equals the
probability of the outcome $−2.00 in the second. Is this necessarily entailed?
The answers are: (1) We don’t say (within this sort of model) where the
probabilities come from. (2) No, these cross-lottery restrictions on the
probabilities are not entailed by the model per se. In this second sort of model,
the probabilities are exogenous; they are part of the description of the lottery. It
might be sensible or good modeling technique to add restrictions on these out-
of-thin-air probabilities such as, The probability of $1.20 in the first gamble



equals the probability of $−2.00 in the second. But that is a question of model
building and not of the application of this specific model, which begins with
probability distributions.

There is a subtle point here. In the state-space approach, we can distinguish
between preferences representable as in Equation (5.1) and those representable as
in Equation (5.2). The issue, essentially, is whether the value of a prize is
independent of the state in which it is received. That issue cannot and does not
arise in the second modeling approach, because all we have formally are prizes
and their probabilities. The idea of “ the state in which a prize is received” may
be in the back of our minds as we put together a formal model of this second
type, but it stays in back.

Compound lotteries
When we have two simple probability distributions, say π and ρ, and a number
a between zero and one, we can take the a-convex combination of π and ρ,
written aπ + (1 − a)ρ, in two steps:

1.  The support of this new probability distribution is the union of the
supports of π and ρ.2

2.  If x is a member of this union, then the probability given by aπ + (1 − a)ρ
to x is aπ(x) + (1 − a)ρ (x), where π(x) is understood to be zero if x is not in
the support of π, and similarly for ρ.

An example may help. Suppose π gives probabilities.3,.1, and .6 to prizes
x, y, and z, respectively, and ρ gives probabilities .6 and .4 to prizes x and w,
respectively. We form, say, (1/3) π + (2/3)ρ as follows: The support of (1/3)π +
(2/3)ρ is {x, y, z, w }, and the probabilities it gives to its four possible prizes
are, respectively,

for x, (1/3)(.3) + (2/3)(.6) = .5
for y, (1/3)(.1) + (2/3)(0) = .0333 …
for z, (1/3)(.6) + (2/3)(0) = .2
for w, (1/3)(0) + (2/3)(.4) = .26666 …

When we depict probability distributions such as (1/3)π +(2/3)ρ in the
example just given, we sometimes will draw a compound lottery. For example,
in Figure 5.5a, we show (1/3)π + (2/3)ρ as a compound lottery: a lottery whose



outcomes are the lotteries π and ρ. In Figure 5.5b, we depict the one-stage
lottery to which this compound lottery reduces. In our formal setup, the objects
depicted in Figures 5.5a and b are precisely the same thing, which is “more
correctly” the lottery in 5.5b. When we say that the consumer has preferences
over Π, it is implicit that the consumer regards the lotteries in 5.5a and b as
precisely the same object. We can imagine a theory in which these two lotteries
are distinguished in the mind of the consumer, and she prefers one to the other.
But this isn’t that theory. It doesn’t matter how probabilities arise here—what
are the states, or whether there are compound lotteries or not—because the
formal model isn’t rich enough to incorporate such considerations. All this
theory has is prizes and their probabilities.

Figure 5.5. Compound and reduced lotteries. The compound lottery in
panel a reduces to the single-stage lottery in panel b by the laws of
probability theory. In our theory, the consumer either identifies these two
as being the same object or, at least, is indifferent between them.

The representation and axioms
Within this setting, we seek a von Neumann–Morgenstern expected-utility
representation:



Proposition 5.3. A preference relation  on the set Π of simple probability
distributions on a set X satisfies

a.    is complete and transitive,

b.   for all π, ρ, φ, and φ′ from Π and a ∈ [0, 1], aπ + (1 − a)φ  aρ + (1 −
a)φ if and only if aπ + (1 − a)φ′  aρ + (1 − a)φ′, and

c.   if π  ρ, then for any third lottery φ there exists a* ∈ (0, 1) such that
aπ+(1 − a)φ  ρ and π  aρ + (1 − a)φ for all a such that a* < a ≤ 1,

if and only if

for some function U : X → R. Moreover, if U provides a representation of 
in this sense, then V does as well if and only if V (·) = AU(·) + B for constants
A > 0 and B.

This is quite a mouthful, so let’s take it in pieces. First, a, b, and c provide
three axioms or properties for preferences  that give the representation. Axiom
a should come as no surprise after Chapter 1. Axiom b is often called the
independence or substitution axiom in this setting. Axiom c essentially says
that preferences are continuous in probabilities.

Second, these three axioms are necessary and sufficient to give an expected-
utility representation; that is,  is represented by a function u : Π → R which
has the form

for some function U : X → R.



Third, functions U : X → R that work in this fashion for given preferences 
 are all positive affine transformations of one another.

Compare with the subjective expected-utility representation (5.2). In both,
prizes from X have associated utility levels U(x), and the value of an
act/probability distribution is the mathematical expectation of the utilities of the
prizes. In Equation (5.2), utilities are weighted by subjective probabilities of
states. In Equation (5.3), the exogenously given probabilities (that describe each
π) are used. (Since the probabilities are not a subjective product of the person
whose preferences we are representing, but instead are presumably the product of
an objective modeler, they are called objective probabilities, to be distinguished
from the subjective probabilities of (5.2).)

Comparisons between Savage’s Sure-Thing Principle and property b are
immediate. Think of T ⊆ S (in the state-space approach) as an event of
probability a, and aπ + (1 − a)φ is, roughly, “ π on T and φ on TC.” If we make
this rough and informal translation, when we compare aπ + (1 − a)φ with aρ +
(1 − a)φ, we are comparing two gambles that differ on the a-probability event T
and are the same on the complement of this event. Savage’s Sure-Thing
Principle says that in terms of how the two compare, it doesn’t matter how they
are the same. So, in this setting, it doesn’t matter that they are both φ on this
complementary event, or that they are both φ′.

The continuity property c can be stated in many ways; the one here was
chosen to look the most like continuity as defined in Chapter 1. It says that as
we move from π to φ by taking convex combinations aπ + (1 − a)φ of the two,
fo r a close enough to 1 (so the convex combination is close to π), the
combination is “ close” in preference to π.

The rest of the chapter
This completes our survey of the basic models—how they differ, what sorts of
representations are used, and what properties of preference drive the
representations. We now have to justify what we’ve said. In Section 5.2, we
prove Proposition 5.3 by first proving a very general (and useful) result known
as the Mixture-Space Theorem; then we discuss how to extend Proposition 5.3
to probability distributions that are not simple. In Section 5.3, we discuss how
to get representations (5.1) and (5.2); note that we have not yet stated a formal



proposition leading to those representations. Section 5.4 discusses subjective
vs. objective probabilities. And we wrap up in Section 5.5 with a brief
discussion of empirical and theoretical problems with these models.

5.2. The Mixture-Space Theorem
The proof of Proposition 5.3 enlists a general result known as the Mixture-
Space Theorem. The setting for this result is an abstract space Z, in which it is
possible to take mixtures or convex combinations of items: For all pairs z and z′
i n Z and for all a ∈ [0, 1], there is an element az + (1 − a)z′ in Z. It is
assumed that the “ usual” rules of convex combinations hold, such as 1z + 0z′ =
z, az + (1 − a)z = z, a(a′z +(1 a′)z′)+(1−a)(a″z +(1−a″)z′) = (aa′ +(1−a)a″)z +
(1−aa″ − (1−a)a″)z′, and az + (1 − a)z′ = (1 − a)z′ + az.3

The space of simple probability distributions Π over an arbitrary space X is
a mixture space. We use two other classes of examples in this chapter.

1.  Any space of probability distributions over some space X of prizes that is
closed under the taking of convex combinations is a mixture space.
Suppose, for instance, that X = R. If Z is the space of probability
distributions on X with continuous density functions, or the space of
probability distributions on X with countable support, or (if you know what
this means) the space of Borel probability measures on X; if Z is any of
those spaces, then Z is closed under the taking of convex combinations (the
convex combination of two probability distributions with continuous
density functions is a probability distribution with a continuous density
function, etc.), and Z is therefore a mixture space.

2.  Let S be a finite set, let X be an arbitrary set of prizes, let Π be the space of
simple probability distributions on X, and let H = ΠS. That is, elements of
H are S -dimensional vectors of simple probability distributions on X. We
use the notation h to denote a member of H, h(s) (for s ∈ S) to denote the
s-component of h (therefore, h(s) ∈ Π), and h(s)(x) (for s ∈ S and x ∈ X)
to denote the probability of the prize x according to the simple probability
distribution h(s). For h and h′ members of H and for a ∈ [0, 1], let ah+
(1−a)h′ be the member of H whose s component is ah(s) + (1 − a)h′(s); that
is, take convex combinations component by component. This makes H a
mixture space. (If you do not quite understand this example, we draw some



helpful pictures later in this chapter.)

Although the elements of some mixture spaces are not probability
distributions or lotteries in any sense, I use the term “ lottery” informally to refer
to a member of an arbitrary mixture space for the remainder of this section.

Proposition 5.4 (The Mixture-Space Theorem, Herstein and Milnor 1953).
A preference relation  on a mixture space Z satisfies

a.    is complete and transitive,

b.   for all z, z′, , and ′ from Z and a ∈ [0, 1], az + (1 − a)   az′ +
(1 − a)  if and only if az + (1 − a) ′  az′ + (1 − a) ′, and

c.   if z  z′, then for any third lottery z″ there exists a* ∈ (0, 1) such that
az+(1−a)z″  z′ and z  az′ + (1 − a)z″ for all a such that a* < a ≤ 1,

if and only if a function u : Z → R exists such that

d.   z  z′ if and only if u(z) ≥ u(z′) (that is, u represents ), and

e.   u(az + (1 − a)z′) = au(z) + (1 − a)u(z′) for all z, z′ ∈ Z and a ∈ [0, 1]
(that is, u is linear in convex combinations in Z).

Moreover, if u represents  in this sense, v : Z → R is another representation
(that is linear in convex combinations) if and only if v(·) = Au(·) + B for
constants A > 0 and B.

The proof of this proposition comes in three pieces: (1) properties a, b, and c
imply the existence of a function u that satisfies d and e; (2) a function u
satisfying d and e implies that the corresponding preference relation satisfies a,
b, and c; and (3) in either case, the representing u is unique up to positive affine
transformations. The second of these three pieces is relatively straightforward, so
I leave it to you to do.

Five lemmas



The first piece of the proof is the longest and hardest. It begins with five
lemmas. The first of these is a simple matter of definitions, applied to property
b. Since property b is stated as an if and only if, the negation of either side
implies the negation of the other. Hence:

Lemma 5.5. Property b is equivalent to

b′.  for all z and z′ from Z and a ∈ [0, 1], if az + (1 − a)   az′ + (1 − a) 
 for some  ∈ Z, then az + (1 − a) ′  az′ + (1 − a) ′ for all ′ ∈

Z,

both of which are equivalent to

b″. for all z, z′, , and ′ from Z and a ∈ [0, 1], az + (1 − a)   az′ + (1
− a)  if and only if az + (1 − a) ′  az′ + (1 − a) ′.

Moreover, any of b, b′, or b″ imply that for all z, z′,  , and ′ from Z and a
∈ [0, 1], az + (1 − a)  ~ az′ + (1 − a)  if and only if az + (1 − a) ′ ~ az′ +
(1 − a) ′.

Please note: because we assume az + (1 − a)z′ = (1 − a)z′ + az, each of b, b′,
and b″, as well as their implication in the lemma just stated, could be stated
where the substitution occurs in the first term of the convex combination. That
is, b is equivalent to a  +(1−a)z  a  +(1−a)z′ if and only if a ′ +(1−a)z 

 a ′ +(1−a)z′, and so forth.
For the rest of the lemmas, it is assumed that  satisfies a, b, and c of the

proposition.

Lemma 5.6. If z  z′, then z  0.5z +0.5z ′  z′. If z ~ z′, then z ~ 0.5z
+0.5z′ ~ z′.

Proof. Suppose z  z′ but, contrary to the statement in the lemma, 0.5z +
0.5z ′  z. Write z = 0.5z+0.5z, and apply property b″ to 0.5z+0.5z ′ 
0.5z+0.5z by changing the “ common” z to a z′, to get z′ = 0.5z′ + 0.5z ′ 
0.5z′ + 0.5z = 0.5z + 0.5z′  z. Hence, by transitivity of , 0.5z + 0.5z ′ 



z implies z ′  z, a contradiction. Similarly, if z ′  0.5z+0.5z′, property b″
can be used to show that 0.5z+0.5z′  z (do it if you don’t see the steps), and
then by transitivity, z′  z, again a contradiction.

Suppose z ~ z′ but 0.5z + 0.5z′  z. Rewrite the second part as 0.5z + 0.5z′
 0.5z+0.5z, which (by b) implies that z′ = 0.5z′+0.5z′  0.5z′+0.5z =

0.5z+0.5z′  z; apply transitivity to derive a contradiction. The case z  0.5z
+ 0.5z′ is handled similarly.

Lemma 5.7. If z  z′ and a, b ∈ [0, 1] are such that a > b, then az + (1 −
a)z′  bz + (1 − b)z′. If z ~ z′, then z ~ az + (1 − a)z′ ~ z′ for all a ∈ [0, 1].

Or, in words, when taking convex combinations of lotteries, one of which is
strictly preferred to the other, preference is “ strictly monotone” in the weight of
the better lottery in the convex combination.

Proof. Suppose z  z′. By Lemma 5.6, z  0.5z + 0.5z′  z′. I assert that if
0 ≤ k < j ≤ 2n for k, j, and n integers, then 

. The proof is by

induction in n. Suppose the result is true for n, and take any integer  such that
0 ≤  < 2n. By the induction hypothesis applied to n,  in the role of k, and 
+ 1 in the role of j,

hence by Lemma 5.6,



A simple application of transitivity gives the induction step and the result.
Continue to suppose z  z′, and take any a ∈ (0, 1). We know by

property c that a′z + (1 − a′)z′  a′z′ + (1 − a′)z′ = z′ for all a′ sufficiently close
to one. Moreover, we can find such an a′ such that  for some

integer j and n. Therefore, by the previous paragraph,

which is az + (1 − a)z′  z′. By a similar argument, we can show that z  az
+ (1 − a)z′.

And not take arbitrary a, b ∈ (0, 1) with a > b. By the previous paragraph,
az + (1 − a)z′  z′. Applying the paragraph again, regarding bz + (1 − b)z′ as a
convex combination of az + (1 − a)z′ and z′, yields az + (1 − a)z′  bz + (1 −
b)z′.

Next, in exactly the manner of the first paragraph of this proof, use induction
and Lemma 5.6 to show that if z ~ z′, then az + (1 − a)z′ ~ z if a is of the form
k/2n for integers k and n. Extend this to all a ∈ [0, 1] as follows: suppose z ~ z′
but, for some a ∈ (0, 1), az + (1 − a)z′  z. Property c implies that for all a′
greater than but sufficiently close to a, a′z + (1 − a′)z ′  z. One such a′ is of
the form k/2n, a contradiction. The case where z  az + (1 − a)z′ is handled
similarly.

Lemma 5.8. Suppose z ~ z′. For any third z″ and any a ∈ [0, 1], az + (1 −
a)z″ ~ az′ + (1 − a)z″.

Proof. Suppose that z ~ z′ but, for some a and z″, az + (1 − a)z″  az′ + (1 −
a)z″. Apply property b to change the common z″ to z′, getting az + (1 − a)z ′ 
az′ + (1 − a)z′ = z′, which contradicts Lemma 5.7. A symmetric argument rules
out a′z + (1 − a)z″  az + (1 − a)z″.



Lemma 5.9. Suppose z  z′  z″. Then for some a* ∈ [0, 1], a*z + (1 −
a*)z″ ~ z′. And if, in addition, z  z″, then this a* is unique.

Proof. Taking the last statement first, the uniqueness of a*, if it exists, is
immediate from the first part of Lemma 5.7. As for the existence of a*: If z ~ z″,
then z ~ z′ ~ z″ and any a* will do. So we can assume that z  z″. If z′ ~ z, a*
= 1 works; if z′ ~ z″, a* = 0 works; so we can assume that z  z′  z″.

Let a* = inf{a ∈ [0, 1] : az + (1 − a)z″  z′}. Since z  z′  z″,
property c ensures that a* ∈ (0, 1).

Suppose that a*z + (1 − a*)z″  z′. By c, some strict convex combination
of a*z + (1 − a*)z″ and z″ is strictly preferred to z′. This would be az + (1 −
a)z″  z′ for a < a*. But the definition of a* precludes this: For all a < a*, z′ 

 az+(1−a)z″.

Or suppose that z ′  a*z +(1−a*)z″. Then c implies that z′ is strictly
preferred to a strict convex combination of a*z + (1 − a*)z″ and z, which is az +
(1 − a)z″ for a > a*. But if a > a*, then there is some b ∈ [a*, a) such that bz
+ (1 − b)z ″  z′, and Lemma 5.7 implies that az + (1 − a)z ″  z′, a
contradiction.

The only possibility left is a*z + (1 − a*)z″ ~ z′.

Finishing the first piece of the proof
With these five lemmas, we can finish the first piece of the proof of the Mixture-
Space Theorem; that a, b, and c imply the existence of a linear-in-convex-
combinations representation u. In fact, here I am going to do something less. I
will prove this with one extra assumption:

For some  and  in Z,   z   for all z ∈ Z.

Or, in words, Z contains a best and worst element. This assumption is not
necessary to prove the result, but it does simplify things. For the proof of the
proposition without this assumption, see Problem 5.3.

If  ~ , then every element of Z is as good as every other. Therefore, any
constant function u works. Having disposed of this case, we move to the more



interesting case where   .
Take any z in Z. By Lemma 5.9, there exists a unique a ∈ [0, 1] such that

z ~ a  + (1 − a) . For each z, let u(z) be this a; that is, for each z ∈ Z, z ~
u(z)  + (1 − u(z)) .

By Lemma 5.7, u gives a numerical representation of  on Z : Compare z
and z′. Because z ~ u(z)  + (1 − u(z))  and z′ ~ u(z′)  + (1 − u(z′)) ,

z  z′ if and only if u(z)  + (1 − u(z))   u(z′)  + (1 − u(z′)) ,

which, according to Lemma 5.7, is true if and only if u(z) ≥ u(z′).
And u is linear in convex combinations of lotteries. Fix z, z′, and a ∈ [0,

1]. Because z ~ u(z)  + (1 − u(z)) , by an application of Lemma 5.8,

az + (1 − a)z′ ~ a[u(z)  + (1 − u(z)) ] + (1 − a)z′,

and, by a second application of Lemma 5.8 based on z′ ~ u(z′)  + (1 − u(z′)) ,
this is indifferent to

Therefore, by the definition of u,

u(az + (1 − a)z′) = au(z) + (1 − a)u(z′).

This proof is central to much of this chapter, so it pays to take a minute and
reflect on how it works. Using the extra assumption, we use Lemma 5.9 to
measure or calibrate every z ∈ Z by finding the (unique!) convex combination
of  and  that is indifferent to z. This gives a numerical representation of
preferences, because we know (Lemma 5.7) that preferences are strictly monotone



in probabilities when we take convex combinations of two lotteries, one better
than the other. And this gives a representation that is linear in convex
combinations because convex combinations are themselves linear, and Lemma
5.8 tells us that we can substitute any lottery in a convex combination with any
other lottery indifferent to it; in particular, with the appropriate convex
combination of  and .

The third piece of the proof of the Mixture-Space Theorem
Suppose u gives a mixture-space representation of . Define v : Z → R by v(z)
= Au(z) + B for constants A > 0 and B. Since v is a strictly increasing
transformation of u, v represents  since u does. And it is straightforward to
see that v is linear in convex combinations:

Suppose both u and v give mixture-space representations of . If z ~ z′ for
all z ∈ Z, then u and v are both constant; hence v(·) = u(·) + B for some
constant B. So we can assume that z  z′ for some pair z and z′. Pick such a
pair, denoting them by  and , respectively. (We are no longer assuming
that these are best and worst in Z, but only that   .) Define u* : Z → R
and v* : Z → R by

The function u* is a positive affine transformation of u; hence u* represents 
and is linear in convex combinations. Similarly, v* is a positive affine
transformation of v; therefore v* represents  and is linear in convex
combinations. Moreover, u*( ) = v*( ) = 1 and u*( ) = v*( ) = 0, by



construction.
I assert that u*(z) = v*(z) for every z ∈ Z. Once this assertion is proved, we

are done with the third step: v is a positive affine transformation of v* (find the
constants if you are unsure about this), which is u*, which is a positive affine
transformation of u. Therefore, v is a positive affine transformation of u, which is
what we want to show.

To prove the assertion that u*(z) = v*(z) for every z ∈ Z, we take three
cases:

1.  If   z  , since   , Lemma 5.9 tells us that there exists a
unique a ∈ [0, 1] such that a  + (1 − a)  ~ z. Therefore,

u*(z) = u*(a  + (1 − a) ) = au*( ) + (1 − a)u*( ) = a,

where the first equality follows because u* represents , the second
because u* is linear in convex combinations, and the third because u*( ) =
1 and u*( ) = 0. But exactly the same chain of logic shows that v*(z) = a.
Therefore, u*(z) = v*(z) for every z such that   z  .

2.  If z  , then z  , and Lemma 5.9 tells us that there is a unique a
∈ (0, 1) such that az + (1 − a)  ~  and, therefore,

1 = u*( ) = u*(az + (1 − a) ) = au*(z) + (1 − a)u*( ) = au*(z).

Therefore, u*(z) = 1/a. But the same argument applied to v* will show that
v*(z) = 1/a.

3.  If   z, then Lemma 5.9 tells us there is a unique a ∈ (0, 1) such that
a  + (1 − a)z ~ , which means that a + (1 − a)u*(z) = 0, or u*(z) = a/(a
− 1) for this a. The same logic tells us that v*(z) = a/(a − 1).

Therefore, v* ≡ u*, and the third piece of the proof is done.



Using the Mixture-Space Theorem to prove Proposition 5.3
Having proved the Mixture-Space Theorem, we can finish off the proof of
Proposition 5.3. Again there are three pieces: that the three properties imply the
existence of a function U : X → R such that expected utility computed with
respect to U represents preferences; if preferences are represented by expected
utility for some function U : X → R, then preferences satisfy the three properties;
and two utility functions U and V on prizes, both of which give expected utility
representations of given preferences, are positive affine transformations of one
another.

Again, I leave the second piece to you. As for the first piece, Π (the space of
simple probability measures on X) is a mixture space and, if the three properties
hold, the Mixture-Space Theorem guarantees that there is a function u : Π → R
that represents  and that is linear in convex combinations. For x ∈ X, define
U(x) = u(δx) (where δx, recall, is the probability distribution that gives x with
probability 1). I assert that

for each π ∈ Π, which, once proved, gives the first step. To see that this is so,
we induct on the size of the support of π. If the support of π contains a single
element, so that π = δx for some x ∈ X, the result is true by the definition of U.
Suppose the statement is true for any π with n or fewer elements in its support.
Take some π with n + 1 elements in its support. Let x0 be any one of the
elements in the support of π, so that 0 < π(x0) < 1. We can write

π = π(x0)δx0 + (1 − π(x0))ρ

where ρ is a lottery with supp(ρ) = supp(π) \ {x0} and, for x ∈ supp(ρ), ρ (x) =
π(x)/(1 − π(x0)).

Because u is linear in convex combinations,



u(π) = π(x0)u(δx0) + (1 − π(x0))u(ρ) = π(x0)U(x0) + (1 − π(x0))u(ρ).

Because ρ has a support with n elements, the induction hypothesis applies to it,
so

Only the third piece remains. Suppose U gives an expected utility
representation of  on Π and V (·) = AU(·) + B for constants A > 0 and B.
Define u and v both from Π to R by

It is easy to see that both u and v are linear in convex combinations, and v(·) =
Au(·) + B. Therefore, v gives the same preferences on Π as does u, which means
that V gives the same expected utility representation on Π as does U.
Conversely, if U and V give the same expected utility representations on Π,
defining u and v as above and applying the Mixture-Space Theorem tells us that
v is a positive affine transformation of u. Since U(x) = u(δx) and V(x) = v(δx) for
all x ∈ X, V is a positive affine transformation of U.

Expected utility for nonsimple lotteries



(This subsection requires substantially more mathematical sophistication than
what precedes and what follows it. Apologies are tendered to readers who find
this tough sledding.)

The proof of Proposition 5.3 establishes an expected-utility representation for
simple probability distributions on an arbitrary prize space X. It would be nice
to extend this result to more complex spaces of probability distributions; for
instance, to the space of probability distributions with countable support on
some arbitrary space X, or to the space of probability distributions on R with
continuous density functions, or to the space of Borel probability measures on
Rk, and so forth. Needless to say, to make this work, we must know what is
meant by integration with respect to the probabilities in question (expected
utility is, in general, a matter of integration). And we must worry about what do
to if the expected utility of some probability distribution is either +∞  or −∞  or,
worse, if the positive and negative parts of the integral both diverge.

But setting aside for the moment these “ technical” concerns, is it clear that
such extensions will be possible? That is, suppose  is defined on some rich
space of probability distributions or measures on some prize set X. Assume that
this space is closed under the taking of convex combinations, so that the space,
denoted P, is a mixture space. Suppose  satisfies the three mixture-space
properties, properties a, b, and c from Proposition 5.4. Does this imply that
there is some function U : Z → R such that expected utility calculated using U
represents ?

The Mixture-Space Theorem takes us a good deal of the way to a positive
answer. Specifically, the three properties imply that some function u : P → R
that is linear in convex combinations represents . But going from u defined
on P to U defined on X in the manner of the proof of Proposition 5.3 is not
going to work; the proof consisted (essentially) of using the linear-in-convex-
combinations property finitely many times, which suffices only if the probability
distributions in question have finite support. Of course, just because the proof
we used does not work does not imply that the result is false. But the result is
false, as the following example shows.

Let P be all probability distributions on X = R that are convex combinations
of simple probabilities and probabilities that have a continuous density that has
compact support. That is, each p ∈ P can be written as aπ + (1 − a)f, where π



∈ Π and f is a continuous density that is zero outside of some compact set (that
changes with f). To be very precise, the probability assigned by p = aπ + (1 −
a)f to any (measurable) subset Y ⊆ R is

I assert that any such probability has a unique decomposition into its simple (or
discrete) part and its continuous-density part. I further assert that this space is
indeed closed under the taking of convex combinations; that is, it is a mixture
space. (You are left the job of verifying these assertions.)

Define a function u : P → R by

I assert that this function u is linear in convex combinations (more work for
you), so we know that if preferences are defined by this utility function—that is,
p  p′ if u(p) ≥ u(p′)—then  must satisfy a, b, and c of the Mixture-Space
Theorem. But I assert that these preferences cannot have an expected-utility
representation. For if U : X → R gave an expected-utility representation, then by
looking at probability distributions in P that are entirely simple (such that the a
in aπ + (1 − a)f equals 1), it is not hard to show that U(x) must take the form
Ax + B for constants A > 0 and B. (Essentially, use the definition of u and the
uniqueness part of Proposition 5.3.) But then consider  = δ2—the simple

probability distribution that gives 2 with certainty—and  = any probability

distribution that is purely a continuous-density probability with support [3, 4].
If U(x) = Ax + B for A > 0, then the expectation of U taken with respect to  is

U(2) = 2A + B, while the expectation of U taken with respect to  can be no

less than 3A + B, because the integrand U(x) ≥ 3A + B for all x in the support of 



. Expected utility will tell us that   . But it is easy to compute that u(

) = 2 and u( ) = 1, so   . Oops.

The example suggests a possible cure for the problem it presents: In the
example, the lottery  gives a prize of 2 with certainty. The lottery  gives

prizes between 3 and 4. That is, with probability 1,  gives a prize that, taken

as a sure thing, is strictly preferred to the (sole) prize possible under . And yet

  . How about adding to properties a, b, and c a property that rules this

sort of thing out? (I hope you agree that this sort of thing constitutes
unreasonable behavior in terms of someone’s preferences.) In fact, this line of
attack, suitably generalized, does work; you can see how in Fishburn (1970).

I prefer and will formalize a somewhat different cure. (At this point, the math
level goes up another notch or two.) Assume that X, the set of prizes, is a nice
subset of Rk for some k4 and that P is the space of Borel probability measures on
X. Add to a, b, and c of the Mixture-Space Theorem the assumption

Preferences  are continuous in the weak topology on P.

We have only discussed continuity of preferences for preferences defined on
subsets of Euclidean space Rk, so to make sense of this definition, we must say
what is meant by continuity, and we must identify the weak topology. Defining
continuity is not hard: Preferences are continuous in a given topology if, for
all p, the sets {p′ : p′  p} and {p′ : p  p′} are open. But providing a
formal definition of the weak topology here is probably fruitless: It is
unnecessary for readers who have studied the concept before, and it is unlikely to
be helpful for readers who have not done so. This is something for which an
appropriate textbook must be consulted. But it may give a bit of the flavor of
the weak topology to say the following. For any probability measure p on X, we
can construct a sequence of simple probability measures {pn} such that limn pn

= p in the weak topology. 5 If we have a, b, and c from the Mixture-Space
Theorem, we know that there is a function u : P → R, linear in convex
combinations, that represents . We can define U : X → R by U(x) = u(δx);
the continuity of  in the weak topology can be used to show that U is a



continuous function. Finally, define u′ : P → R by u′(p) = ∫X U(x)p(dx). Use the
argument from the proof of Proposition 5.3 that shows that u(π) has the
expected-utility form, to show that u and u′ agree on all simple probability
measures; then use continuity and the sort of approximation of any p by a
sequence of simple pn mentioned to show that u′ does in fact give a
representation of . (Except for knowing about the weak topology, the steps
are not that hard.) Let me give this as a formal proposition (which I do not
prove):

Proposition 5.10. Suppose X = Rk (or ) and P is the space of Borel

probability measures on X. If preferences  defined on P satisfy a, b, and c
of the Mixture-Space Theorem and are also continuous in the weak topology,
then there exists a bounded and continuous function U : X → R such that

represents . (Conversely, for any bounded and continuous function U : X →
R, u defined in this fashion gives preferences that satisfy a, b, and c and that
are continuous in the weak topology.)

Note that, in this proposition, the utility function U must be both bounded
and continuous. If you know about the weak topology, continuity should not
come as a surprise; if {xn} is a sequence of prizes with the limit x, then in the
weak topology, δxn → δ x. (This doesn’t prove that U must be continuous, but
it is the first step in a proof.) But the boundedness of U has to be rated as
something of a … disappointment, if we were planning to use this proposition
for the sort of applications one finds littering the literature of economics,
especially financial economics, in which the utility function of choice is the
unbounded function U(x) = −e−λx for some λ > 0, and probability distributions
that are Normal are among the objects of choice.

The reason that Proposition 5.10 produces a bounded U is not too hard to



see. The Mixture-Space Theorem produces a function u : P → R. That is, the
“ utility” of each lottery or probability distribution must be finite. That, in turn,
is something of a consequence of mixture-space property c, which says that no
matter how good or bad is some p″, if p  p′, then mixtures of p′ and p″ with
most (but not all) of the weight on p′ are worse than p (so p″ cannot be
supergood) and mixtures of p and p″ with most (but not all) of the weight on p
are better than p′ (so p″ cannot be superbad).

Suppose, then, that U was unbounded. In the context of Proposition 5.10, P
contains probability distributions that are discrete but with countable support.
Suppose, specifically, that U is unbounded below. This means that for each k =
1, 2, …, we can find some xk such that U(xk) < −2k. Then construct the
(countable support) probability distribution p* whose support is {x1, x2, …}
and that assigns probability 1/2k to xk. Expected utility for this probability
distribution is −∞ . That is, u(p*) would have to be −∞ , which the Mixture-
Space Theorem does not allow.

Nowhere in Proposition 5.3 does it say that U is bounded. No such
restriction is needed (more precisely, is implied by the three mixture-space
properties a, b, and c), because in Proposition 5.3, only simple (finite support)
lotteries are allowed. Even if U is unbounded, you cannot produce within Π a
supergood or superbad lottery (one with expected utility either +∞  or −∞). Put
another way, when applied to a relatively “ poor” mixture space like Π—poor in
the sense that it does not contain a lot of probability distributions on X—
property c is a lot less strong than when it is assumed for a “ rich” space of
probability distributions (those with unbounded support).

Still, there is that disappointment to deal with: To do lots of interesting
financial economics, we want to have models in which utility functions take the
form U(x) = −e−λx and lotteries on prizes are Normally distributed. If you
consult the literature of finance, you will quickly appreciate the analytical
conveniences of this pair of parameterizations. Can we find some way to
“ legitimize” models that use this pair of parameterizations?

Without going into details, it can be done. The key is to find a mixture
space P that is restricted enough that property c doesn’t limit you to bounded
U. In the context of X = R, if you assume that the P contains only distributions



whose tails vanish on the order of, say, e−kx2
 (a space that includes all Normals

and all finite mixtures of Normals), then you may have utility functions that are
unbounded, as long as their rates of growth and decline are suitably limited. In

particular, with tails that vanish on the order of e−kx2
, growth/decline that is

exponential or less is fine. Having said this, a comment on the literature is
worth making. Results of the sort indicated in this paragraph are possible, and
they would save the parameterizations that are much used and loved by financial
economists and others. But if anyone has ever published such results, I am
unaware of them.

Another version of the Mixture-Space Theorem
The independence and continuity properties b and c in Propositions 5.3 and 5.4
are not entirely standard. I chose a formulation of property b that makes
comparisons with Savage’s Sure-Thing Principle as straightforward as possible
and eases (a bit) difficulties in the proof. But in place of b and c you will often
find equivalent pairs of properties, such as b′ and c′ in the following
proposition.

Proposition 5.11. Suppose  defined on a mixture space Z is complete and
transitive. Then  satisfies b and c of Proposition 5.4 if and only if 
satisfies

b′.  If z  z′, then for all a ∈ (0, 1) and z″ ∈ Π, az + (1 − a)z″  az′ + (1 −
a)z″, and

c′.  If z  z′  z″, then there exist a, b ∈ (0, 1) such that az + (1 − a)z″  z′
 bz + (1 − b)z″.

Therefore, b′ and c′ (with a) are necessary and sufficient for the mixture-space
representation, which is unique up to positive affine transformations. In fact, an
easy way to show that b and c imply b′ and c′ (if a holds as well) is to note that
b and c give a mixture-space representation, which almost immediately can be
shown to imply b′ and c′. Conversely, if you can show that b′ and c′ (with a)
yield a mixture-space representation, then the converse half of Proposition 5.4



shows that b′ and c′ imply b and c. I won’t give the proof of the Mixture-Space
Theorem using b′ and c′ instead of b and c; see Kreps (1988) or Fishburn
(1970) for the details.

5.3. States of Nature and Subjective Expected Utility
Now we return to the states-of-nature approach, looking for justifications for
additively separable and subjective expected-utility representations (that is,
representations of the forms (5.1) and (5.2)). As already noted, the classic way to
get (5.2) is due to Savage. But Savage’s development is fairly complex, so we
will we use the alternative and somewhat easier development due to Anscombe
and Aumann (1963).

Horse races and roulette wheels
We begin with set of prizes X and a set of states of nature S, out of which the set
of acts A = XS is formed. Throughout this section, we assume that S is finite.6
Consumer preferences are given over the set A.

Anscombe and Aumann enrich this setup. Let Π be the space of simple
probability distributions on X, with a typical element written as π, and call π ∈
Π roulette lotteries, thinking of π as a gamble that is based on objects such as
well-balanced roulette wheels, very symmetric dice, and so on. That is, for
lotteries π, the odds (probabilities) are objective because of the symmetry of the
randomizing devices employed.

Preferences  are extended from the set of acts A to the space H = ΠS. Each
h ∈ H is a function with domain S and range Π; for each state s, h specifies a
roulette lottery h(s). The interpretation is that the states s represent the results of
things like horse races (the weather, the resolution of technological uncertainty,
and so on), and a horse-race lottery h is a gamble that, depending on the state
of nature s, pays off in a roulette lottery.

For example, imagine a betting ticket that pays the following: In state s1
(Secretariat wins), the consumer get $−2 for sure. (That is, she loses $2 for
sure.) In state s2 (Kelso wins), she gets $3 with probability 1/2 and $1 with
probability 1/2. In state s3 (a dead heat), she gets $6 with probability 1/3 and
loses $4 with probability 2/3. This sort of creature is depicted by a compound



chance node, as in Figure 5.6b, where the compounding is now an important
part of the mathematical formalism. (Panels a and c of this picture will be
explained momentarily.) In these pictures we use a solid node for the state-of-
nature uncertainty and an open node for the roulette-based uncertainty.

Figure 5.6. Acts and horse-race lotteries

Compare this with the setup with which we began. Previously, after the
horse race was run and the state s was realized, the outcome was a prize x = a(s).
Now the “ outcome” of the horse race is a lottery h(s) ∈ Π. Of course, A is
something of a subset of H; included in H are horse-race lotteries that pay off, in
each state, in degenerate (single prize) roulette lotteries. (See Figure 5.6 for all
this said with pictures.) So you can think of this enriching of the space on
which consumer preferences are given as a thought experiment: Our interest,
ultimately, is in representing the consumer’s preferences on acts from A. But we
ask the consumer to rank more objects than these, because properties of
preference on a larger space (insofar as those properties have the form For all…)
will be stronger properties, giving us more to work with when seeking a



representation.
Suppose h and g are two horse-race lotteries, and a is a number between zero

and one. Define a new horse-race lottery, denoted ah + (1 − a)g, as follows: For
each state s, the new horse-race lottery gives as prize the roulette lottery ah(s) +
(1 − a)g(s), where this last object is defined as the usual convex combination of
the two probability distributions h(s) and g(s). Figure 5.7 gives an example of
this sort of operation.

An additively separable representation

Proposition 5.12. Suppose S is finite. Then preferences  on H satisfy

a.    is complete and transitive,

b.   for all h, h′, g,, and g′ from H and a ∈ [0, 1], ah + (1 − a)g  ah′ + (1
− a)g if and only if ah + (1 − a)g′  ah′ + (1 − a)g′, and



Figure 5.7. Taking mixtures of horse-race lotteries. When mixing horse-
race lotteries, you mix the lotteries for each outcome of the horse race.

c.   if h  h′, then for any third horse-race lottery g there exists a* ∈ (0, 1)



such that ah + (1 − a)g  h′ and h  ah′ + (1 − a)g for all a such that
a* < a ≤ 1

if and only if there is a function u : H → R such that
d.   u represents : h  g if and only if u(h) ≥ u(g), and

e.   u has the form

for functions Us : X → R, for each s ∈ S. Moreover, if v is another such
representation of , with accompanying state-utility functions Vs, then there
exist constants A > 0, B, and Bs for s ∈ S such that v(·) = Au(·) + B and each
Vs(·) = AUs(·) + Bs.

Some commentary is in order before getting to the proof.

1.  It is probably obvious to you from a, b, and c that we are about to enlist
the Mixture-Space Theorem again. But before doing so, you might want to
consider whether, in the current context, a, b, and c are sensible
assumptions to make about consumer preferences.

2.  In the representation, we get additive separability across horse-race states s
∈ S, and within each state s, we get an expected-utility representation,
although the utility function for state s can be quite different than that for s′.
To evaluate a horse-race lottery h, you must (1) use the state s utility
function Us to compute the expected utility of the roulette lottery h(s), for
each s separately, and then (2) add up the state-specific expected utilities.
When restricted to horse-race lotteries whose roulette lotteries are all
degenerate (sure-things), this specializes to the state-additive representation
(5.1).

Proof. As we remarked when we first introduced the concept of a mixture space,



the space H is a mixture space, where ah + (1 − a)h′ involves taking convex
combinations for each state s ∈ S. Hence, the Mixture-Space Theorem, applied
to this setting, would pretty much conform to the statement of the proposition,
except that e would be replaced by

e’. u is linear in convex combinations

and we would not have the bit at the end concerning a comparison of the Us and
Vs. I leave it to you to prove that if u : H → R has the form (5.6), then u is
linear in convex combinations; once that is shown, the Mixture-Space Theorem
tells us that d and e imply a, b, and c. Instead, I’ll assume a, b, and c, and pick
up the story at the point where the Mixture-Space Theorem has been applied
and we have produced a function u : H → R that represents  and is linear in
convex combinations.

Fix (completely arbitrarily) some roulette lottery π0 ∈ Π. For each s ∈ S,
and h ∈ H, let h0(h, s) be the horse-race lottery that gives roulette lottery h(s)
in state s and the roulette lottery π0 in all other states. Let h0 be the horse-race
lottery that gives π0 in every state, and normalize u so that u(h0) = 0. By
straightforward algebra,

where N is the number of states. Because u is linear in convex combinations, we
therefore know that

Since u(h0) has been normalized to be 0, the last term drops out. Multiply both
sides of what remains by N, to get



For each s ∈ S, define us : Π → R by
us(π) = u(h′) where h′ is the horse-race lottery with 

With this definition, u(h0(h, s)) = us(h(s)), since h0(h, s) is the horse-race lottery

with π in s and π0 in all other states. Hence

Moreover, because u is linear in convex combinations on H, it is relatively easy
to show that each us is linear in convex combinations on Π; hence (because Π
consists of simple probabilities only) we know (from the argument back on
pages 95 and 96) that each us has the form

where Us : X → R is defined by Us(x) = us(δx). Putting everything together
gives (5.6).

Suppose that u and v are two different linear-in-convex-combinations
representations of . We know that v(·) = Au(·) + B by the Mixture-Space

Theorem. Construct Us and Vs from u and v as above. Fix any x0, and define Bs



= Vs(x
0) − AUs(x

0). It is immediate that Σs Bs = B. Now take any x ∈ X and s′

∈ S, and consider the horse-race lottery that gives x0 with certainty for all s ≠ s′
a n d x with certainty in state s′. Under v, this has value 

, while under u it has value 

. Since v = Au + B, this means

Cancel the two summations, since they are identical term by term, to obtain Vs′
(x) = AUs′ (x) + Bs′; since x is free here, this tells us that Vs′  ≡ AUs′ + Bs′.

The trick
This late in the chapter, you may be feeling a bit glassy-eyed and inclined to
accept the short proof just given without worrying too much how it works. But
diligent readers may feel a bit cheated by the proof. It isn’t clear (to most first-
time readers) how additive separability across states just popped out of a hat,
like the proverbial rabbit.

Let me sharpen the point this way. Suppose instead of looking at horse races
that pay off in roulette lotteries, we had gone to the casino first and then the
racetrack; that is, we worked with the space of simple probability distributions
over the space A = XS. Since this is a space of simple probability distributions,
it is a mixture space, and the Mixture-Space Theorem applies. But the
conclusions of the Mixture-Space Theorem viewing things this way are much
weaker than the conclusions of Proposition 5.12. In particular, we do not get
anything close to additive separability across states. It is vitally important in
this theory that the horses run first. (Can you figure out why on your own? If
not, read on.)

The trick, if I may call it that, comes in the definition of convex
combinations in H. Let me illustrate with a very specific example. Suppose the



state space S = {s1, s2}, and the set of prizes X is {steak, chicken}, representing
dinners you might have. Consider the following four horse-race lotteries: hss
gives the consumer steak for sure in both states; hsc gives her steak in s1 and
chicken in s2; hcs gives her chicken in state s1 and steak in s2, and hcc gives her
chicken for sure, regardless of the state.

Imagine that the two states are equally likely in the mind of this consumer,
and she generally prefers steak to chicken. Imagine as well that this consumer’s
tastes in meals are not separable across states; that is, the value to the consumer
of a steak dinner instead of chicken in one state is affected by what she gets to
eat in the other state. To be very concrete, imagine that the value of steak
instead of chicken is enhanced if it is paired with steak in the other state, while
the value of a chicken dinner in one state is enhanced a bit if it is paired with
chicken. Under all these assumptions, if we offered the consumer a 50-50 convex
combination of hss and hcc or a 50-50 convex combination of hsc and hcs (where
50-50 convex combinations mean, determined by the flip of a fair coin), we
would expect her to prefer the former; that way she “ benefits” by the
enhancement of the value of steak when it is paired with steak and chicken when
it is paired with chicken.

Since these preferences are not separable across states, they cannot be
represented by a representation of the form (5.6). Accordingly, we might
wonder, Which of a, b, and c is being violated in this example? The answer is,
It isn’t a, or b, or c, that rules this out. It is the formulation itself that makes
this impossible. To see why, note that, in terms of H, a 50-50 convex
combination of hss and hcc is identical to a 50-50 convex combination of hsc
and hcs; namely, each gives a coin-flip choice of steak or chicken in both states
of nature. Our formal setup identifies these two convex combinations; since they
are the same thing, our consumer must be indifferent between them. This is the
key point, so let me say it again: When convex combinations are taken state by
state, without regard to what each constituent horse-race lottery gives in the
other states, state separability is implicitly invoked in the setup, before we get
to the mixture-space properties a, b, and c.

Indeed, you see this rather blatantly in the proof at Equation (5.7). We take
an arbitrary horse-race lottery h and “ repackage” it in a convex combination



with a reference lottery as the convex combination of lotteries each of which
picks up a single state-component of h. The two convex combinations give the
same overall lottery, so the consumer is forced to be indifferent between them.
But the repackaging immediately gives us additive separability, because it takes
“ h plus a constant” and breaks this into a sum of terms, each of which depends
on a single component of h.

If you are still fuzzy on this, I urge you to try Problems 5.4 and 5.5 (and, if
possible, discuss your answers with your colleagues).

Subjective expected utility
Proposition 5.12 gets us additive separability over outcomes of the horse race
and, for each outcome of the horse race, expected utility as in Proposition 5.3.
But the state-dependent utility functions Us needn’t bear any particular
relationship to one another. We are seemingly a long way from a representation
of the form of (5.2).

Recall the discussion of umbrellas and suntan lotion from the first section,
and you will see what is missing. The mixture-space properties a, b, and c do
not speak to the question, Is the value of a prize independent of the state in
which it is received? To finish the Anscombe-Aumann development, we need to
assume that the answer to this question is yes.

This requires a bit more notation. For π ∈ Π (a roulette lottery), write π as
an element of H (a horse-race lottery) meaning the horse-race lottery that gives,
regardless of the outcome of the horse race, the prize π.

Proposition 5.13. For finite S,  satisfies a, b, and c of Proposition 5.12
and, in addition,

f.   for each s ∈ S and π and ρ ∈ Π, π  ρ if and only if h  g, where
h(s) = π, g(s) = ρ, and h(s′) = g(s′) for all s′ ≠ s,

if and only if  is represented by a function u : H → R taking the following
form:



where U : X → R and p is a probability distribution on S with p(s) > 0 for all
s ∈ S. Moreover, U is unique up to positive affine transformations, and if
there exist x and x′ such that U(x) ≠ U(x′), then p is unique.

This is full subjective expected utility, with a state-independent utility function
U and subjective probabilities for the states, given by p.

The fourth assumption f is fairly blatant. Suppose π, ρ, s, h, and g are as in
the statement of the assumption. Then h and g are identical on all states except
s (hence, under a, b, and c, it doesn’t matter how they are the same), and the
consumer’s preferences between h and g depends solely on how she feels about π
vs. ρ contingent on state s. However she feels, the assumption is that she feels
the same way between π-regardless-of-the-state and ρ-regardless-of-the-state.
Comparisons of roulette lotteries are independent of state.

Proof. The previous paragraph almost gives the proof away. Suppose 
satisfies properties a, b, and c. Then we know we get a representation of the
form given in Proposition 5.12, specified by state-dependent utility functions
Us. Define for each state s the preferences s on Π that are created by Us; i.e., π

s ρ if Σ π(x)Us(x) ≥ Σρ(x)Us(x). These are expected-utility preferences in the
sense of Proposition 5.3, and so satisfy a, b, and c there. Moreover, for h and g
as in the statement of this proposition, h  g if and only if π s ρ. But then f
asserts that π s ρ if and only if π s′ ρ, for all π, ρ, s, and s′. Therefore, the

uniqueness part of Proposition 5.3 tells us that if we fix some s0, for each s ≠ s0

there exists A(s) > 0 and B(s) such that Us(x) = A(s)Us0(x) + B(s). Define U(x) =
Us0(x) and p(s) = A(s) / Σs′∈S A(s′) (where we interpret A(s0) = 1). It is a matter
of straightforward algebra to see that (5.6) becomes (5.8).

This leaves the converse part of the proposition—the representation implies
the four properties—and the uniqueness claim. Both are left for you to do.



It may be worth pointing out that in many treatments of Anscombe-
Aumann, the possibility that p(s) = 0 for some states is allowed. This takes a
modification of f, to allow for states for which nothing (in terms of the lottery
won in that state) matters.

5.4. Subjective and Objective Probability and the Harsanyi Doctrine
At the start of this chapter, I said that representations of the form (5.2) are
sometimes called subjective expected utility. On the other hand, representations
of the form (and in the setting) of Proposition 5.3 are often called objective
expected utility. We can now explain what lies behind this terminology.

The probability distribution p in (5.2) or p in (5.8) is as much an
expression of the personal preferences of the consumer as is the utility function
u. To be very pedantic about this, consider betting on the next World Cup. We
will look at gambles whose outcomes depend only on whether the winner of the
next Cup comes from Europe (including Russia), from America (North or
South), or from the rest of the world, so we take a three-element state space S =
{s1, s2, s3} where s1 is the state that a European team wins the next World
Cup, s2 is the state that an American team wins, and s3 is the state that some

other team wins.7 We will take the prize space X to be [0, 100], with numerical
amounts representing dollars won. Imagine that we give a consumer her choice
of the three gambles (from the Anscombe-Aumann version of H) depicted in
Figure 5.8. Suppose she ranks the three as h  h′  h″. If her preferences
conform to the Anscombe-Aumann axioms (and she prefers more money to
less), we interpret this as: Our consumer assesses probability greater than.48
that an American team will win and probability less than.48 that a European
team will win. By varying the probability in h′ until we find the value that
makes her indifferent between h and h′ (as modified), we find her subjective
probability that an American team will win. N.B., the subjective probability
she assesses for s2 is (only) a construct of the representation guaranteed by the
Anscombe-Aumann axioms; it arises solely from her preferences for these
lotteries. If a different consumer expresses the preferences h″  h′  h, we
conclude that the two consumers’ preferences are represented by different
assessments over the state space S; probability assessments (as an expression of
preferences) are subjective.



Figure 5.8. Three Anscombe-Aumann gambles. Within the Anscombe-
Aumann framework, if a consumer prefers horse-race lottery h to h′ and h′
t o h″, she is implicitly saying that she assesses probability greater than
0.48 for state s2 and less than 0.48 for state s1. Of course, this is implicit:
She is only expressing preferences among horse-race lotteries; nowhere (in
the theory) is she asked to assess a probability.

The probabilities in the roulette lottery parts of the gambles are meant, in
this story, to be objective; i.e., reflecting the physical reality of well-balanced
roulette wheels, symmetric dice, and so on (at least, to a reasonable degree of
approximation). All consumers are meant to agree to these probabilities. Hence
they can be used to calibrate subjective probabilities, just as we’ve done here.

The start-with-probability-distributions approach of Proposition 5.3 and
Section 5.2 seemingly makes the most sense in a world of objective
probabilities, because if probabilities are objective—reflecting physical reality
and agreed upon by all consumers—it is clear where they come from. Hence that
approach is labeled objective expected utility. Notwithstanding the label, this
general approach can be (and often is) used with subjective probabilities, albeit
bearing in mind that if there is no objective basis for the probabilities, they enter



the model out of thin air.
Returning to the full subjective model, there is a final point to make.

Economists (of a neoclassical stripe) rarely if ever insist that consumers have the
same ordinal preferences over bundles of goods. Individual consumers are
allowed to have individual preferences. In the same spirit, subjective
probabilities—another part of the expression of personal preferences—should be
allowed and even expected to vary across individuals. If this seems
philsophically correct to you, and it certainly does to me, you are forewarned
many eminent economists maintain as dogma (philosophy?) that two
individuals having access to the same information will inevitably express the
same subjective probability assessments. Any difference in subjective
probability assessments must be the result of differences in information. Two
consumers betting on the World Cup might order the gambles in Figure 5.8
differently, but only if they have been exposed to different pieces of information
about the qualities of the various teams, etc. I leave it to others to defend this
assumption—see, for example, Aumann (1987, section 5)—as I cannot do so.
But you should be alerted to this modeling assumption, which has played an
important role in parts of pieces of modern microeconomic theory; it is called
both the common prior assumption and the Harsanyi doctrine.

5.5. Empirical and Theoretical Critiques
The models of expected utility maximization, with either subjective or objective
probabilities, are the standard models of choice under uncertainty employed by
economists. With the rise of behavioral economics and behavioral finance, it
may no longer be appropriate to say that they are the overwhelming choice of
economists who wish to model uncertain choices. But they are still chosen a
very high percent-age of the time, and certainly they still constitute the
overwhelming percentage of models in the literature.

These models are used both normatively—as tools recommended for use by
decision makers who themselves face a choice problem with uncertainty—and
descriptively, meant to model how decision makers make real-life choices. I
won’t discuss the normative application of these models here; if you are curious
to see a normative treatment, find a textbook on strategic decision making or
decision analysis.8 Instead, here we discuss the use of these models in
descriptive economics.



In that context, the test is surely empirical: When we watch people making
choices under uncertainty, in the field or in the lab, does their behavior conform
to the models we have developed? Any number of studies have shown that the
answer is, Not precisely. And, moreover, choice behavior has been observed that
exhibits enough regularity so that one can contemplate better descriptive models
than these.

A vast literature documents the empirical failings of these models, and I
certainly will not try to catalog all the effects that have been observed. But I will
point out three major themes or threads that appear.

In each of these threads, the evidence comes from the laboratory. Individuals
are asked within the lab to make choices or statements of preference—“ If you
could choose between gamble A or B, which would you choose?”—or—“ Do
you prefer gamble A or gamble B?” They are asked to compare A with B and
(later) A′ with B′, and we look at the data to see if these pairs of
choices/preferences are internally consistent, according to the standard model. In
some experiments, the choices are real; there is some chance the individual will
actually get what she chooses/prefers. More often, though, the exercise is
hypothetical.

Framing effects
Back in Chapter 1 (pages 22–3), we discussed the first of the three threads; the
problem of framing. Individuals choose differently between the “ same” pair of
objects, depending on how those objects are framed (presented to them). We
discussed in Chapter 1 the Kahnemann and Tversky (1979) example of
vaccination programs, where the framing issue concerned whether outcomes were
presented in terms of lives saved or people condemned to death. And we
mentioned there tricks used by mail-order catalogs to convince you to buy their
products.

Kahnemann and Tversky (1979) go on to develop further the example of the
vaccination programs, in ways that are very significant for choices with uncertain
outcomes. In the example of the vaccination programs, one way to think about
what is happening is to think in terms of changes in the status quo: Is the status
quo the position today, where no one has died, and so one vaccination program
condemns some number of people to death; or is the status quo the no-
vaccination program outcome of 600 deaths, in which case that program has the



virtue of being sure to return some people to life?
Kahnemann and Tversky show evidence that, with monetary gambles, the

status quo position, especially with regard to losses and gains, matters. They
give their subjects choices such as

Gamble A gives you $400 for sure, while Gamble B provides $600
with probability 2/3 and $0 with probability 1/3

and they find a tendency to prefer the $400 for sure. But then they reframe the
choices:

To begin, you will be given $600 with which to gamble, which is
yours to keep if you so choose. Then you can choose between Gamble
A′, in which you lose $200 for certain, and Gamble B′, in which you
will lose nothing with probability 2/3 and $600 with probability 1/3.

Framed this way, they find subjects who previously preferred Gamble A now
preferring Gamble B′. In general, they present evidence that people are more
inclined to gamble to avoid a loss than they are to record a large gain, calling
this the “ zero illusion.”

The Allais Paradox and variations
The second theme traces from the work of Allais (1953) and concerns the model
with objective probability. The classic so-called Allais Paradox asks an
individual to choose between the two lotteries in Figure 5.9a and then between
the two in Figure 5.9b.
A large fraction of the subjects express a preference for Gamble B in 5.9a and A′
in 5.9b, which is inconsistent with expected utility maximization for any utility
function; letting U be the individual’s utility function, a preference for Gamble
B over A means that



which implies a preference for B′ over A′. Kahnemann and Tversky (1979) go
on to divide the Allais-type inconsistency (with the expected utility model) into
two regular effects: individuals overvalue certainty; and they also overweight
small-probability outcomes.

Figure 5.9. The Allais Paradox. Many individuals prefer B to A and
simultaneously say that they prefer A′ to B′. This is inconsistent with the
expected utility model. (See text for further explanation.)

The Ellsberg Paradox
The third theme begins with the work of Ellsberg (1961) and draws a
distinction between uncertainty and risk. These terms, used in this fashion, refer



to a distinction that goes back in the literature to work by Keynes and Ramsey;
risk is used when the gamble in question has “ known odds,” while uncertainty
refers to situations where the odds are “ unknown.” I will not attempt to be
precise about the meanings of known and unknown odds, but the spirit of the
thing is that odds are known if they are determined by a fair coin or a balanced
roulette wheel, or if they come from some random event that has been repeated
enough so that the decision maker is confident she knows the chances of the
various outcomes. The odds are unknown, basically, if they are not known; that
is, if neither of these conditions hold. So, for instance, suppose I tell you I have
a bent coin, and I ask you (without letting you examine the coin or experiment
with it) to bet on whether the coin will land heads or tails. Since you don’t
know the odds of heads, you face uncertainty. If the coin is known a priori to be
fair, or if you have been allowed to flip it, say, one million times, and it has
come up heads 621,231 of those million, so the odds of heads are likely to be
very close to 0.621231, then the odds are (approximately) known.9

In most interesting economic contexts of choice under uncertainty, where
physical symmetry of the outcomes of random events is meaningless and where
past data are at best only a partial guide to the future, the decision maker faces at
least some level of uncertainty. So, choice under uncertainty should be of greater
concern to economists than is choice under conditions of risk.

The models of Savage and of Anscombe and Aumann (developed here) have
the decision maker choosing according to expected utility, employing
subjectively determined probabilities where there is uncertainty. Once
probabilities are (subjectively) assigned to uncertain outcomes and events, no
distinction is made between uncertainty and risk.

Ellsberg tested this as a descriptive model by posing the following
hypothetical decision problem. He described to his subjects an urn containing
300 colored balls: 100 red, and 200 some (unknown) combination of blue and
green. One ball is to be drawn at random from the urn. Then he asked:

Would you prefer: (A) a bet in which you win $100 if the ball drawn is
red (and $0 otherwise); or (B) a bet in which you win $100 if the ball
drawn is blue (and $0 otherwise)?

And he asked:

Would you prefer: (A′) a bet in which you win $100 if the ball drawn



is red or green (and $0 if it is blue); or (B′) a bet in which you win
$100 if the ball drawn is blue or green (and $0 if it is red)?

He asked this of fairly sophisticated decision makers, his colleagues at the
RAND Institute. And he found that a sizeable fraction preferred A to B and B′ to
A′.

The explanation of this pair of preferences is easy, given the distinction
between risk and uncertainty. The probability of winning $100 in A is 1/3; you
know 100 balls out of 300 are red, so it stands to reason that the probability of a
red ball being drawn is 1/3. But you don’t know the number of balls that are
blue—you only know that it is between 0 and 200—so the odds of winning
$100 in B are unknown. And in B′, you know that 200 balls are either blue or
green, so the odds of $100 are 2/3; this is a situation of risk. While in A′, you
don’t know how many balls are red or green—it could be as few as 100 or as
many as all 300—so this is a gamble with uncertainty. If you are averse to
uncertainty per se—that is, every thing else being equal (whatever that means),
you prefer risk to uncertainty, you will prefer A to B and B′ to A′.

But, of course, this is inconsistent with the Savage and Anscombe-Aumann
models of choice. It is perhaps easiest to see this by noting that the pair of
preferences A better than B and B′ better than A′ is a direct violation of
Savage’s Sure-Thing Principle, Axiom 5.1 (page 82): Gambles A and B give
the same outcome $0 if the ball is green, and if we change that same outcome if
green to $100, we get A′ and B′, respectively.

So what?
Individuals deviate from the models of expected utility maximization that are
developed in this chapter in systematic fashion, making those models less than
ideal for descriptive purposes. Some apologists for the models argue that the
deviations that are observed are not of economic significance (but try telling that
to, for instance, the designers of mail-order catalogs, who employ framing effects
in the their designs); others will argue that preferences expressed in a lab setting
are not taken seriously by the subjects, and when it comes to serious economic
decisions, conformity to the standard models is better.

But the evidence is strong and the effects are confirmed experimentally time
after time, so it seems witless to pretend that the evidence isn’t there. Two



tasks are obvious:

1.  Better models—better in the sense that the behavior modeled is closer to
what we see empirically—should be developed. There are, in fact, large
(perhaps not quite vast) literatures that address in various ways Allais-type
and Ellsberg-type choice behavior. But, at least to my knowledge, none of
the variations offered by these literatures has been accepted broadly as the
right alternative.10

2.  In specific applied settings, the economic implications of systematic
deviations from the standard models should be explored. This has been the
subject of recent work in the realms of behavioral economics and behavioral
finance.

While awaiting further progress in these two directions, the models of
(subjective and objective) expected utility maximization remain the standard
(descriptive) models of choice under uncertainty. So we turn next chapter to a
few of the standard applications.

Theoretical issues with the models
But before doing so, we must observe that objections on theoretical grounds can
be made to the models of expected utility maximization, at least as applied by
economists in some contexts. The two objections we raise here both arise from
the same root cause, the application of the model to a “ small world of choice”
that is properly part of a broader choice context.

Imagine a consumer choosing whether to invest in, say, debt issued by a
major corporation that is not doing well. Debt (in the form of corporate bonds)
is meant, ideally, to be riskless, at least in terms of nominal (non-inflation-
adjusted) payoffs. But in today’s financial markets, that ideal is rarely met, and
anyone contemplating an investment in debt instruments would take into
account the odds of default, and so forth. Do we, therefore, model the decision
process (whether to invest in this debt and, if so, how much debt to take on) by
describing the probability distribution (subjectively determined, say) for the
payoffs and then by comparing expected utility of the consumer with and
without the debt? Students of finance will see immediately that the world of
investments is more complex than this; one needs to think of the investor’s full



portfolio of financial investments. This debt is worth less to the investor, in
most cases, if it has positive correlation with other investments held by the
investor, and it is worth more if the correlation is negative.

The moral is simple: When evaluating an investment, we know (at least,
you know, once you’ve had an introductory course in finance) that one has to
look at the investor’s full portfolio; looking at a single investment in isolation
is nonsensical, if one is thinking of employing the models of this chapter.

But this obvious principle is not so well honored in the literature if one
expands the setting slightly. A cornerstone of financial theory, the Capital Asset
Pricing Model (CAPM), divorces the investor’s decision how to invest from the
investor’s human and real capital. As an employee of Stanford University, with
a fair amount of my wealth tied up in a house that sits not too many miles from
the San Andreas Fault, my investments in financial assets issued by California
corporations and, especially, by firms in Silicon Valley should probably be
somewhat tempered, at least relative to the investments of a colleague of mine
from, say, Princeton University. A high-level executive in the Ford Motor
Company should, perhaps, hold less financial wealth in assets that have positive
correlation with the fortunes of the automobile industry than should a similarly
placed executive in the financial sector. Yet when you go to the textbooks and
papers that develop the CAPM, you won’t always find due care taken of such
considerations.

A second theoretical issue concerns so-called temporal resolution of
uncertainty. Imagine that I will flip a fair coin and, if it is heads, give you a
check for $100,000. If it is tails, you get nothing. As a graduate student (I’ll
assume), this is a nice thing, but to complicate it a bit, let me suppose that you
will get the check, if the coin comes up heads, exactly twelve months from
today. And, to add one further level of complication, consider the following
three variations on this theme:
A.  I will flip the coin today, and tell you the result of the flip today.
B.  I will flip the coin in twelve months, so you only learn the outcome then.
C.  I will flip the coin today, in the presence of some reliable witnesses. But I

will only tell you the outcome in twelve months’ time.

To give this a decision focus, suppose I offer you your choice of the gamble as
described, or a sure-thing $20,000, also to be given to you in twelve months.



How you feel about the gamble versus the sure thing depends on a lot of
subjective circumstances. But, if you are like most folks, you strictly prefer
variation A to variations B and C, and you probably are indifferent between B
and c. Indeed, for some folks, the gamble under variation A is preferred to
$20,000 for sure, but $20,000 for sure is preferred to either variation where you
don’t learn the outcome for twelve months. This is so because the information
will guide decisions you make over the next twelve months, such as how much
to consume, whether to get your car repaired, whether to take a vacation in
Hawaii in the interim, and so forth.

If we used the expected utility model applied to your utility for consumption
streams (therefore employing some of the ideas we’ll discuss in Chapter 7, when
we get to dynamic choice), the differences between B and C on the one hand and
A on the other would be obvious within the model. But if, in trying to decide
whether you want to take the $20,000 for sure or the lottery without
incorporating into our analysis all those intervening consumption decisions,
we’d be unable to distinguish (within the model) between A on the one hand
and B and C on the other. All three are 50-50 gambles with prizes $100,000 or
$0, so in the (narrow scope) application of the models of this chapter, the three
are the “ same.”

Moreover (and this is a good deal harder to see), even if we fix the resolution
of uncertainty at some fixed date—we compare various lotteries among which
you might choose, with the understanding that the uncertainty involved will
resolve only in, say, twelve months’ time, when payment is made—you might
not satisfy the “ substitution axioms” that are key to this chapter.11

In both these circumstances, no theoretical problem arises in the application
of the models of this chapter if your model of the consumer’s decision process is
broad enough to encompass all the relevant factors. But in many applications of
the models of this chapter, the economist doing the model chooses to
economize on the scope of his or her model and, in so doing, raises good
theoretical objections to the use of the model altogether.

Bibliographic Notes
The subject of choice under uncertainty is well covered in detail in a number of
textbooks. I recommend Fishburn (1970) and Kreps (1988). For getting all the
details of the standard model, Fishburn is highly recommended. Kreps omits



some of the details of proofs, but is perhaps more immediately accessible than
Fishburn. If you like to consult original sources, see von Neumann and
Morgenstern (1944), Herstein and Milnor (1953), Savage (1954), and Anscombe
and Aumann (1963).

On the topic of empirical objections to the models, the three classic
references are (chronologically) Allais (1953), Ellsberg (1961), and Kahnemann
and Tversky (1979). A good survey of alternatives that deal with the so-called
Allais Paradox is Machina (1987); Wakker (2008) provides a survey of
alternatives that deal with the Ellsberg Paradox.

Problems
*5.1. (a) Suppose a consumer who satisfies assumptions a, b, and c of

Proposition 5.3 is choosing among the following gambles: (1) $10,000 with
probability 1. (2) $3600 with probability 1/3 and $14,400 with probability 2/3.
(3) $0 with probability 1/5, and $10,000 with probability 1/5, and $22,500
with probability 3/5. The consumer has utility function U(x) = . How

does this consumer rank-order these three gambles?

(b) Suppose a consumer whose preferences are represented as in equation (5.1) is
choosing among the three acts or gambles shown in Figure 5.10. Her three
state-dependent utility functions are us1((x1, x2)) = , us2((x1, x2)) =

0.6 min {x1, x2}, and us3((x1, x2)) = 0.4 (x1+x2). How does this consumer rank
order these three acts?



Figure 5.10. Problem 1b and c: Three acts

(c) Suppose a consumer whose preferences are represented as in Equation (5.2) is
choosing among the three acts shown in Figure 5.10. Her subjective probability
assessment is p(s1) = 0.5, p(s2) = 0.3, and p(s3) = 0.2, and her utility function

is U((x1, x2)) = (x1x2)0.25. How does this consumer rank order these three acts?

(d) Suppose a consumer who satisfies the assumptions of Proposition 5.12 must
choose between the two acts (or, in this context, horse-race lotteries) in Figure
5.11. Her three state-dependent utility functions are us1((x1, x2)) = ,

us2((x1, x2)) = 0.6 min {x1, x2}, and us2((x1, x2)) = 0.4 (x1 + x2). Which horse-
race lottery would this consumer choose?

Figure 5.11. Problem 1d and e: Two horse-race lotteries

(e) Suppose a consumer who satisfies the assumptions of Proposition 5.13 must
choose between the two horse-race lotteries in Figure 5.11. This consumer
assesses p(s1) = .5, p(s2) = .3, and p(s3) = .2, and her utility function is u((x1,

x2)) = (x1x2)0.25. Which horse-race lottery would this consumer choose?



 5.2. One will sometimes find mention of “ state dependent subjective
expected utility,” meaning (in the context of preferences  on A = XS) a
representation of the form

where p is a probability distribution on S and, for each s, us : X → R. Is this
representation stronger, weaker, or equivalent to the additive-across-states
representation given in Equation (5.1)?

 *5.3. The purpose of this problem is to explore the proof of Proposition 5.4
where we don’t add the extra assumption about the existence of best and worst
elements  and . Prove the Mixture-Space Theorem without this
assumption. Of course, you are free to enlist Lemmas 5.5 through 5.9, none of
which use this extra assumption.

This is a hard problem, so let me give you some assistance: If every element of
Z is indifferent to every other element of Z, then u equal to any constant will do.
So we can assume that there exist a pair  and  in Z such that   ,
although it is no longer true that   z   for all z ∈ Z. Now calibrate
each z ∈ Z on a scale where u( ) = 1 and u( ) = 0; to see what this means,
go back to page 95: If   z  , find the unique a such that a  + (1 − a)

 ~ z, and set u(z) = a. If z  , find the unique a such that az + (1 − a)  ~
, and set u(z) = 1/a. And if   z … well, case 3 on page 95 tells you what

to do.

Now that we have u, we have to show that u represents  and is linear in
convex combinations. You can try a brute force approach to this (and it will
work), but be warned that there are a lot of cases to consider. Or you can be
more clever: Take any pair z and z′ from Z. Let z1 be the -best out of z, z′,
and . Let z2 be the worst out of z, z′, and . Prove that z1  z2 and that z1 



   z2 for  any one of z, z′, , , and any convex combination of any
of those four. Let Z′ = {  ∈ Z : z1    z2}. Is Z′ a mixture space?
(Yes, but you have to prove this.) If the three mixture-space axioms (a, b, and c
from Proposition 5.3) apply to Z, do they apply to Z′? (Yes, but you have to
say why.) Apply the argument in the proof in the text to Z′ (it satisfies the extra
assumption, of course), to produce a representing and linear-in-convex-
combinations v : Z′ → R. Now rescale v so that the rescaled function, call it v′,
satisfies v′( ) = 1 and v′( ) = 0. How does v′ compare with u on Z′?

 5.4. With regard to the “ run the horses first” discussion beginning on page
119, suppose that we let A = XS for some finite set S, we let Π be the set of
simple probability distributions on A, and we assume that  on Π satisfies the
(mixture-space) assumptions a, b, and c of Proposition 5.3. That is, we run the
horses after conducting the roulette lottery. What result (in the spirit of the
results in this chapter) do we get?

 5.5. To help you to understand what I call the trick in Anscombe-Aumann,
investigate the following alternative setting. Let X be an arbitrary finite set of
objects, and let Z be the set of all subsets of X. Assume a decision maker has
complete and transitive preferences  over elements of Z. Since Z is finite,
we’ve already made enough assumptions to ensure that  has a numerical
representation u : Z → R, but I’d like more.

To get more, and in the general spirit of Anscombe and Aumann, we can
expand the domain for . One possibility is to look at the space of probability
distributions on Z. Call this space P, and assume that  is defined on all of P
and satisfies the three mixture-space axioms. (In this context, Z is a “ subset” of
P in the sense that, within P, there are probability distributions that have a one-
element support.) What results? Does this help us to pin down the structure of
u?

A second possibility is to define the space Q: = [0, 1]X, where the interpretation
of a q ∈ Q is that, if the decision maker chooses q, then q(x) is the probability
that the decision maker gets x in the subset of objects out of X that she receives.



(In this context, each element z ∈ Z can be identified with that element q ∈ Q
that gives probability 1 to elements x ∈ z and probability 0 to x ∉ z.) The
space Q is a mixture space, where aq + (1 − a)q′ is defined by (aq + (1 − a)q′)
(x) = aq(x) + (1 − a)q′(x). Suppose  is extented to all of Q and satisfies the
three mixture-space axioms. What results? Does this help us to pin down the
structure of u? (Hint: Yes, it does. You should be able to show that there exists
a function U : X → R such that u(z) = Σx∈z U(x).)

Why does the application of the Mixture-Space Theorem in the second possible
approach give such a stronger result than its application in the first possible
approach? How does this relate to the discussion of the trick in Anscombe-
Aumann that is given in the book?
 

 *5.6. The Anscombe and Aumann derivation of subjective expected utility
relies on the set of states of nature S being finite. How would we extend it to
infinite state spaces? This problem takes you (step by step) through one
extension that, essentially, adapts the original proof. There is a lot of setup and
notation involved, so if you tackle this, please be patient.

First, we provide a setup. Begin with an arbitrary state space S and an arbitrary
prize space X. As in the text, let Π be the space of simple probability
distributions on X. The setup also involves an algebra of subsets of S, denoted
A; an algebra of subsets is a set of subsets such that (1) S ∈ , (2) if A ∈ 

, then the complement of A, denoted AC, is also ∈ , and (3) if A, B ∈ ,
then A ∩ B ∈ . (If you’ve never worked with this concept before, you might
want to prove: If A has properties (1) through (3), then A is also closed under
unions.)

For finite S, we defined H = ΠS, the space of all functions from S into Π. Now,
with an arbitrary set S, we “ reduce” H somewhat: If h ∈ H, then there exists a
finite partition A1, …, An of S, with each Ai ∈ , such that h is constant over
each Ai. That is, there is an equal-length list of objective-probability lotteries
π1, …, πn, such that h(s) = πi if s ∈ Ai.



Because of this, we can describe any h ∈ H as

h = [π1 on A1, …, πi on Ai, …, πn on An],

as long as {A1, …, An} is a partition of S with each Ai ∈ .

H, so defined, is a mixture space: Suppose h is as described in the display just
above, and

For a ∈ [0, 1], we define

That is, aπ +(1−a)π′ is defined on the partition that is the meet or coarsest
common refinement of the two partitions, which is formed by intersecting cells
of the two partitions, and that, on the cell , is the obvious mixture

of πi and .

a.  Since H is a mixture space, what does the Mixture-Space Theorem say
about a preference relation  defined on H, which satisfies the three
mixture-space axioms?

For π ∈ Π, when I write, for instance, π  h for some preference relation 
on H, I am identifying π with that element of H that is π for all S or, in other
symbols, [π on S]. And for x ∈ X, if I write x where the context wants an
element of Π, I will mean the objective-probability lottery that gives x with
certainty; if I write x where the context wants an element of H, I mean [x with
probability 1 on S].

Fix some element of X, which we’ll denote by . In part a, you (presumably)



said that if the three mixture-space axioms hold for , then  is represented
by some function F : H → R that has certain useful properties. (I don’t want to
give away the whole answer to part a!) You also (presumably) said that such
functions F can be rescaled by adding or subtracting any constant and by
multiplying by a positive constant. (Right?) For the remainder of this problem,
I want you to assume that  on H satisfies the three mixture-space axioms,
and then fix such an F that is normalized so that F( ) = 0.

Let A be any subset of S (from ), and let HA be functions from A into Π that
take on at most finitely many values, on sets from . That is, hA ∈ HA has
the form: there is a partition A1, …, Am of A (all from ) and π1, …, πm, all
from Π, such that hA(s) = πj for s ∈ Aj. In this setting, define FA : HA → R by

FA(hA):= F ([π1 on A1, …, πm on Am,  on AC])

Next, suppose that A1, …, An is a finite partition of S, and suppose that Ai1,
Ai2, …, Aim is a further finite partition of each Ai (all of this involving sets from
the algebra ).

(I really ought to write mi, so that the further partition of Ai can have a different
number of cells than the further partition of Ai′ . But, at least formally, by
putting in copies of the empty set into these further partitions, my notation is
without loss of generality.) Let {πij; i = 1, …, n, j = 1, …, m} be a list of
elements of Π.

b.   Prove that



where in the sum on the right-hand side, for each i, you are looking at the
element of HAi that assigns πij to sub-cell Aij.

(Part b is the key step, and it comes right out of the proof of the basic
Anscombe-Aumann result, where the normalization F( ) = 0 makes everything
a snap.)

c.   Refer to Savage’s Sure-Thing Principle, Axiom 5.1 in the text. Prove that
(if  satisfies the three mixture-space axioms), then it satisfies Axiom 5.1
adapted to this context. (Part of this question is figuring out what I mean
by “adapted to this context.”)

d.   For A ∈  and x ∈ X, define UA(x):= F ([x on A,  on AC]). Prove
that the function

provides a representation of  on H.

For the remainder of this problem, we assume that there exists some  ∈ X
such that   . Given this , we fix the representing function F with
which we’ve been working so that, in addition to F( ) = 0, we have F( ) =
1.

By virtue of part c above, it makes sense, for any set A ∈ , to speak of a
preference relation A, defined on Π, defined by



That is, in part c, you showed that what was assigned on AC was irrelevant, as
long as it was the same anything. It should also be clear (if not, make it so) that

A on Π satisfies the three mixture-space axioms.

Assume henceforth that, not only is   , but also  A  for all A ∈ 
. We do not preclude the possibility that  ~A , in which case we say

that A is null.

A finitely additive probability on (S, ) is a function p :  → [0, 1] such
that p(S) = 1 and, if A and B are disjoint subsets from , then p(A ∪ B) =
p(A) + p(B).

e.   Define

Prove that p :  → R is a finitely additive probability on (S, ) and
that p(A) = 0 if and only if A is null. (What happens to this result if we
do not assume that  A  for all A?)

f.   We add one final assumption: If A is null, then x ~A  for all x, and if A
is not null, then A (viewed as a preference relation on Π) is the same as

 (also viewed as a preference relation on Π). Prove that if this is true
(and all our earlier assumptions are true), then there exists a single utility
function U : X → R such that

represents  on H.



This finishes the “ more-or-less-staight-out-of-Anscombe-Aumann” extension to
general state spaces S. We get subjective expected utility, where subjective
probability is finitely additive, and the utility representation is for h that are
“ doubly simple”: h is piecewise constant on a finite partition of S and, on each
cell of the partition, π is simple (has finitely many prizes). We discussed in the
text (near the top of page 109) how one might move to expected utility for
nonsimple π (albeit without a state space) and the difficulties that are
encountered because St. Petersburg paradoxes can arise if U is unbounded. In the
same spirit, one can use continuity of preferences to extend p to a countably-
additive probability on (S, ) (assuming  is a sigma-algebra) and expected
utility to more complex h : S → Π. If you have sufficient mathematical
sophistication to know about countable additivity, sigma-algebras, and the
definition of integrals through limits, you should be able to do this. I invite you
to do so, although the answer I give in the Student’s Guide stops with part f.

 

1 Savage (1954, p. 22) explains why he calls this the Sure-Thing Principle; I
cannot say that I find his explanation convincing. My preference would be to
call it independence, which is sometimes used or, even better, state-
separability, which does not seem to be used at all. Savage’s original name is
most commonly used, however, so I will stick with it.

2 To be fanatically precise, supp(aπ + (1 − a)ρ) = supp(π) if a = 1, supp(π)
∪ supp(ρ) if 0 < a < 1, and supp(ρ) if a = 0.

3 Formal and abstract definitions of a mixture space concern a space Z and, for
each a ∈ [0, 1], a map ha : Z2 → Z such that h1(z, z′) = z, ha(z, z) = z for all a,
and so forth. I am being less formal than this and, in particular, writing az + (1
− a)z′ for the abstract ha(z, z′), since in all the examples of mixture spaces we
consider, the informal notation is more intuitive and suggestive of what is going
on and is easier to work with. But beware: In formal treatments, it is not
assumed that ha(z, z′) = h1−a(z′, z) or, in informal notation, that az + (1 − a)z′ =
(1 − a)z′ + az. This property isn’t needed to prove the Mixture-Space Theorem,
although it holds in all practical examples of which I am aware and makes life a



bit simpler when it comes to proofs. So I assume it.
4 I am being vague about what “ nice” means here, but I have in mind that X

= Rk, or , or X is at least a “ rectangle” in Rk.
5 For instance, partition increasingly larger but bounded subsets of X into

finitely many small “ rectangles.” If X = R, say, take rectangles of the form (i/n,
(i + 1)/n] for i = − n2, …, − 1, 0, 1, 2, 3, …, n2. Then, for any one of the
rectangles, call it Z, let pn place the measure p(Z) on any single point from
within Z, arbitrarily assigning the leftover probability to, say, the origin. This
“ discretization” of p gives a sequence of measures that converges to p in the
weak topology, as the diameter of the rectangles goes to zero.

6 The assumption of finite S would seem to limit the applicability of this
approach. This limitation is more apparent than real: The extension of these
results to general S is straightforward, albeit notationally cumbersome.
However, this extension only takes you as far as finitely additive subjective
probability, without a considerable upgrade in mathematical armament. Problem
5.6 gives details.

7 If I was being very careful, there would be a state of nature for ties, or for the
case where no winner is named, and so on.

8 For an attempt to convince students of management that they should use
expected utility, see Chapter 16 of Kreps (2004).

9 Because the odds are “ approximately” known in the second case, you can
see that my “ definitions” are woefully inadequate; it ought to be that from
known to unknown—from risk to uncertainty—is a continuum, not a discrete
distinction. By employing DeFinneti’s Theorem, one can construct such a
continuum; for an introduction to the DeFinneti’s Theorem in roughly this
context, see Kreps (1988, Chapter 11), although this introduces DeFinetti’s
Theorem; it does not construct the continuum or discuss the distinction
between risk and uncertainty.

10 A reviewer of the book suggests that reference-dependent, loss-averse
preferences, as developed by Koszegi and Rabin (2006), has achieved the status
of being at least a right alternative. I’m unsure I would go quite that far, but
this model of preferences does have considerable power to explain a host of
empirical “ anomalies.”



11 Why? Roughly, imagine that you are indifferent between lottery A and
lottery B under these circumstances, but facing lottery A, you take a different
immediate consumption decision than you do facing lottery B. Then you prefer
A and B to a convex combination of them, since in the convex combination,
you have to hedge your bets in terms of immediate consumption.



Chapter Six



Utility for Money

In many applications of the models of Chapter 5, the lottery prizes x ∈ X are
assumed to be amounts of money. In this chapter, we explore a number of
developments specific to this context.

Throughout, the space of prizes X is an interval of the real line, and Π is the
set of simple probability distributions on X. A consumer’s preferences over Π
are given by , which, we assume, satisfy the three mixture-space axioms (a,
b, and c of Proposition 5.3), so that they are represented by expected utility for a
utility function U : X → R. Prizes are referred to as money, as income, or as
wealth, depending on the context.

6.1.   Properties of Utility Functions for Money
We first ask, If the prizes are monetary, what are reasonable (further) properties
for  and what are the consequences of those properties for U?

More money is better
It seems entirely reasonable to assume that our consumer prefers more money to
less. This has a straightforward consequence for the representation, which you
should have no difficulty proving.

Proposition 6.1.   The utility function U is strictly increasing if and only if,
for all x and y in X such that x > y, δ x  δ y.1

Continuity
Continuity of the utility function U is useful for many purposes and is ensured
by a fairly intuitive property.

Proposition 6.2.   The utility function U is continuous if and only if: For every
prize x and gamble π such that π  δ x, there exists  > 0 such that either π 

 δ x′ for all x′ within  of x, or δ x′  π for all such x′.

In words, unless δ x ~ π, we can make small changes in the “ for-certain” prize



and not affect how the two compare. Very roughly, continuity of U is ensured if
preferences are continuous when we make small changes in the prizes.

Proof. Suppose U is continuous and π  δ x. Then u(π) = ∑y U(y)π(y) > U(x).
Let γ = u(π) − U(x). By continuity of U, there is some  such that for all x′
within  of x, U(x′) − U(x) < γ, which implies u(π) > U(x′), or π  δ ′x. A
similar argument works for the case δ x  π.

Conversely, suppose that U is not continuous at a point x. Then there is
some sequence {xn} with limit x such that limn U(xn) exists (allowing limits ∞
or −∞) and either limn U(xn) > U(x) or limn U(xn) < U(x). Write L for limn
U(xn), and suppose L > U(x). If L = ∞, then δ xn  δ xN  δ x for all large n

and some fixed N, and we get a violation of the property in the proposition. If L
≠ ∞, let L − U(x) = γ, and let xN be such that |L − U(xN)|  < γ/2. Then the
gamble π with prizes xN and x, each with probability one-half, has expected
utility no smaller than L/2+U(x)/2−γ/4 = U(x)+γ/4 and no larger than
L/2+U(x)/2+γ/4 = L−γ/4. Thus π  δ x, but for all sufficiently large n, δ xn 

π, contradicting the property in the proposition. A similar argument works for
the case L < U(x). Therefore, if U is not continuous, the property fails. The
contrapositive is, If the property holds, U must be continuous.

A few remarks about continuity of U are in order for the mathematically
more sophisticated. We can talk about continuity in this setting in at least two
ways; namely, continuity in probabilities and continuity in prizes. Continuity
in probabilities means: If {πn} is sequence of simple lotteries, each having
support contained in some finite set X′, and if limn πn(x) exists and equals π(x)
for each x ∈ X′, then π  ρ implies πn  ρ for all large-enough n, and
similarly for ρ  π. Note that in this form of continuity the probabilities of the
prizes are changing with n, but the supports of the probability distributions
(essentially) do not change.2 Continuity of preferences in probabilities is
guaranteed by the three assumptions of Proposition 5.3; note that the expected
utility function u(π) = ∑x∈supp(π) U(x)π(x) is continuous in probabilities no



matter how well- or ill-behaved is U.
Continuity of preferences in the prizes asks for a lot more. Now a “ small

change” in a lottery π can involve small shifts in the probabilities of the prizes,
as before, but also small shifts in the prizes themselves. Of course, this means
that we have to know what it means for there to be a small change in prizes; the
prize space X must come with a notion of nearness, which is manifestly the case
when X is an interval of the real line. A lottery with prizes 4 and 6 having
probabilities 0.3 and 0.7 is “ close” to a lottery with prizes 3.9 and 6.05 having
probabilities 0.29 and 0.71. I won’t try to give a formal definition of this sort of
continuity, but you should (at least) see that continuity is a much stronger
assumption if small changes in both probabilities and prizes are to be allowed.3

Risk aversion
The next property is risk aversion. First we need a piece of notation. For π ∈
Π, let Eπ represent the expected value of π, or Eπ = ∑x xπ(x).4

Proposition 6.3.   The utility function U is concave if and only if, for all
lotteries π, δ Eπ  π.

A consumer who prefers, for every π, the expected value of π for sure (that is,
δ Eπ) instead of π, and whose utility function is therefore concave, is said to be
risk averse. We could also define a risk-seeking consumer as one for whom π 
δ Eπ for all π; this sort of behavior goes with a convex utility function u. And a
consumer is risk neutral if π ~ δ Eπ, which goes with an affine utility function.
In economic theory, risk aversion, which includes risk neutrality as a special
case, is typically assumed.

Proof of Proposition 6.3.   Suppose U is not a concave function. Then for some
x, x′ ∈ R and a ∈ [0, 1], U(ax + (1 − a)x′) < aU(x)+(1 − a)U(x′). Let π be the
lottery that has prizes x and x′ with probabilities a and 1 − a; then Eπ = ax + (1
− a)x′. The expected utility of δ Eπ is U(ax + (1 − a)x′) < aU(x) + (1 − a)U(x′),
which is the expected utility of π. Hence π  δ Eπ.

Conversely, suppose that U is a concave function. It is a relatively simple



matter of induction to prove that if x1, …, xn is a list of real numbers, and a1,
…, an is a list of numbers between 0 and 1 such that 

t h en . (This result is the

discrete form of Jensen’s inequality.) Applying this to any simple lottery π tells
us that, if U is concave,

The left-hand side is the utility of the lottery δ Eπ, while the right-hand side is
the expected utility of π; hence δ Eπ  π.

Figure 6.1 indicates what is going on. (Ignore the mention of certainty
equivalents for now.) A concave utility function U is depicted, together with a
line segment joining the two points (x, U(x)) and (x′, U(x′)). Take any a ∈ (0,
1), say a =.6, and consider the lottery 0.6δ x + 0.4δ x′; that is, an 0.6 chance at x

and a 0.4 chance at x′. The expected value of π is 0.6x + 0.4x′.5 Does our
consumer prefer δ 0.6x+0.4x′ or the lottery 0.6δ x + 0.4δ x′? Answer this by
comparing the two expected utilities. For δ 0.6x+0.4x′, we have expected utility
U(0.6x + 0.4x′), while the expected utility of 0.6δ x + 0.4δ x′ is 0.6U(x) +
0.4U(x′). By concavity, the former is at least as large as the latter, which is what
we want. Of course, the property of risk aversion is meant to hold for all
lotteries and not just those with supports of size two. But concavity of U is just
what is needed, in general.



Figure 6.1. Concavity, risk aversion, and certainty equivalents. For a
lottery π that gives prize x with probability.6 and x′ with probability.4,
we mark the expected value of the lottery as Eπ and the certainty
equivalent of the lottery as C(π).

If U is a concave function on an interval of real numbers, it is automatically
continuous on the interior of the interval (see Proposition A3.17g), although
there can be a discontinuous drop in the value of the function at any endpoint
the interval might possess. Therefore, risk aversion virtually implies continuity
of U; we only need to worry about continuity at the endpoints of the interval, if
any.

Certainty equivalents and risk premia
Because the utility function U in Figure 6.1 is continuous, we know (from the
Intermediate-Value Theorem of calculus) that for every a ∈ [0, 1] there is some
value x* with U(x*) = aU(x) + (1 − a)U(x′). For any such x*, we know from the
expected utility representation that δ x* ~ π. Such an x* is called a certainty



equivalent of π. In general,

Definition 6.4. A certainty equivalent for a lottery π is any prize x such that
δ x ~ π.

Proposition 6.5.   If U is continuous, then every lottery π has at least one
certainty equivalent. If U is strictly increasing, every π has at most one
certainty equivalent.

(The proof is left as an exercise. Remember that we assume throughout that X is
a n interval in R.) We henceforth assume that the utility function under
consideration is strictly increasing, continuous, and concave, reflecting
increasing, continuous, and risk-averse preferences. Hence every π has a unique
certainty equivalent, which we denote C(π). Note that risk aversion, in this
setting, can be characterized by C(π) ≤ Eπ. We write R(π) for the difference Eπ −
C(π), calling R(π) the risk premium of π; therefore another characterization of risk
aversion is R(π) ≥ 0 for all π.

Absolute (and relative) risk aversion
In a rough sense, R(π) is a measure of the level of risk aversion of the consumer;
the larger is R(π), the greater is the extent to which the consumer “ fears” the
riskiness of π. (If R(π) = 0 for all π, then the consumer is risk neutral.) In this
section, we use this concept to compare the levels of risk aversion of two
different expected-utility maximizers, and then we look into the question, What
happens to a single consumer’s level of risk aversion as she grows wealthier?

Begin with two consumers, both of whom are expected-utility maximizers
(for monetary prizes). The first consumer has utility function W and the second
V, where for simplicity assume these functions are defined on the same interval
of the real line. Assume as well that both W and V are strictly increasing,
continuous, and concave. To economize on language, we will loosely use
expressions such as “ W is more risk averse than V” when we really mean,
“ The individual with utility function W is more risk averse than the individual
with utility function V.” But what could we mean by that idea, however
expressed?



Definition 6.6. W is at least as risk averse as V if, for any lottery π and sure-
thing dollar amount x, if W (weakly) prefers π to x, then so does V.

This may seem a natural definition, but at least one author, Ross (1981),
criticizes it as inadequate.

Proposition 6.7.   W is at least as risk averse as V if and only if the function
W  V−1 is concave.

Commentary and proof. First, to say a few words about this proposition: The
symbol  means functional composition. V is a strictly increasing function and
continuous from some interval of the real line to some other interval of real
numbers (use continuity). Since it is strictly increasing and onto, it possesses a
continuous and strictly increasing inverse, which is denoted by V−1, whose
domain is the range of V and whose range is the domain of V, which by
assumption is also the domain of W. Therefore, W  V−1 transforms (in a
strictly increasing manner) V into W; that is, W (x) = (W  V′−1)  V (x).

Suppose W  V−1 is concave. Fix any lottery π and sure thing x0 such that
W prefers the lottery, which is to say

where the sum is over the support of π. Rewrite this as

and use the concavity of W  V−1 to conclude that



Since W  V−1 is strictly monotone, this implies that

which is to say that V prefers π to x0.
Conversely, suppose W  V−1 is not concave. Then there exist r1 and r2 in

the domain of W  V−1 (which is the range of V) and a scalar a between 0 and 1
such that

Let x1 and x2 be the two elements of the domain of V that map into r1 and r2,
respectively. Therefore, we can rewrite the previous inequality as

Now let x3 be the certainty equivalent of the lottery with prizes x1 and x2 and
probabilities a and 1 − a, respectively. That is,

Combine this with the previous inequality, and you get



Rewrite this as

Since W  V−1 is strictly monotone, this is

Therefore, for this lottery and for the sure-thing x3, W is indifferent between

them, while V strictly favors the sure thing. If W  V−1 is not concave, W is
not at least as risk averse as V.

Now suppose that both W and V are twice continuously differentiable. We
have no justification for this, other than that it leads to some nice results. We’ll
use notation V′ and V″ to denote the first and second derivatives of V,
respectively, and similarly for W. It is perhaps worth noting the mathematical
fact that, if V is strictly increasing, continuously differentiable, and its derivative
is never zero, then V−1 is also continuously differentiable, with derivative

Proposition 6.8.   Suppose W and V are both strictly increasing, concave, and
twice continuously differentiable, and their derivatives are never zero. Then W
is at least as risk averse as V if and only if

for all x in their (common) domain.



Proof. This is a matter of calculus. We want to show that the condition given
(on the ratios of second derivatives to first derivatives) is equivalent to concavity
of W  V−1. This involves showing that this function is twice continuously
differentiable and evaluating its second derivative; given the formula for the
derivative of V−1 (and the fact that it is continuously differentiable), you should
be able to do this, discovering that

where x is shorthand for V−1(r), for r in the domain of W  V−1, which is the
range of V. On the right-hand side, the terms outside the square brackets are all
strictly positive, and so the second derivative of W  V−1 is nonpositive
everywhere (hence, W  V−1 is concave) if and only if the terms inside the
brackets are nonpositive, which is true if and only if the ratios of the second to
first derivatives are ordered as in the statement of the proposition.

Despite the seemingly formidable math (more seeming than actual), what is
going on here is straightforward conceptually. One utility function is at least as
risk averse as another if it is “ more concave” or more curved. Proposition 6.7
says that this holds as long as (and only as long as) the first utility function is
gotten from the second by a strictly increasing and concave transformation. And
Proposition 6.8 takes this to a “ local” condition; the ratio of the second
derivative to the first is, for real-valued functions of one variable, a measure of
their curvature: it tells you how fast the second derivative is changing,
normalized by the first derivative. Since the second derivative of a concave
function is nonpositive, “ more curved” at every point means putting a minus
sign in front of these ratios and comparing as in Proposition 6.8.

A second way to view this ratio as a local measure of risk aversion is as
follows:

Proposition 6.9.   Fix a strictly increasing and concave utility function U that



is twice continuously differentiable at x0, with U′(x0) > 0. Consider the local
lottery that has prizes x0 +  and x0 − , each with probability one-half.
(Assume that x0 −  and x0 +  are both in the domain of U.) The risk
premium for this gamble is  up to a term

of order o( 2).6

This is proven using Taylor’s series expansions of the quantities involved; you
are asked to supply the proof in Problem 6.3. This result and our discussion of
the curvature of U justify the following definition.

Definition 6.10. For a twice-continuously differentiable utility function U with
strictly positive first derivative, the function

is known as the (local) coefficient of risk aversion.7

Note that if U′ > 0 and U is concave, λ(x) ≥ 0.
Consider a lottery π and a (dollar) amount z. Write π ⊕ z for the lottery that

gives prize x + z with probability π(x). That is, π ⊕ z is just the lottery
constructed from π by increasing each prize of π by the amount z. Thinking of
these prizes as the after-the-gamble wealth level of our consumer, as we increase
z in π ⊕ z, we increase the consumer’s general wealth level. It seems somewhat
natural to suppose that as someone becomes richer, she cares less and less about
risks that she takes in given gambles. In symbols, this would say that as z
increases, R(π ⊕ z) should not increase; the consumer’s risk premium for a
fixed gamble should not increase as the consumer becomes wealthier. 8 We
formalize this notion and two related to it as follows:

Definition 6.11. For a fixed consumer with utility function U, if R(π ⊕ z) is
nonincreasing in z, the consumer is said to be nonincreasingly risk averse.9 If



R(π ⊕ z) is constant in z, we say that the consumer is constantly risk averse
or has constant risk aversion. If R(π ⊕ z) is nondecreasing in z, then we say
the consumer is nondecreasingly risk averse.

Economists generally assert that it is natural to assume consumers are
nonincreasingly risk averse and that, over intervals of prizes that are not large
relative to the individual’s lifetime incomes, the individual is approximately
constantly risk averse.

What does all this portend for the utility function U?

Proposition 6.12.   For a consumer with twice-continuously differentiable
utility function U such that U′ > 0 and corresponding risk aversion coefficient
function λ(·), the consumer is nonincreasingly risk averse if and only if λ(·) is a
nonincreasing function. The consumer is nondecreasingly risk averse if and
only if λ(·) is a nondecreasing function. And the consumer has constant risk
aversion if and only if λ(·) is a constant function λ, in which case the utility
function U is a positive affine translate of the utility function −e−λx. (If λ is
the constant zero, then U is a positive affine translate of the function x; the
consumer is risk neutral.)

This result follows as a corollary to Proposition 6.8. Take the single utility
function U and two wealth levels z and z′. Construct from these two different
utility functions: W (x):= U(x + z) and V (x): = U(x + z′). How the U -utility
function evaluates π ⊕ z is the same as how W evaluates π, and how U
evaluates π ⊕ z′ is the same as how V evaluates π. Being careful with
definitions, you can show that U is nonincreasingly risk averse according to the
first definition if and only if W is at least as risk averse as V whenever we have z′
≥ z. But −U″(z)/U′(z) = −W″(0)/W′(0), and −U″(z′)/U′(z′) = −V″(0)/V′(0), so λ(x)
= −U″(x)/U′(x) being nonincreasing comes down to a comparison of the risk-
aversion coefficients of W and V for z′ ≥ z. Proposition 6.8 then gives all of 6.12
except for the part about constant risk aversion being equivalent to the utility
function U(x) = A − Be−λx for constants A and B > 0, and that is a matter of
simple integration of −U″/U′ = a constant λ.

A variation played on this theme concerns how a single consumer responds
to proportional gambles with her wealth. Suppose that X = (0, ∞), and the
consumer’s von Neumann–Morgenstern utility function U is concave, strictly



increasing, and twice continuously differentiable. We imagine that the consumer
has at her disposal an amount of wealth x, all of which she stakes in a gamble
that pays a random gross return. Such a random gross return is specified by a
simple probability distribution π with domain X, where our consumer’s wealth
after the gamble is θx (for θ ∈ supp(π)) with probability π(θ). We can define a
certainty equivalent rate of return, CRR(π; x), which is that number  such

that our consumer is indifferent between staking her wealth according to the
gross return distribution π or taking x for sure. And we can ask how CRR(π; x)

changes with changes in the consumer’s initial level of wealth x. It is generally
considered somewhat natural to suppose that CRR(π; x) is nonincreasing in x;
the richer our consumer is, the more conservative she becomes in staking all of
her wealth. If we define μ(x) = −xU″(x)/U′(x), we can get results such as CRR(π;
x) is nonincreasing in x if and only if μ(x) is nonincreasing in x. The function μ
is called the coefficient of relative risk aversion, as distinguished from λ ≡
−U″/U′, the coefficient of absolute risk aversion. For more on this, consult one
of the references at the end of the chapter.

First- and second-order stochastic dominance
Because expected-utility maximizers in economic theory are nearly always
assumed to have increasing and concave utility functions, these properties are
used to create desirability-based partial orders on probability distributions
according to the following definitions. (We continue to assume that all
probability distributions are simple, although the theory about to be described
generalizes to nonsimple probabilities.)

Definition 6.13. Probability distribution π is first-order stochastically
dominant over ρ, denoted π ≥1 ρ, if, for every nondecreasing utility function U
: R → R, the expected utility of π computed with U is at least as large as the
expected utility of ρ. That is, π ≥1 ρ if every expected-utility maximizer who has
a nondecreasing utility function (weakly) prefers π to ρ. And probability
distribution π is second-order stochastically dominant over ρ, denoted π ≥2 ρ,
if, for every nondecreasing and concave utility function U, the expected utility
of π computed with U is at least as large as the expected utility of ρ. Or, put
differently, π  ≥2 ρ if every expected utility maximizer who has nondecreasing



and (weakly) risk averse preferences over lotteries (weakly) prefers π to ρ.

These two partial orders can be characterized directly in two ways: in terms
of their cumulative distribution functions and in terms of jointly distributed
random variables with π and ρ as their marginal distributions. First, for any
simple probability distribution π, let Fπ : R → [0, 1] be the cumulative
distribution function of π; that is, Fπ(r) = ∑x∈supp(π) ; x≤r π(x), which is
(loosely) the probability under π of an outcome less or equal to r.

Proposition 6.14.
a.   π ≥1 ρ if and only if, for all r ∈ R, Fπ(r) ≤ Fρ(r).

b.   π ≥2 ρ if and only if, for r0 a real number such that Fπ(r0) = Fρ(r0) = 0

and for all r1 ≥ r0,

(We’ll discuss the proof of this proposition after we state the other
characterization of first- and second-order stochastic dominance.)

The second characterization is most easily expressed in the terminology of
random variables. Given two distributions π and ρ, we want to find a pair of
random variables Xπ and Xρ defined on a single probability space, where the
marginal distribution of Xπ is π, the marginal distribution of Xρ is ρ, and whose
joint distribution has easy-to-interpret properties.

Proposition 6.15.
a.   π ≥1 ρ if and only if a pair of random variables Xπ and Xρ can be

constructed (on a single probability space) such that Xπ has marginal
distribution π, Xρ has marginal distribution ρ, and Xπ = Xρ + Y for a
random variable Y that is nonnegative with probability one. In words, Xπ



is Xρ plus a nonnegative supplement.

b.   π ≥2 ρ if and only if a pair of random variables Xπ and Xρ can be
constructed (on a single probability space) such that Xπ has marginal
distribution π, Xρ has marginal distribution ρ, and Xρ = Xπ + Y, where Y
is a random variable that has conditional mean less than or equal to
zero, conditional on Xπ. In words, Xρ is Xπ plus a supplement which can
be negative or positive but that, conditional on Xπ, must have nonpositive
mean.

For readers unfamiliar with the concepts of random variables defined on a single
probability space, the following restatement of Proposition 6.15 may help.
Think of a probability-tree depiction of π; for instance, if π has a three-element
support, {0, 5, 10}, with probabilities 0.4, 0.2, and 0.4, respectively, we’d
depict π as in Figure 6.2a. Now, conditional on the outcome (one of 0, 5, or
10), we have a second round of uncertainty. As shown in Figure 6.2b, if the
outcome of π is 0, this second-round supplement is either −3 or +3, each with
probability 0.5; if π gives 5, the second round supplement is −2 or +3 with
probabilities 0.75 and 0.25, respectively. And if π gives 10, the second round
supplement is −2 or +2, with probabilities 0.5 and 0.5. In Figure 6.2c, we
show the net of these two rounds, where we add the outcomes of the two
rounds: the resulting probability distribution has support {−3, 3, 8, 12}, with
probabilities 0.2, 0.35, 0.25, and 0.2, respectively. This distribution, which
we’ll call ρ, is the distribution of a random variable Xρ = Xπ + Y, where Xπ has
distribution π (the first round), plus the supplementary Y, whose mean
conditional on each value of Xπ is less than or equal to zero. Hence, according to
Proposition 6.15, π second-order stochastically dominates ρ. Proposition 6.15
also tells us a distribution π second-order stochastically dominates ρ only if this
sort of construction relating an Xπ and an Xρ is possible, and π first-order
stochastically dominates ρ if and only if a construction of this nature is possible
with the supplementary Y being nonpositive with probability one.10



Figure 6.2. Second-order stochastic dominance. Does the three-outcome
distribution depicted in panel a second-order stochastically dominate the
four-outcome distribution depicted in panel c? It does. As shown in panel
b, one can create a two-stage probability tree where the first stage is panel
a and, for every outcome of the first stage, the second stage has
(conditional) mean less than or equal to zero (conditional on the results of
the first stage), where the sum of the two stages gives the distribution in
panel c. Proposition 6.15 says that one distribution second-order
stochastically dominates a second distribution if and only if we can
construct the second distribution from the first plus a conditional-
nonpositive-mean addition, in this fashion.

The proofs of Propositions 6.14 and 6.15 are left as exercises, as Problems
6.5 and 6.6. For the most part, these are not hard to prove, if you have the right
tools handy (and the problems will supply the tools), with one exception: it is
not easy to show that if π second-order stochastically dominates ρ, then ρ is π
plus a conditional-nonpositive-mean noise term. (For this part, the problems
will direct you to an ingenious constructive proof in the literature.)



6.2.   Induced Preferences for Income
In the analysis conducted in the previous section, we interpreted prizes as
amounts of money, using our intuition about likely properties for lotteries with
dollar-valued prizes. But consumers don’t eat money. Money is useful for the
commodities one can buy with it. So a fairly obvious question is, If a consumer
has von Neumann–Morgenstern preferences for consumption bundles and if her
preferences for money arise entirely from the purchasing power of that money,
what conditions on her preferences for consumption bundles will translate into
the properties discussed in Section 6.1?

Suppose there are k commodities; the consumption space X for the consumer
i s . Assume that the consumer, considering simple lotteries over the

consumption bundles x that she might consume, conforms to the assumptions of
Proposition 5.3. Let U : X → R be her (resulting) von Neumann–Morgenstern
utility function for simple lotteries on X. Note that U is a perfectly good ordinal
representation for our consumer’s preferences on sure-thing consumption
bundles. That is, U could be used in all of the developments of Chapters 3 and
4; in particular, corresponding to U is an indirect utility function ν(p, y) that
gives the amount of utility (on the scale of U) our consumer derives from
income y at prices p. But U is more than just any ordinal numerical
representation for preferences on X. We can use U (and positive affine
transformations of U) to compute expected utilities for simple lotteries on X, to
determine our consumer’s preferences over those simple lotteries.

We also assume for the time being that prices are fixed and given by some
price vector p ∈ . (We will explore uncertain prices later.)

The question is, How does the consumer rank two lotteries concerning her
level of income? We let y denote a level of income, drawn from the set of
nonnegative numbers [0, ∞), so that a (simple) lottery π on income is a (finite
support) probability distribution over [0, ∞).

Assume that the consumer learns how much income she has to spend before
she purchases any part of her consumption bundle. Then if she has income y to
spend, she purchases some x ∈ D(p, y) (her Marshallian demand), which gives
her utility U(x) = ν(p, y). Accordingly, the expected utility she achieves from π
is



so that for two lotteries over her income, π and ρ, π  ρ if and only if

That is to say, ν(p, y), viewed as a function of y for the fixed prices p, is a von
Neumann–Morgenstern utility function for our consumer when she examines her
preferences for lotteries over levels of income.

The assertions of the previous paragraph are more subtle than may be
apparent, so don’t go past them too quickly. For one thing, preferences over
lotteries of income are induced from the consumer’s primitive preferences over
consumption lotteries. A lottery over income, together with the assumption that
the consumer shops intelligently (maximizes her preference over consumption
once she knows her income and the prices), determines a corresponding lottery
over (well chosen) consumption bundles. And the consumer’s ranking between
two income lotteries is then inherited from or induced by her ranking between
the two corresponding consumption lotteries. This probably seems to you the
obvious way to analyze the problem, but it contains an assumption about how
the consumer thinks about income lotteries: She goes through the calculations
indicated. Or, at least and in the general spirit of positive economic modeling of
choice, when choosing among income lotteries, she acts as if she did all these
calculations.11

And there is an important timing issue here. Recall from Chapter 5 (page
115) the discussion about the timing of resolution of uncertainty. We have made
the “ right” assumption here, namely that all uncertainty about y resolves before
the consumer must make any decisions about how she will spend y. This
ensures that her induced preferences over income lotteries have an expected
utility representation and so are themselves expected-utility preferences. Without
this assumption, her induced preferences may not take an expected-utility form.
(See Problem 6.7 for more on this point.)



Once we accept these modeling assumptions and assertions, questions about
properties of the consumer’s preferences over income lotteries and her
corresponding utility function for income become questions about her indirect
utility function. The following proposition, which summarizes the state of
affairs, gives the basic results.

Proposition 6.16.   Suppose the consumer has preferences over lotteries of
consumption bundles that satisfy the assumptions of Proposition 5.3. Let U be
her utility function on consumption bundles and let ν(p, y) be the
corresponding indirect utility function. Assume that U is continuous. Then the
consumer’s preferences over immediately-resolving lotteries pertaining to
income satisfy the three mixture-space axioms, and y → ν(p, y) is her utility
function for income. Moreover:

a.   ν(p, y) is continuous in y.
b.   If the consumer is locally insatiable, then ν(p, y) is strictly increasing in

y.
c.   If U is a concave function, then ν(p, y) is a concave function in y; that is,

our consumer is risk averse concerning lotteries over income.

Proof. To begin, note that the preamble asserts that the consumer’s preferences
on income lotteries satisfy the three mixture-space axioms. We know this
because her preferences over income lotteries have an expected utility
representation; Proposition 5.3 states that the three assumptions are necessary
and sufficient for expected utility.

Part a is (essentially) Proposition 3.3c.
For part b, suppose y > y′, and let x′ ∈ D(p, y′). (We are assuming that U is

continuous, so the existence of x′ is guaranteed.) Then ν(p, y′) = U(x′). Of
course, p · x′ ≤ y′ (in fact, p · x′ = y′, but we don’t need that), and hence p · x′ <
y. Therefore, if income is y, the consumer (at prices p) can afford some bundle
strictly better than x′. The optimal bundle at prices p and income y can only be
better than this, so ν(p, y) > U(x′) = ν(p, y′).

For part c, take two income levels y and y′ and a ∈ (0, 1). Suppose x ∈
D(p, y) and x′ ∈ D(p, y′). Then p · (ax + (1 − a)x′) = ap · x + (1 − a)p · x′ ≤ ay
+ (1 − a)y′, which means that ax + (1 − a)x′ is feasible at prices p with income



ay + (1 − a)y′. Hence ν(p, ay + (1 − a)y′) ≥ U(ax + (1 − a)x′), and

where the first inequality follows from the concavity of U.

Part c of the proposition requires that U, the consumer’s utility function
over consumption bundles, is concave. In Chapter 2, we said there is no
particular reason to suppose that this is so, but in the current context it can be
justified. Now we can ask our consumer: For any two bundles x and x′, would
you rather have the bundle 0.5x + 0.5x′ (where we are taking the convex
combination of the bundles) or a lottery where you get x with probability 1/2
and x′ with probability 1/2? If our consumer always (weakly) prefers the sure
thing, and if she conforms to the assumptions of expected-utility theory, then
her von Neumann–Morgenstern utility function, which is a perfectly good
representation of her (ordinal) preferences on X, will be concave.12

In the derivation above, we assume that prices are certain, given by a fixed
p. What if there is uncertainty about prices? Specifically, imagine that our
consumer enters into a lottery that determines her income y, and at the same
time prices are determined by a lottery ρ. All uncertainty resolves, and then our
consumer chooses what to consume.

If we want to speak of the consumer’s preferences over lotteries (only) in her
income in this setting, we must make some assumption about the statistical
relationship between lotteries on y and on p. A simple example will illustrate
the point. Consider a consumer who is evaluating an income lottery that gives
her $10, 000 with probability 1/2 and $20, 000 with probability 1/2. Suppose
that prices will be either p or 2p, each with probability 1/2. If our consumer’s
income level is perfectly positively correlated with the price level, she faces no
real uncertainty; her real purchasing power is unchanged. If, on the other hand,
her income level is perfectly negatively correlated with the price level, she faces
rather a lot of uncertainty in her purchasing power. It will be a rare consumer
indeed who is indifferent between these two situations, even though in terms of



the lotteries on (nominal) income, the two situations are identical. Either we
must consider how the consumer feels about lotteries jointly on prices and
income, or we have to make some assumption that prevents this sort of
problem.

The simplest assumption we can make is that these lotteries are statistically
independent. Then if we let ρ be the probability distribution on prices, the
induced expected utility our consumer obtains from the probability distribution
π on y is given by

Therefore, the consumer’s von Neumann–Morgenstern utility function for
income, which we will now write V(y), is

You can quickly check that, in this setting, Proposition 6.16 holds without any
change except for this redefinition of the utility function on income.

A different question is, How does the consumer respond to uncertainty in the
price level? Suppose we fix the consumer’s income at y, and ask about her
preferences over probability distributions over the prices p that she faces. By the
same logic as before, ν(p, y), now viewed as a function of p for the fixed y, is her
von Neumann–Morgenstern utility function for price vectors. We know that ν(p,
y) will be continuous in p (if the underlying utility function is), and it can be
shown that ν(p, y) is nonincreasing in p (but not strictly decreasing). But
convexity/concavity properties are generally ambiguous. Specifically, suppose
we ask whether a consumer (with concave von Neumann–Morgenstern utility
function U for lotteries on consumption bundles) would prefer to face a lottery
where prices are either p or p′, each with probability 1/2, or to face the prices (p
+ p′)/2. The answer will depend (in general) on the specific p and p′; sometimes
the former is preferred (the consumer prefers to gamble over the prices she will



face), and sometimes the latter is preferred. For more on this, see Problem 6.8.

6.3.   Demand for Insurance and Risky Assets
The most prevalent and extensive applications of the models of the last chapter
and this are to insurance and financial markets. Entire books and courses are
devoted to these markets, and to deal with them in reasonably sophisticated
fashion, one needs to take into account information and strategic action, ideas
that are developed only in Volume II. But the simplest and most preliminary
results are accessible at this point; in this section, these results are provided in
the context of insurance; corresponding results concerning financial markets and
risky assets are developed in problems at the end of the chapter.

Imagine a consumer whose income level is subject to some uncertainty.
Specifically, her income will be y with probability π and y′ with probability 1 −
π, where y > y′. Think of the difference Δ = y − y′ as some loss the consumer
might sustain, because of an accident, ill health, theft, or some other misfortune.
An insurance company will insure against this loss; if the consumer pays a
premium of δ , the insurance company will pay Δ back to the consumer if she
sustains this loss. The consumer may buy partial coverage; if she pays aδ , she
gets back aΔ if she sustains the loss. We do not restrict a to [0, 1]. (There are
good reasons why such a restriction or one even more severe might be in place,
but they concern concepts and ideas for which we are not yet ready.)

Assume this consumer satisfies the three mixture-space axioms concerning
her final level of income, net of any payments to/from the insurance company,
and her utility function V is strictly increasing, concave, and differentiable. If the
consumer buys a-fractional insurance, her expected utility is

and her problem is to maximize v(a) over a.

Proposition 6.17.   Consider the problem of maximizing v(a) defined by (6.1)
for y > y′, Δ = y − y′, and V a concave, strictly increasing, and differentiable
function.

a.   If δ  = (1 − π)Δ, then a = 1 is a solution of the problem.



b.   If δ  > (1 − π)Δ, then a < 1 for any solution of the problem.

Proof. If V is concave, then an application of the second half of Proposition
A3.17b tells us that v is a concave function of a. If is easy to show that v is a
differentiable function of a as well, so we know that the first-order condition for a
maximum, v′(a) = 0, which is

is both necessary and sufficient for a to be a solution to the maximization
problem.

(a) If δ  = (1 − π)Δ, then (1 − π)(Δ − δ ) = (1 − π)Δ − (1 − π)δ  = δ  − (1 − π)δ
= πδ , and (6.2) can be rewritten

which obviously holds at a = 1.

(b) Let b = πδ /((1 − π)(Δ − δ )). Then δ  > (1 − π)Δ implies b > 1. Rewrite
(6.2) as

Because b > 1, this implies that

if a is a solution. Since V is concave, its derivative is nonincreasing, and so this
inequality implies

which can only hold at a < 1.



Note that (1 − π)Δ is the expected payout of the insurance company.
Accordingly, if δ  = (1 − π)Δ, the insurance company pays out on average just
what it takes in as premium, and the contract it offers is said to be actuarially
fair. Therefore, part a can be paraphrased: If the contract is actuarially fair, the
consumer wishes to purchase full insurance.13

If δ  > (1 − π)Δ, the company takes in more than it expects to pay out on
average; the contract is actuarially unfair. Part b is paraphrased: The consumer
only partially insures if offered actuarially unfair insurance.14

Problem 6.9 continues this analysis, and Problems 6.10 through 6.12
develop similar results for the case of demand for risky (financial) assets.

Bibliographic Notes
The material on utility functions for money (and especially absolute and relative
risk aversion) is further developed (in varying degrees) in Fishburn (1970) and
Kreps (1988). The classic references are Arrow (1974) and Pratt (1964). The
classic references on stochastic dominance are Hadar and Russell (1969) and
Rothschild and Stiglitz (1970); in the problems to follow, I adopt the ingenious
construction of Machina and Pratt (1997) for the one difficult step.

The economics of uncertainty (demand for insurance and risky assets) is
developed in many different places. Borch (1968) provides a readable
introduction; it is out of print, but libraries may have copies. Arrow (1974)
contains a number of classic developments.

Problems

 *6.1. (a) Prove Proposition 6.1.

(b) Provide the induction argument called for in the proof of Proposition 6.3.
(c) Prove Proposition 6.5.

 6.2. An expected-utility-maximizing decision maker professes to have
constant absolute risk aversion over the range of (dollar) prizes from $−1000 to
$5000. Faced with a gamble with prizes $5000 and $0, each with probability
1/2, the decision maker says her certainty equivalent is $2400. Which of the
following three is most preferred by this decision maker: (a) $2000 for sure; (b)



$5000 with probability 0.6 and $−1000 with probability 0.4; or (c) $5000 with
probability 0.4, $0 with probability 0.3, and $1000 with probability 0.3.

 *6.3. Provide the proof of Proposition 6.9. (You need to know Taylor’s
Theorem, concerning Taylor’s series expansions, to do this.)

 6.4. A commonly employed family of von Neumann–Morgenstern utility
functions (for strictly positive dollar prizes) is U(x) = xα/α for α < 1 and α ≠ 0.
What are the corresponding coefficients of absolute and relative risk aversion for
these utility functions?

Problems 6.5 and 6.6 concern first- and second-order stochastic dominance and,
in particular, the proofs of Propositions 6.14 and 6.15 (in the context of simple
probability distributions). Problem 6.5, concerning first-order stochastic
dominance, is not too difficult if you understand the trick that is described in
part b of the problem. Problem 6.6 is a good deal more difficult, especially part
c. If you get stuck on part c, go to the Student’s Guide, where I provide further
hints before giving the full solution.

 *6.5. (a) Suppose that π ≥1 ρ, as defined in Definition 6.13. Show that Fπ(r)
≤ Fρ(r) (where Fπ(r) is the cumulative distribution function for π, as defined on
page 132) for all r.

(b) Suppose that U is a uniformly distributed random variable on the interval [0,
1]. That is, U is a random variable where the probability that U ≤ r for r ∈ [0,
1] is r. Suppose that π is a simple probability distribution on R, and let the
support of π be {x1, x2, …, xn} where x1 < x2 < … < xn. Define a new random
variable X from U by the rule X = xi if U ∈ (Fπ(xi−1), Fπ(xi)], where for the case
U ≤ Fπ(x1) we let X = x1. Essentially, we are defining 

Show that X has the marginal distribution function π; that is, the probability
that X = xi is π(xi).
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(c) Use part b to show that if F and G are two (simple) cumulative distribution
functions such that F (r) ≤ G(r) for all r, then we can construct joint random



variables XF and XG where XF has cumulative distribution F, X G has
cumulative distribution G, and XF − XG ≥ 0 with probability 1.

(d) Suppose that π and ρ are two (simple) probability distributions such that
there exist joint random variables Xπ and Xρ where Xπ has distribution π, Xρ has

distribution ρ, and Xπ − Xρ ≥ 0 with probability 1. Then π ≥1 ρ.

 *6.6. (a) Suppose that π ≥2 ρ, as defined in Definition 6.13. Let r0 be any real
number such that all values in the supports of π and ρ strictly exceed r0. Show
that for all r1 > r0,

(Hint: Consider the utility function Ur0, r1 (x) = min{x − r0, r1 − r0}.)

(b) Suppose that π and ρ are two (simple) probability distributions such that
there exist joint random variables Xπ and Xρ where Xπ has distribution π, Xρ has
distribution ρ, and the conditional expectation of Xρ − Xπ, conditional on each

value of Xπ, is nonpositive. Show that π ≥2 ρ.

(c) Suppose that ρ and π are two simple probability distributions on R such
that, for some r0 strictly less than every value in the supports of ρ and π and for
every r1 ≥ r0,

Show that there exist joint random variables Xπ and Xρ where Xπ has
distribution π, Xρ has distribution ρ, and the conditional expectation of Xρ −



Xπ, conditional on each value of Xπ, is nonpositive.

 6.7. Consider a consumer who divides her consumption between two goods
and whose utility function is U((x1, x2)) = ln(x1 + 1) + ln(x2 + 1). Moreover,
she is an expected utility maximizer when it comes to (simple) lotteries over her
consumption bundle, and U is her von Neumann–Morgenstern utility function.
The prices of the two goods are both 1. Her income, used to finance purchases of
the goods, is given by the variable y, and it may be random.

What sets this problem apart from what we did in the chapter is that our
consumer must choose x1 before any uncertainty about y, if there is uncertainty,
resolves. Suppose, therefore, that she faces a lottery in which y = 98 or y = 178,
each with probability 1/2. What is her optimal choice for c1? What is her
expected utility? (You should be able to find the optimal level of x1
analytically, but as you’ll need numerical methods later in this problem, you
might want to set this up numerically from the start. Compute her expected
utility to at least four places past the decimal point.)

Next, suppose that y is certain; specifically, y = 126.948391819 with
probability 1. What is her optimal choice of x1, and what is her (expected)
utility?

Finally, suppose that y takes on one of three values, 98, 178, or
126.948391819, each with probability 1/3. What is her optimal choice of x1,
and what is her expected utility? (Unless you can solve cubics analytically, you
will need to do this numerically. You have to do it accurately enough so that
you find expected utility to four places past the decimal point.)

In the first paragraph, it says “ she is an expected utility maximizer…” But the
answers you got should convince you otherwise. (Why do they convince you
otherwise?) What is going on here?

*6.8. Fix a consumer with von Neumann–Morgenstern preferences over lotteries
for consumption bundles, and fix this consumer’s income at some level y.
Given two strictly positive price vectors p and p′, would the consumer rather be
in an economy where prices are either p or p′, each probability 1/2, or in an



economy where the prices are sure to be 0.5p + 0.5p′? We asserted that there is
no clear answer to that question. In this problem, you are asked to develop two
examples that indicate what can happen along these lines.

(a) Imagine that there are two goods, and the consumer’s ordinal preferences are
given by u(x1, x2) = x1 + x2. That is, the consumer’s von Neumann–
Morgenstern utility function is U(x1, x2) = f(x1 + x2) for some strictly increasing
function f on the real line. Suppose that p = (1, 3) and p′ = (3, 1). Show that
regardless of what the function f is, this consumer prefers to take her chances
with the risky prices.

(b) Imagine that there are two goods and the consumer’s von Neumann–
Morgenstern utility function is U(x1, x2) = f(min{x1, x2}) for some concave,
strictly increasing function f on the real line. Assume that f(0) is finite. Now
suppose that the risk in prices is entirely risk in the overall price level: p = (γ,
γ) and p′ = (1/γ, 1/γ) for some scalar γ > 1. Prove that for fixed γ you can always
find a function f such that the consumer prefers the certain prices 0.5p + 0.5p′ to
the risky prices. And prove that for every concave, strictly increasing function f
with f(0) finite there is a γ sufficiently large so the consumer prefers the risky
prices to the certain prices.

 6.9. Suppose that an insurance policy compensates a victim for loss, but does
so somewhat imperfectly. That is, imagine that in the story given about the
insurance-buying consumer our consumer’s income prior to any insurance is y −
Δ, where Δ is a simple random variable (a random variable with finite support)
whose support includes 0 and some strictly positive amounts. The available
insurance policy pays a flat amount B in the event of any loss, that is, in the
event that Δ exceeds zero. The premium is still δ . Let 1 − π be the probability
that the consumer sustains a loss. The contract is actuarially fair if δ  = (1 − π)B.
Suppose this is so and that B is the expected amount of the loss, if there is a
loss. If the consumer has a strictly concave and differentiable utility function,
will she buy full insurance? Possible answers are yes, no, and it depends. (Use a
simple parameterized example if you can’t do this in general.)

Problem 6.10 through 6.12 concern the demand for risky assets. The setting
for all these problems is provided in Problem 6.10, which goes on to ask you



to provide results that parallel the results we gave in the chapter for
insurance. The remaining problems take you further into this topic.

 *6.10. Imagine a consumer who will do all her consuming one year hence.
This consumer has w dollars to invest and no sources of income except for the
proceeds from her investments with which to finance her (eventual)
consumption. Let y denote the proceeds from her investments and assume that
her preferences over lotteries with prizes y satisfy the von Neumann–Morgenstern
assumptions, with y → V (y) her von Neumann–Morgenstern utility function,
which is strictly increasing, concave, and differentiable.

This consumer can invest her money in one of two assets. The first of these is a
riskless asset; for every dollar invested, the consumer gets back r > 1 dollars
next year. The second asset is risky. Its gross return, denoted by θ, has a simple
probability distribution π, so that π(θ) represents the probability that the risky
asset has a gross return of θ. By gross return we mean a dollar invested in the
risky asset returns θ dollars next year.

The consumer’s problem, then, is to decide how much money to invest in each
of the two assets. Since every dollar invested in the second asset is precisely one
dollar less invested in the first, we can write her decision problem as a problem
in one variable a, the amount of money she invests in the second, risky asset. If
θ is the gross return on the risky asset, investing a in this asset means she will
have

dollars to spend on consumption next period. So her problem is to

subject to constraints we may choose to put on a. In particular, we will
constrain a to be nonnegative, or a ≥ 0. In the venacular of finance, this
constraint says that the consumer cannot short-sell the risky asset, but she can



leverage her investments in the risky asset by borrowing at the riskless rate. (If
we let a be negative, we would be permitting short sales. If we constrained a ≤
1, we would be prohibiting leverage through borrowing.)

The following proposition parallels Proposition 6.17 in this context:

Proposition 6.18.   Consider the problem (6.3) with the constraint a ≥ 0.
Assume V is concave, differentiable, and strictly increasing.

a.   If Eθ < r, then the solution, and the only solution, is a = 0.

b.   If Eθ = r, then a = 0 is a solution, although there may be others.

c.   If Eθ > r, then every solution a, if there is a solution, must be strictly
positive.

d.   If the consumer is risk neutral—that is, V(x) = Ax + B for constants A >
0 and B—then there is no solution if Eθ > r, every a  ≥ 0 is a solution if
Eθ = r, and a = 0 is the only solution if Eθ < r.

e.   Suppose θ ≥ r for all θ ∈ supp(π), with θ > r for at least one θ (such
that π(θ) > 0). Then there is no solution to the problem.

f.   If the consumer is strictly risk averse—that is, V′(x) is strictly decreasing
in x—and if supp(π) contains at least two elements, then the solution, if
there is one, is unique. Hence under these conditions, if Eθ = r, then a  =
0 is the unique solution.

Prove the proposition.

 6.11. Now specialize Problem 6.10 as follows. Assume that the expected
return on the risky asset is strictly greater than r, the riskless rate, and the
support of π contains at least one value that is strictly less than r. And assume
that the consumer has constant (absolute) risk aversion; that is, her utility
function V is V (x) = −e−λx for some strictly positive constant λ.

(a) Prove that the solution to the consumer’s investment problem is finite and
unique; denote this solution by a(w, λ).



(b) Prove that a(w, λ) is independent of w; no matter what her initial wealth, the
consumer invests the same amount in the risky asset.

(c) Prove that a(w, λ) is nonincreasing in λ; the more risk averse the individual,
the less she invests in the risky asset.

 *6.12. When more than one asset is risky and there is a riskless asset
returning r, it is possible that a risky asset could have an expected return less
than r and still be demanded and that an asset could have an expected return
greater than r and not be demanded at all. (Recall that we are not allowing short
sales of risky assets. To make matters a bit more easy, assume that short-selling
the riskless asset is also forbidden.) Produce examples to support these claims.
(Hints: For the first example, you want negative correlation between the returns
on the two risky assets. For the second example, think of a case where each
asset returns either  > r or  < r, but with differing probabilities; you have to

careful about the correlation between them, as well.)

When it comes to applications of the models of this chapter and last, a lot of
attention is directed toward the effects of risk sharing, risk spreading, and
diversification. The final two problems provide you with some basic themes
from this literature on which to chew.

 6.13. (a) Consider an expected-utility maximizer whose utility function U is
strictly increasing and concave. Imagine that this consumer has initial wealth w
and is considering whether to buy a small share in a gamble whose payoffs are
given by a simple probability distribution π. To be very precise, the consumer
is choosing between staying with her wealth w, or supplementing this with an α
share of the gamble, for α > 0 but very small. Letting E be the expected value or
mean of π—that is, E = ∑x∈supp(π) xπ(x)—shares in this gamble are priced at
βE for a 100% share, for some β < 1. So if the consumer purchases an α share,
her wealth (whose expected utility she seeks to maximize) will be w + α(x −
βE) with probability π(x), for each x in the support of π.

Assume that E > 0 and that the consumer’s utility function U is continuously
differentiable. (Since it is concave and strictly increasing as well, the derivative
is everywhere strictly positive.) Show that for any fixed β < 1, the consumer



prefers to buy an α share of the lottery on these terms, rather than stick with w,
for α sufficiently close to zero.

(In words, if the lottery sells for less than its expected value, there is a small-
enough share of the lottery that this consumer wishes to buy, even though she is
risk averse. For small shares in a gamble, this consumer is “ approximately risk
neutral.”)

(b) What happens to this result if the consumer’s utility function is not
differentiable at w? What happens if the consumer’s initial position (to which a
share α of the lottery might be added) is random, given by some lottery ρ on her
wealth level w?

 *6.14. The following bit of nonsense is often heard:

Suppose I offered you, absolutely for free, a gamble where with
probability.4 you win $1000 and with probability.6 you lose $500. You
might well choose not to take this gamble (if the alternative is zero) if
you are risk averse; although this gamble has a positive expected value
(0.4)($1000) + (0.6)($ − 500) = $100, it also has substantial risk. But if
I offered you, say, 100 independent trials of this gamble, then you would
certainly wish to take them; the law of large numbers says that you will
wind up ahead. That is, risk aversion is perhaps sensible when a single
gamble is being contemplated. But it is senseless when we are looking
at many independent copies of the same gamble; then the only sensible
thing is to go with the long-run averages.

Is this nonsense? Can you produce a particular “ consumer” who is rational
according to the von Neumann–Morgenstern axioms, and who would turn down
all independent copies of this gamble, no matter how many were offered? Or
would any von Neumann–Morgenstern expected-utility maximizer take these
gambles if offered enough independent copies? (Hints: Either answer can be
correct, depending on how you interpret the phrase “ enough copies of the
gamble.” The problem is easiest if we read this phrase as: We offer the consumer
a number of copies, fixed in advance, but very large. Then you should be able to
produce a consumer who will not take any of the gambles. If you are worried
about bankruptcy of this consumer, you may take your pick: [1] This consumer



is never bankrupt—her utility function is defined for all monetary levels,
however positive or negative; [2] this consumer is bankrupt if her wealth, which
begins at a level of $2, 000, ever reaches $0; and we will stop gambling with
this consumer the moment she becomes bankrupt. Interpretation [1] is the easier
to work with, but either is okay.)

And, if you like challenges, try to prove the following: Suppose that we play
according to rule (2): The consumer is offered “ up to N gambles” with the
proviso that we stop gambling if ever the consumer’s wealth falls to $0.
Assume that the consumer has a utility function for final wealth that is strictly
increasing and that is finite at zero. (a) If the consumer’s utility function is
unbounded above, then there is an N sufficiently large so that, offered N gambles
or more, the consumer will take them. (b) While if the consumer’s utility
function is bounded above, the result can go either way: The consumer might
turn down the gambles, for all sufficiently large N; or the consumer might accept
the gambles, for all sufficiently large N. If you can further characterize the two
cases in (b), that would be better still. (To be able to answer this question in
full, you will need to know a lot of the theory of stochastic processes: some
basic theory of random walks; then the theory of martingales and, in particular,
the Martingale Convergence Theorem.)

 

1 Recall that for x ∈ X, δ x denotes the lottery that gives prize x with
probability 1.

2 We say essentially because this does allow for some change in the supports.
Specifically, if x ∈ supp(π), then x must be in the support of πn for all large n.
But there can be x ∈ supp(πn) and even in the supports of the πn for infinitely
many n that are not in the support of π, as long as (1) there are only finitely
many such x and (2) limn πn(x) = 0 for every such n. Indeed, we can allow there
to be infinitely many such x, if we know that there is a uniform bound on their
utilities. See footnote 3 for more on this.

3 I have in mind, roughly, continuity in the topology of weak convergence.



But this is only roughly correct, because I am not assuming that U is bounded.
For readers who know about the weak topology: Suppose U is unbounded, say,
above. Let xn be such that U(xn) > n, and let πn be the (two-outcome) lottery
that gives (arbitrary) prize x0 with probability (n − 1)/n and prize xn with
probability 1/n. The expected utility of πn is at least (n − 1)U(x0)/n + 1. Find
some N such that U(xN) > U(x0) + 1, and construct a two-outcome lottery with
prizes x0 and xN whose expected utility is U(x0) + 1/2; since you can
continuously vary the probabilities, this is easily done. Then for all sufficiently
large n, πn  π′   δ x0, and yet πn → δ x0 in the weak topology. Oops.

If U is bounded and continuous, then preferences are continuous in the weak
topology. If U is continuous but not bounded, I only get continuity of
preferences for sequences of (always simple) lotteries that (1) have uniformly
bounded supports and (2) converge in the weak topology.

4 We later will write Eθ for the expected value of a random variable θ. No
confusion should result.

5 Careful! The lottery 0.6δ x +0.4δ x′ denotes a probability distribution with
two possible outcomes, x and x′, whereas 0.6x +0.4x′ is a number. And,
appearing momentarily, δ 0.6x+0.4x′ is a probability distribution with one
possible outcome, namely 0.6x +0.4x′.

6 This means that if you write d( ) for the difference between the actual risk
premium of this gamble and −  then lim  →0 d(

)/ 2 =0.
7 It is sometimes known as the Arrow-Pratt coefficient or measure of risk

aversion, after the two individuals who independently developed the concept.
And, for reasons to be discussed, it is often referred to as the coefficient of
absolute risk aversion.

8 Fixing a lottery π, as we shift the consumer’s wealth level z and construct π
⊕ z, we have to be careful that the prizes remain in the domain of the
consumer’s utility function U.

9 Sloppy terminology is sometimes used: this property is called decreasing
risk aversion, and we say that the function U has or exhibits



nonincreasing/decreasing risk aversion.
10 In Figure 6.2, the marginal distribution of the supplement Y is that it

gives prize −3 with probability 0.2, −2 with probability 0.35, 2 with
probability 0.2, and 3 with probability 0.25. But, for second-order stochastic
dominance, it is the various conditional distributions of Y and not its marginal
distribution that are important; specifically, the conditional distributions must
all have nonpositive means. For first-order stochastic dominance, the marginal
distribution of Y is sufficient; Y is nonpositive with (marginal) probability one if
and only if it is conditionally nonpositive with probability one (conditional on
every x in the support of π).

11 This is the first manifestation of dynamic choice in this book, to which
next chapter will be devoted: Before deciding that this way of modeling her
preferences over income lotteries is obvious, please see what next chapter has to
say.

12 To deduce concavity, it isn’t quite sufficient to check risk aversion only for
gambles with two equally likely prizes; but if U is continuous, this is enough.

13 Note that part a only says that a =1 is a solution. There may be others. In
particular, what happens if the consumer is risk neutral?

14 Note that part b says only that a < 1 at a solution. It doesn’t say that a
solution exists. In particular, what happens if δ  ≥ Δ?

15 This trick for creating a real-valued random variable X whose cumulative
distribution function is a given F from a uniformly distributed random variable
U by the rule X = F−1(U) works for general cumulative distribution functions
and not only those that arise from simple probabilities.



Chapter Seven



Dynamic Choice

This short chapter concerns two elaborations on the general theory of choice:
dynamic choice, and static choice within a dynamic context.

To explain what this means, consider the following simple example. A
decision maker is choosing her dinner in two stages: In the first stage, at time t
= 0, she chooses a menu of meals. In the second stage, at time t = 1, she
chooses a meal from the menu she selected at the first stage. To make this
formal, start with a finite set X of meals, and form from it the set Z consisting of
all nonempty subsets of X; Z is the set of menus. At time t = 0, she chooses a
menu z from some available subset A ⊆ Z; at time t = 1, she chooses some x
from the menu z she selected at the outset. Her dynamic choice is the sequence
of two choices she makes, first z from A and then x from z. If we wanted to
formalize dynamic choice with choice functions, we’d have, say, a pair of choice
functions, c0 a choice function defined on the subsets of Z, and c1, a choice
function defined on subsets of X (parameterized, if necessary, by things that
happen between the two moments of choice). Or we might formalize things with
preference relations 0 and 1, or with utility functions u0 and u1 to be
maximized (with 1 or u1 bearing any necessary parameters). If, on the other
hand, we are interested solely in the first-stage choice of a menu, that is static
choice within a dynamic context; the standard theoretical constructs of a choice
function, a preference relation, or a utility function would be employed, all
defined on Z, but (presumably) exploiting the special structure that Z possesses
and taking into account the dynamic context of this first-stage choice.

This example illustrates what the terms mean, but it fails to do justice to
the importance of the topic. Among the most important economic decisions
made by individuals are savings and investment decisions, which fit fully into
these categories. The term investment should be read broadly here, to include
education decisions as well as any other decision to acquire information for later
use. Job choice also fits, insofar as the choice of what work to do today both
enables and constrains later opportunities for work. Indeed, it is hard to think of
any significant economic decision that neither is part of a linked series of
decisions (hence dynamic) nor has implications for later decisions (hence is
taken within a dynamic context).



Given the importance of these sorts of choices, three questions are obvious:

1 .   How should dynamic choice, or static choice within a larger dynamic
context, be modeled?

2 .   Does the dynamic context provide structure that can be exploited, to
refine the basic models of choice from Chapter 1? For instance, in our
example, first-period choice entails the choice of sets of objects. Letting 0
denote the decision maker’s preferences over elements of the set of menus Z,
can we say anything about 0 for sets z and z′ where z is a subset of z′? If z

0 z′, are there any implications for how 0 behaves on the union of these
sets?

3 .   Does the dynamic nature of the problem raise issues that push us to
rethink and, perhaps, modify the basic models of choice from Chapter 1?
Do dynamics, per se, cast doubt upon the basic axioms and properties of
our models of choice?

These may seem obvious questions, but they are rarely asked or explicitly
answered. The answer to the first of these questions is deemed to be obvious, so
obvious that the answer is only given implicitly (that is, the answer is assumed
without any comment), and so the second two questions never arise. Recent
developments in so-called behavioral economics have begun to direct attention
to these questions, however. In this chapter, the “ obvious answer” is presented,
and then I will argue that it is anything but obvious and that, in consequence,
all three questions deserve the attention they are beginning to receive.

7.1.   The Standard Strategic Approach
The standard approach to dynamic decision making (and to decision making
within a larger dynamic context) is to regard the decision problem as one of
choosing, at the outset, an optimal overall strategy and then implementing it
flawlessly. Optimality is determined according to the outcome engendered by
the strategy; outcomes are (within the model) what matters to the decision
maker, over which the decision maker has Chapter-1-style preferences (or
utility). Let me illustrate with two examples:



Example 1: Menus and meals
Begin with the simple menus-meals example. An outcome in this case is

(assumed to be) a meal, and the decision maker is assumed to have complete
and transitive preferences over meals. Since X is finite, a utility function u : X
→ R can be constructed to represent those preferences. To make things very
concrete, suppose that X = {c, s, f}, where c is a meal of chicken, s is steak, and
f is fish, and suppose that the decision maker’s preferences over X are
represented by the utility function u(f) = 2, u(c) = 1, and u(s) = 0.

The space of menus, Z, is the space of all nonempty subsets of X so, in this
case, Z has seven elements. A strategy is a complete plan of action for all
choices that need to be made; a strategy in this case takes the form of “ choose
some z and then some x from the chosen z.” So, for instance, if the decision
maker has an initial choice of the four menus

then she has available eight strategies, among which are “ choose {c, s} and
then c,” “ choose {c, s} and then s,” and “ choose {f} and then f.”1 Let me
temporarily number these as strategies 1, 2, and 3, respectively.

Each strategy gives an outcome. For instance, strategy 1 gives the outcome
c, while strategy 3 gives the outcome f. And strategies are ranked according to
the outcomes they engender. So from the utility function u on outcomes, we
conclude that strategy 1 provides utility 1 (since it provides outcome c and u(c)
= 1), while strategy 3 provides utility 2.

The optimal strategies are those that give the best outcome, measured in
terms of preference or utility. In this case, there are three optimal strategies,
namely, “ choose {c, f} and then f,” “ choose {f} and then f,” and “ choose {f, s,
c} and then f.” There is nothing mysterious here: A meal of fish is the best
outcome, so the optimal strategies are precisely those that give this outcome
(assuming that some strategy in the feasible set provides this outcome).

The standard model of dynamic choice, in this context, has the decision
maker evaluating each available menu to find one that provides her the best meal
according to her preferences; then she implements the (or, an) optimal strategy
as time unfolds. If our interest was only in her static choice of a menu, the



model begins the same way: Evaluate the menus to find one that gives the best
meal, then (at the initial decision point) pick any menu that qualifies.

Example 2: Consumption-savings
A somewhat less trivial example concerns a decision maker who possesses

$1000 in wealth at time t = 0 and who must decide, at dates t = 0, 1, 2, …,
how much of her wealth to consume and how much to set aside in savings for
future consumption. To keep the story relatively simple, we assume money not
saved is directly consumed (that is, the decision maker “ eats” money). Let wt
denote her wealth at time t (before she decides on time t consumption) and ct,
the amount she chooses to consume, so her savings exiting this time period are
wt − ct. Given this savings decision, her savings wt+1 at time t + 1 are
determined by a random process in which wt+1 = 1.05wt or wt+1 = 1.12wt, each
with probability 1/2 and independent of past rates of return on her savings.
(That is, she earns either 5% or 12% on her savings, determined by a coin flip.)
At time t, when she is choosing ct, she knows wt but she doesn’t know
anything about future returns except the probabilistic law just given; she does
know her past consumption decisions, of course, and past rates of return.

An outcome for this decision maker is the sequence of her consumption
levels, (c0, c1, …). Or, more precisely, since there is uncertainty in this
problem, an outcome for her is a probability distribution over the sequence (c0,
c1, …). It is assumed that her preferences over random consumption sequences
are represented by expected utility, where the (von Neumann–Morgenstern)
utility function U(c0, c1, …) for this decision maker is

That is, the decision maker makes consumption-savings decisions in whatever
manner maximizes the expectation of this utility function.

A strategy in this example is a plan that says how much to consume and



how much to save out of w0 at time 0, how much to consume and how much to
save at time 1, contingent on her time 0 decision and the return she got on her
savings between times 0 and 1, and so on, for all t. Constraints are imposed:
Consumption cannot be less than zero in any period, and (we assume) ct must
be no larger than wt; the decision maker cannot borrow; she can only save. So,
for instance, one strategy is to consume $300 each period unless and until wt
falls below $300; if and when it does (and, in fact, it is sure to do so, since
savings grow by at most $120 per period), consume 10% of current wealth until
it falls to $1 or less, if it ever does so; at which point consume all that is left
immediately.2

Every strategy engenders a probability distribution on (c0, c1, …), which (in
the standard approach) determines the quality of the strategy: strategies are
evaluated according to the expected utility of the consumption sequence they
engender. An optimal strategy is one that makes this expected utility as large as
possible; our decision maker, per the standard approach to dynamic choice,
follows the dictates of an optimal strategy (or the optimal strategy, if there is
only one). Given the vast multitude of strategies, you might wonder if we could
ever solve this problem. But we can: It turns out that, in this case, the optimal
strategy is to set c0 = $121.38 (approximately) and, in later time periods, to set
ct = 0.12138wt (again, approximately), whatever is wt. That is, it is optimal to
consume around 12.138% of one’s wealth and save 87.862%, regardless of the
value of wt and regardless of how wt got to be that level. (I’ll explain the source
of this particular rabbit-from-the-hat answer in a bit.)

These are but two examples; if you want to see some others, Appendix 6
provides a selection. They illustrate the standard approach to modeling dynamic
choice, which is to reformulate the problem as being a static or atemporal choice
of an optimal strategy:

•   The model specifies a space of outcomes of interest to the decision maker,
as well as her preferences (typically represented by a utility function) over
outcomes. As the consumption-savings example indicates, the term
outcome here should be read broadly: outcomes are very typically
probability distributions over some set of “ prizes,” with preferences that are



(then) often of the expected-utility variety.

•   The model also specifies the details of the decision maker’s dynamic
decision problem: when decisions/choices are called for; what options are
available; and what information is available on which basis the decisions can
be made. From these items, the full range of dynamic strategies available to
the decision maker is constructed.

•   The model describes the connection between strategies and outcomes: what
outcome will be engendered by each strategy.

•   The decision maker evaluates each strategy according to her preferences over
the outcomes, and she identifies strategies that provide the best outcomes,
where “ best” reflects her preferences over outcomes. She then proceeds to
implement (one of) the optimal strategy(ies).

Three implicit assumptions in this approach deserve to be made explicit.

1.  The decision maker has (and acts on) fixed, atemporal preferences over
outcomes. She will not change her mind about what she wants.

2.  From the outset, the decision maker has full “ strategic awareness” of what
options she has and will have and how her decisions will translate into
outcomes. All this is allowed to be dependent on the resolution of uncertain
events. But unforeseen contingencies, previously unappreciated options, and
the general law of unintended consequences are not (relevant) parts of her
vocabulary and, in particular, she makes no allowance today for any such
possibilities affecting her in the future.

3.  She has the cognitive and computational abilities required to evaluate all
the strategies she has available or, at least, to find one that is optimal.

7.2.   Dynamic Programming
The third of these assumptions speaks to the proverbial rabbit I pulled out of a
hat in the second example, when I announced that the optimal strategy in the
consumption-savings problem is to consume 12.138% of one’s wealth in each
period. A lot of strategies are possible in the second example, and connecting
them to the probability distributions over consumption sequences, evaluating
the expected utility of each, and then finding the strategy that maximizes



expected utility, would seem quite a chore. Happily, mathematical techniques
can be employed that identify the optimal strategies for problems such as this
one, techniques that fall under the general rubric of dynamic programming.
Appendix 6 provides a primer on those techniques and, in particular, provides
the solution of the consumption-savings problem as an example.

It is perhaps worth noting that these techniques identify optimal strategies,
they don’t find the value of all alternatives. I have no idea what expected utility
is generated by the complex strategy (Start with c0 = $300 and then …), but
dynamic programming tells me that (a) the “ spend 12.138…% of your wealth”
strategy generates an expected utility of around 70.448 (if you start with $1000)
and (b) no alternative strategy does better than this.

You are invited to learn the techniques from the appendix if you don’t
already know them, but with two strong warnings: First, the appendix is around
50 pages long. And, second, even at 50 pages, it only provides techniques
useful for solving a limited number of problems. It is true that the overlap
between the problems that can be addressed with the techniques in the appendix
and those tackled in the literature is substantial. But this is mostly because
problems in the literature are there at least in part because they are simple
enough to be solved. (I’ll return to this point later.)

7.3.   Testable Restrictions of the Standard Model
Since I keep referring to the standard model and the standard approach, I must
have in mind alternatives. Since I went out of my way to highlight the three
implicit assumptions listed above, my alternatives presumably involve
violations of those assumptions.

To be precise about alternatives, begin with the question: What sort of
observed behavior can we say is inconsistent with the standard model? Tackle
this question in the context of the first sort of problem: A decision maker
chooses an object from a finite set X in two stages. First, she chooses a subset of
X; then she chooses an x from the subset chosen in the first stage. As before, Z
is the set of all nonempty subsets of X.

By the standard model in this context, we mean: There are complete and
transitive preferences  on X, such that at the first stage, the decision maker
(weakly) prefers one menu z to another z′ if and only if the -best meal in z is



preferred to the -best meal in z′. Equivalently, for some function u : X → R,
the menu z is (weakly) preferred to z′ if and only if maxx∈z u(x) ≥ maxx∈z′ u(x).
And, in the second stage, the decision maker chooses from z some meal that
maximizes u over z.

The precise question we will answer is, Given the decision maker’s choice
behavior concerning menus, when is that choice behavior consistent with the
standard model? As the previous paragraph makes clear, if stage-one choice is
consistent with the standard model, it (to begin with) satisfies all the usual
general rules of “ rational” choice; that is, choice of a menu satisfies (finite)
nonemptiness and choice coherence and (equivalently) can be rationalized by a
complete and transitive binary relation on Z. We know this because first-stage
choice corresponds to maximization of a real-valued function, namely U : Z →
R defined by U(z) = maxx∈z u(x). In view of this, the proposition that answers
this question will assume from the outset that first-stage choice behavior
conforms to a complete and transitive relation  on Z. We let  denote the

corresponding strict preference relation and  the corresponding indifference
relation.

Proposition 7.1.   Suppose first-stage choice conforms to a complete and
transitive relation  on Z. Then it conforms to the standard model of dynamic

choice (as defined above, in this specific context) if and only if it satisfies the
further condition that, for all z and z′, if z  z′, then z  z ∪ z′.

Proof. If first-stage choice of a menu conforms to the standard model, then it
conforms to maximization of a function U : Z → R that, in turn, is given by
U(z) = maxx∈z u(x) for some u : X → R. But for any such U, z  z′ implies

U(z) ≥ U(z′) implies maxx∈z u(x) ≥ maxx∈z′ u(x) implies maxx∈z u(x) =
maxx∈z∪z′ u(x), which is U(z) = U(z ∪ z′), which is z  z ∪ z′.

Conversely, suppose first-stage choice of a menu conforms to preference
maximization for a complete and transitive preference relation  that has the

further property: z  z′ implies z  z∪z′. Since Z is finite,  has a

numerical representation U : Z → R; fix one such. For x ∈ X, define u : X → R



by u(x) = U({x}). I assert that U(z) = maxx∈z u(x) for this u; this is proved by
induction on the size of z: It is true by definition for singleton sets z, so suppose
inductively that it is true for sets of size n − 1 or less. Let z be any set of size n
> 1. Let x0 be any element of z, and let z′ = z \ {x0}. By the induction
hypothesis, U(z′) = maxx∈z′ u(x). Consider two cases: u(x0) < U(z′), and u(x0) ≥
U(z′).

In the first case z′  {x0}, so by the extra property, z′ ∪ {x0} = z  z′;

hence U(z) = U(z′). But also in this case, maxx∈z u(x) = max{u(x0), maxx∈z′
u(x)} = maxx∈z′ u(x) = U(z′), and hence maxx∈z u(x) = U(z).

And in the second case, U({x0}) = u(x0) ≥ U(z′), which implies {x0}  z′;

hence (by the extra property) {x0}  {x0} ∪ z′ = z, and hence u(x0) = U(z).
But also in this case u(x0) ≥ U(z′) = maxx∈z′ u(x), and therefore u(x0) = maxx∈z
u(x). Hence U(z) = maxx∈z u(x).

In either case, U(z) = maxx∈z u(x), establishing the induction step and the
truth of this equality for all z ∈ Z. Which means that first-stage choice
conforms to the standard model. 

The symbols may make a very simple idea seem complex. In the standard
model of dynamic choice (in this context), a menu is as good as the best meal it
contains, where “ best” is in terms of the decision maker’s atemporal preferences
over outcomes. But then one menu is at least as good as a second if and only if
the best meal in the first is at least as good as the best meal in the second, in
which case one of the best meals in the union of the two menus is the best meal
in the first, and the first menu is just as good as the union. This is the argument
for why the extra property z  z′ implies z  z ∪ z′ is necessary for the

standard model to hold; the argument that this extra property is also sufficient
just turns this argument on its head.

Two comments are in order about the title given this section, “ Testable
Restrictions of the Standard Model.”

First, we have both “ the standard model of dynamic choice” and “ the
standard model of static choice (of a menu) in a dynamic context.” The



proposition is clearly about the latter object. It characterizes (only) the decision
maker’s first-stage choice of a menu, albeit bearing in mind that her choice of a
menu is only the first stage in a two-stage choice process. We could instead
speak of her first- and second-stage choice behavior, wondering whether they
together conform to the standard model. But, in this simple context, if you
know her first-stage preferences  over menus, then you know what, according

to the standard model, she must do in the second stage: In the standard model,
her first-stage preferences among singleton-set menus {x} tell you what
preferences govern her second-stage choices.

Second, the “ testable restrictions” part of the section title sounds like: We
have empirical data about choices the decision maker has made. But the
proposition imposes its test on something decidely more ephemeral, namely all
of . We’ve run into this issue previously, specifically, in Problem 1.16 and

then in Chapter 4: Observing some choices actually made is not much grist for
any empirical test of theories of choice that permit everything to be indifferent to
everything else (in which case, any pattern of choice is consistent with the
theory). One needs some data about strict preferences. Back in Problem 1.16 and
Chapter 4, the emphasis was in seeing some (but not all) expressions of strict
preference; here, in constrast, we have all the data about preferences, but in a
context where the objects chosen are sets, and it is the set structure that gives us
the needed grist.

As an alternative where we work with fewer but richer data, imagine
embedding this two-stage choice problem into one slightly larger. Imagine that
the individual is choosing pairs of the form: a menu z from which a later meal
will be selected and an immediate, one-dimensional reward r for which more is
unambiguously better. If we see an individual choose the menu z and immediate
reward r when z′ and r are available, but we also see her choose z ∪ z′ together
with r −  for any positive  when (z, r) is available, then we know that the
standard model has a problem.3 Under the standard model, the first choice tells
us that a choice out of z, together with r, is at least as good as a choice out of z′.
Why, then, is she willing to give up the valuable  to maintain the flexibility
provided to her by z ∪ z′?

Or, with the same embedding, suppose that we look at two menus, z and z′,
where z′ ⊆ z but z ≠ z′; that is, z′ is a strict subset of z. Under the standard



model, there is no conceivable reason for her to choose z′ and r −  over z and
r, for any positive . There is no reason, in other words, for her to devote
valuable resources in order to restrict her own (subsequent) choice set.4 This is a
fairly general characteristic of the standard model of dynamic choice, one that
transcends this simple context: The standard model presumes (pretty explicitly)
that the decision maker has unchanging, atemporal preferences over outcomes,
and she chooses strategies according to those preferences. Why, then, would she
have (or exhibit) a strict preference for constraining her own choices?

7.4.   Three Alternatives to the Standard Model
The possibilities raised in the previous two paragraphs lead to alternatives to
the standard model that have been explored in the literature.

Changing tastes and self-control
Return to the very specific example where f is a meal of fish, c is chicken, and s
is steak. Consider the first-stage preferences

(Throughout this section, first-stage choice of menus will always be consistent
with complete and transitive preferences, so you can use the standard transitivity
rules to fill out the preference relation.) The decision maker with these first-stage
preferences explains:

I have a problem with my cholesterol levels and so should avoid steak.
I know this, but I also know that if and when I get to the restaurant, if
steak is on the menu, the temptation will be too much for me. Fish is
best for me, and I can resist the temptation to have chicken instead of
fish, if both are on the menu. But I’ll give in to steak if it is there,
so…

This individual’s self-control issues can be thought of as a matter of an
anticipated change in her tastes. At the moment she is choosing a menu, her
preferences over meals (given, essentially, by her preferences over singleton



menus) is f 0 c 0 s. But when she gets to the restaurant, her choices (if her
initial choice of menu has left herself with any choice) reveal a different set of
tastes: s 1 f 1 c. Anticipating this, at the first stage, she chooses menus in a
way that serves her t = 0 tastes by constraining her later options: {f} and {f, c}
are the best menus, because they will result in fish, followed by {c} which will
lead to chicken, followed by the four menus that have steak, since she
anticipates that her later self will choose steak, and steak is the worst choice for
her (in terms of her t = 0 tastes).

This rationalization has three parts: (1) The decision maker’s tastes will
change between the times when she chooses a menu and when she chooses a
meal. (2) She anticipates the change. (3) When she chooses a menu, she acts in
a way that favors her current tastes among meals. First-stage preferences would
be different if she didn’t anticipate the change in her tastes, or if she anticipated
those changes, but decided that her second-stage preferences should govern; if
either of those were true, she wouldn’t be in the business of constraining her
own later choices.

In the economics literature, the idea that tastes may change in an anticipated
manner and so, to favor current tastes, an individual may constrain her own later
choices, goes back to original work by Strotz (1955-6). But the idea goes back
much further than that; it is classic in the full sense of the word: In the Odyssey,
Odysseus, wanting to hear the song of the Sirens but wanting not to throw
himself onto the rocks, has his crew bind him to the mast, while they plug their
own ears.

Note that there is more here than a realization that having chicken for lunch
affects the desirability of chicken for dinner, or that drinking single-malt whisky
today positively affects one’s taste for single-malt whisky in the future. Those
effects can be accommodated in models where tastes for consumption tomorrow
are not separable (in the sense of Chapter 2) from what is consumed today but
where one’s preferences over consumption bundles through time are unchanging.
If preferences for lifetime consumption bundles are unchanging, the decision
maker never has an active preference for constraining her later self.5

Along the same lines, imagine the following first-stage preferences:



The story behind these preferences begins the same way: This decision maker
has problems with her cholesterol and should avoid steak for dinner. This
decision maker also has self-control issues, but she is stronger willed than the
previous individual; she will be able to order fish from {f, c, s} and from {f, s}
and to order chicken from {c, s}. But the effort of resisting the lure of a steak
dinner is costly to her, and she’d rather not have the temptation, so (for
instance) {f, c}  {f, c, s}.

In the first story, a characteristic of  is that, for all z and z′ such that
(without loss of generality), z  z′, either z ∪ z′  z or z ∪ z′  z′. To

explain, some x will be chosen from z in the second stage, and some x′ from z′;
z  z′ follows if {x}  {x′}; that is, if the first-stage preferences prefer the

second-stage choice out of z. Assume this is so. When looking at z ∪ z′, and
assuming away for simplicity the issue of ties in second-stage preferences, the
question is, Will the second-stage preferences result in x being chosen—in
which case z ∪ z′  z—or will x′ be chosen, resulting in z ∪ z′  z′? One of
the two must hold, and therefore we have the stated property. (See Problem
7.3.) In the second story, where self-control may be possible but is
psychologically wearing, we might have z  z′ and z  z ∪ z′  z′; a menu

that is the union of z and z′ might result in the preferred (in terms of stage-one
preferences) meal, but at a pyschological cost from the effort at self-control.

And, in fact, these sorts of properties for  can be shown to characterize, in

the first case, a simple model of changing tastes (where the psychological costs
of exercising self-control do not enter, because second-stage urges cannot be
controlled), and in the second case, a more complex model with self-control
costs. The theory is developed in Gul and Pesendorfer (2001).

Unforeseen contingencies and preference for flexibility
Now imagine a decision maker who, at the first stage, expresses the following
preferences over menus:



Since {f, c}  {s} and yet {s, f, c}  {f, c}, this doesn’t follow the standard
model. Asked to explain, this decision maker tells the following tale:

I am pretty sure that I would like to have fish for dinner, in preference
to steak or chicken. In fact, I can’t foresee any specific circumstance in
which this wouldn’t be so. But, in my life, I’ve sometimes met up
with contingencies that I didn’t foresee, and I suppose there is a chance
that I might wind up preferring steak. Hence I hedge, with a slight
preference for {c, s, f} over {f, c} (and, for that matter, over {f}). I
reiterate, I don’t foresee any specific reason that this might happen and,
in consequence, these strict preferences are very slight. But however
slight, they are there. And, since you are wondering why this same
consideration doesn’t have me rank {c, s, f} over {s, f} or {f, c} over
{f}, the answer is that I absolutely hate chicken, and I simply refuse to
acknowledge even the slightest possibility of an unforeseen contingency
in which chicken beats out fish.

The last part of this rationalization seems to me questionable: This decision
maker appreciates the possibility, however slight, of one sort of unforeseen
contingency but not another. But they are her preferences, and I want to focus on
the first part. In the standard model, one implicit assumption was that the
decision maker had full strategic awareness of the situation, which is a dubious
assumption to make of anyone.6 Recognizing that this may not be so, the
decision maker just described is prepared to sacrifice (at least) a bit of resources
to maintain her flexibility of choice.

This suggests that, as a general rule, preferences in the first stage ought to
satisfy z  z′ if z′ ⊆ z, which is implied by but a good deal weaker than the

property developed in Proposition 7.1 that is observationally equivalent to the
standard model. Consider, in this regard, the following:

In words, suppose z′ is a subset of z but z′  z. Then the extra flexibility
afforded the decision maker in z instead of z′ is deemed to be of no value



whatseover. If this is so, then (presumably) the extra flexibility of z ∪ z″ over z′
∪ z″ is of no value—either something in z″ will be selected (and is available in
either case), or we are back to the z versus z′ comparison.

If a decision maker, in her first-stage preferences, exhibits general preference
for flexibility but tempered by the property just displayed, her first-stage
preferences over menus can be given a very simple representation that suggests a
decision maker who admits the possibility of contingencies that are unforeseen
and makes some allowance for them; that is, there are in the representation both
exogenously given states of nature, representing contingencies that are foreseen,
and also states of nature that arise endogneously (that are constructed from the
individual’s preferences) to explain the preference for flexibility. See Kreps
(1979a, 1992).

Complexity and heuristics
Although the menus-and-meals problem is quite simple to solve according to
the standard method of dynamic choice, most dynamic choice problems are
complex. To solve the second example that is given, the consumption-savings
problem, requires techniques that most first-year graduate students in economics
will be seeing for the first time. And this problem is solvable because of some
specific features in the formulation: The problem is stationary (Appendix 6
explains what this means); the distribution of returns in each period is known to
the decision maker and independent of past returns; the utility function over
consumption streams is additively separable, with a per-period utility function
that takes a particularly convenient functional form. If any one of these
assumptions is relaxed, the problem will probably become intractable.

I n Chapter 1 it says, “ Just because consumers don’t actively maximize
utility doesn’t mean that the model of utility-maximizing choice is a bad
descriptive or positive model. To suppose that individuals act as if they
maximize utility is not the same as supposing that they consciously do so.” In
the current context, the argument would be: Even if dynamic decision problems
are so complex that economists specially trained to solve them can do so only if
a lot of simplifying assumptions are made, real-life dynamic decisions, made
through guesswork and heuristics, come close to the decisions that would be
made by ideal dynamic decision makers who followed the standard dynamic
approach. Modeling with the standard approach may be an unattainable



idealization, but it provides a good positive model of the somewhat messier
reality.

That is an interesting assertion, but if it is to be taken seriously, either
theoretical or empirical justification for it ought to be pursued. It isn’t hard to
model the sorts of heuristics that are employed in the face of complexity—at one
end of the scale are simple psychological models of satisficing and goal setting;
at the other end in terms of sophistication are the modeling and
econometric/fitting techniques that economists themselves employ when trying
to find optimal economic policies—and it should be possible to categorize
environments in which a particular heuristic works well or not. In fact, work
along these lines has been done: In the 1980s, a number of studies were made of
how (well) decision makers would learn through time the relationship between
equilibrium and prices, if that relationship co-evolved with what the decision
makers were learning; in the 1990s, a modest literature was created about
learning in the context of repeated play of games. Rust (1987) provides a
marvelous empirical study (albeit very specific) of whether a real decision maker,
through intuition or heuristics or whatever, approaches the optimal solution of a
complex dynamic decision problem. But much more work of this sort should be
done before we accept the assertion or, what is more likely to be the outcome,
before we understand when the assertion is reasonable and when it is not.

And the complexities of dynamic decision problems raise another
possibility. So far, in proposing alternatives to the standard model, we’ve
looked at alternatives where, at least, choice at any single point in time (that is,
static choice within a dynamic context) follows the rules of Chapter 1: Some
large set of conceivable objects (menus, consumption levels) is given, and
choice from a feasible subset of the larger set is according to complete and
transitive preferences on the larger set. At the start of this discussion, we asked
Does the dynamic nature of the problem raise issues that push us to rethink
and, perhaps, modify the basic models of choice from Chapter 1? Do
dynamics, per se, cast doubt upon the basic axioms and properties of our
models of choice? At the level of choices made at a single point in time, the
answer has been no.

But dynamic problems tend to be complex, and complexity could be a
reason to doubt the basic choice constructs of Chapter 1. Faced with a complex
decision problem, one in which there are many options and/or options whose



eventual consequences are difficult to evaluate, the decision maker might resort
to heurisitics or rules of thumb. When evaluating options from a large set of
options, the decision maker might choose to focus on a limited set of
characterisitics, where the characteristics chosen are influenced by the full set of
immediately available options. This isn’t a consequence of the dynamic context
per se. But dynamic considerations breed complexity, and complexity breeds
rules of thumb that could lead to violations of Chapter 1 principles.

A temporary bottom line
The economic importance of dynamic decisions and of static decisions made
within a dynamic context cannot be questioned. If the models of choice that
were developed in earlier chapters cannot be adapted to dynamic contexts, then
they aren’t of much use in exploring important economic issues. Economists
have, for the most part, taken the models of Chapters 1, 2, 5, and 6, all of which
are developed as static models of (once-and-for-all) choice, and adapted them to
dynamic contexts through the standard method of regarding dynamic choice as
being the static choice of an optimal dynamic strategy.

If you accept this, then what remains to do concerning dynamic choice is to
learn how to solve the relatively complex optimization problems that arise in
dynamic choice contexts. Or, what is in fact more accurate, one must jointly
learn how to formulate problems that are sufficiently simple to be solved and
then solve them. This is the purpose of Appendix 6.

But, especially in light of the importance of decisions made in dynamic
contexts, it is important to understand the behavioral assumptions and
limitations of this standard method and to study both the robustness of the
standard method and alternatives to it. With the rise of behavioral economics,
this has been an increasingly important part of economic theory. But a lot of
work along these lines remains to be done.

Bibliographic Notes
Finding a precise statement of the standard strategic approach to dynamic choice
in the literature is, I believe, impossible. It seems to have the status of folk
wisdom; it has always been the way to do things. Methods for solving
reasonably complex problems with this approach, methods of dynamic
programming, were developed by a variety of authors in the 1950s and 1960s;



important names in this development are Richard Bellman for the fundamental
ideas and David Blackwell and Ralph Strauch for more formal developments.
Textbook references are provided in Appendix 6.

The changing-tastes alternative entered the economics literature in R. Strotz
(1955–6). Schelling (2006, Chapter 1) provides a fascinating discussion. Gul
and Pesendorfer (2001) is the essential reference in the formal aspects of this line
of research, which has been fairly active recently. (See also Gul and Pesendorfer,
2005.) “ Preference for flexibility” and an interpretation of this as a manifestation
of unforeseen contingencies is provided in Kreps (1979a, 1992). This is also a
somewhat active topic. Models of heuristics employed in complex dynamic
choice situations have tended to concern very specific contexts, such as rational
expectations equilibria or learning in games: Sargent (1999) provides a
wonderful application of these ideas to macroeconomic policy; Fudenberg and
Levine (1998) summarizes and extends much of the literature related to game
theory.

Problems
Appendix 6 gives a number of problems to be solved with the methods of
dynamic programming (and works through many of them); you should certainly
read through the solution of those for which solutions are provided (such as the
consumption-savings example given in this chapter) and provide solutions for
the rest. The problems provided here concern some of the alternatives to the
standard approach to dynamic choice discussed in the chapter. As such, they
constitute a further digression from the basic trajectory in this book and can be
skipped without compromising your understanding of the rest of the text. For
this reason, the first three of these problems are solved in the Student’s Guide ,
and I provide a reference where you can find the solution to the last problem.

 *7.1. Imagine a decision maker who must decide how much asparagus and
how much broccoli to eat in each of two time periods, t = 1 and t = 2. Let at be
the amount of asparagus consumed in period t, and bt the amount of broccoli
consumed in period t. Suppose the price of broccoli and asparagus are both a
constant $1 (in both periods), and the decision maker has a total of $100 to
spend on these four commodities.



(a) At time t = 1, the decision maker’s preferences are given by the utility
function

If the decision maker is able to choose at time t = 1 (according to these
preferences) how much of each vegetable to consume, what will she choose?

(b) Suppose instead that the decision maker chooses, at t = 1, the amounts of a1
and b1 to consume, and also the amount s1 of savings to set aside for period 2
vegetable purchases. Then at time t = 2, she decides how to spend the s1 she
saved on a2 and how much to spend on b2. To be very clear, at time t = 1 she
is choosing a1, b1, and s1 subject to the budget constraint a1 + b1 + s1 ≤ 100,
and at time t = 2 she is choosing a2 and b2 subject to the budget constraint a2
+ b2 ≤ s1. (Her savings earn no interest. To keep matters simple, assume that
all variables including s1 are constrained to be nonnegative.) Assuming that her
preferences are unchanging and the standard methods for dealing with dynamic
choice problems are employed, what does she choose to do?

(c) Now suppose that asparagus is something of an acquired taste. What this
means is that the utility she derives from consuming asparagus at time t = 2
increases with the amount of asparagus she consumes at time t = 1; her utility
function is

If she made all her vegetable purchases (to maximize this utility function) at the
outset, what would she choose to do? If she made her vegetable purchases in
two steps, as in part b, but with the objective of maximizing this utility
function, what would she do? (You probably will need to solve this problem
numerically rather than analytically.)

In parts d and e, we enter into the world of changing tastes. Specifically, at time
t = 1, the decision maker’s preferences over the outcome (a1, a2, b1, b2) are



given by the utility function u from part a of the problem. But, if she has
choices to make at time t = 2, she will act in a fashion to maximize

Note that in posing her time t = 2 preferences in this fashion, we are implicitly
assuming that a1 and b1 are already fixed and determined; any remaining choices
concern a2 and b2 only. But the level of a1 enters her preferences parametrically,
affecting how much utility she gets from time 2 consumption of asparagus. In
this case, rather than saying that asparagus is an acquired taste, we might
describe what is going on by saying that asparagus is addictive, in that her
tastes for a2 (relative to the other goods) changes based on her experiences with
a1.

(d) Suppose that our decision maker chooses in the fashion of part b—at time 1,
she chooses a1, b1, and s1—but she does not anticipate at t = 1 that her tastes
will change at time 2 in the fashion described. Instead, her choices at t = 1 are
made under the mistaken belief that her tastes at time 2 will stay what they are
at time t = 1. (In the literature of changing tastes, this is what is known as naive
choice.) What happens?

(e) And suppose that our decision maker chooses in the fashion of part b, but
she is aware of how addictive is asparagus: She anticipates at time t = 1 that, at
time t = 2, she will seek to maximize u2, and she chooses at time t = 1 to
maximize her time t = 1 overall preferences with that anticipation. (In the
literature of changing tastes, this is known as sophisticated choice.) What
happens?

 *7.2. Much of the recent literature connected to “ changing tastes” concerns
so-called hyperbolic discounting. This concerns problems in the intertemporal
allocation of resources or, in simple form, consumption-savings problems. The
idea is that if you ask someone, “ Would you rather have $1 today or $1.20
tomorrow?” she wants the $1 today, but if the question is, “ Would you rather
have $1 tomorrow or $1.20 the day after?” the $1.20 is chosen. And, the point



of this, this is true tomorrow as well, meaning: Tomorrow, $1 today is preferred
to $1.20 tomorrow. In other words, people tend to discount the future, with the
greatest discount applied between today and next period, and this remains true
when next period comes around.

If this isn’t clear, here’s a problem: A decision maker has $100 to split between
consumption today (t = 0), tomorrow (t = 1), and the day after (t = 2). Today, if
ct is the level of (dollar) consumption on date t, the decision maker’s utility
function is

for some strictly concave function v.
(a) Being very concrete, suppose v(c) = c1/2 and suppose that the budget
constraint facing the individual is c0 + c1 + c2 ≤ 100. (This budget constraint
reflects no interest paid on savings. That is, $1 saved today returns the same $1
tomorrow, etc.) Assuming the decision maker can fix c0, c1, and c2 today,
subject to this budget constraint, what consumption plan maximizes her utility?

The decision maker cannot fix c1 and c2 today; at t = 0, she divides her $100
between immediate consumption c0 and savings s0. If she saves s0, when
tomorrow rolls around, she has s0 to divide between c1 and s1, and then she
consumes c2 = s1 the day after tomorrow (at t = 2). If her relative tastes for
consumption tradeoffs between periods 1 and 2 don’t change—if at t = 1 she
chooses c1 and s1 to maximize  her solution in the

dynamic choice problem will give her the outcome you computed in part a of
the problem. (You can take my word for this.) But, in the story of hyperbolic
discounting, at date t = 1, she will choose c1 and s1 to maximize 

(b) Given that this is so, if she acts naively about her changing intertemporal
tastes (see part d of the first problem), what is the outcome?



(c) And if she acts in sophisticated fashion about her changing tastes (see part e
of the first problem), what happens?

 *7.3. Suppose X is a finite set and Z is the set of all nonempty subsets of X.
Suppose that  is a complete and transitive binary relation on Z that, in

addition, satisfies the property that

We claimed in the text that this property characterized preferences over menus
(members of Z) that can be explained by a changing-tastes model. This can be
difficult to show in general, so to make it easy, assume as well that ,

restricted to singleton sets, is anti-symmetric:

(In words, this means that the decision maker, if able to commit to a meal, is
not indifferent between any pair of distinct meals.) Suppose that  has these

properties. Define 1 and 2 on X by

Show that both 1 and 2 are complete, transitive, and antisymmetric. Show
that, by virtue of anti-symmetry, for each z there is a unique x ∈ z, such that x 

2 x′ for all x′ ∈ z; let x2(z) be this x. And then show that z  z′ if and only if

 (This verifies the claim in the text, if we add the

extra assumption. Gul and Pesendorfer (2005) proves the result without the extra
assumption of antisymmetry.)

 7.4. Suppose X is a finite set and Z is the set of all nonempty subsets of X.
Suppose that  is a complete and transitive binary relation on Z that, in



addition, satisfies the two properties

Show that this is true if and only if there exists a finite set S and a function U :
X × S → R such that if we define v : Z → RS by

then

In words, the set S is a subjective state space, and U(x, s) gives the utility of
meal x is state s, so that v(z) is the vector of utilities provided by picking, in
each state, the meal that gives the highest utility in that state. The
representation, then, is that z  z′ if and only if u  v(z) ≥ u  v(z′), for a

function u that is strictly increasing in the vector of state-dependent utilities. (In
fact, one can show that the function u can be taken to be component-by-
component addition—that is, u(v(z)) = ∑s∈S (v(z))s = ∑s∈S maxx∈z U(x, s),
but getting this additive form is something of a cheat, as explained in Kreps
(1979a). You can find the proof of the proposition, both as formulated here and
then in the additive form, in Kreps (1979a).)

 

1 Readers with some training in game theory and/or in the methods of
dynamic programming may wonder about the way the term “ strategy” is
interpreted here. A complete strategy for an extensive-form game or in a
dynamic-programming analysis specifies how the decision maker will act in



every situation in which she might conceivably be called upon to act, including
situations that she herself might preclude by earlier actions she takes. In the
current context, then, one complete strategy would be “ choose {c, s}; if {c, s}
was chosen in the first stage, choose c; if {c, f} was chosen in the first stage,
choose f; if {f} was chosen in the first stage, choose f ;if {f, s, c} was chosen in
the first stage, choose s.” That is, a complete strategy would specify the second-
stage choice for all available menus, and not simply for the menu that is chosen
in the first stage. Indeed, if you read Appendix 6, concerning the methods of
dynamic programming, you will learn that those methods require this
interpretation of a strategy to work. And, if we take this interpretation, then a
decision maker with a first-stage choice from the four strategies given would
have 48 strategies available instead of 8. For current purposes of somewhat
informal discussion, either interpretation of the term “ strategy” is fine, and I’ll
work with the one given in the body of the text, since it economizes on
exposition.

2 This is a fairly complex strategy. Note, in particular, that ct in this strategy
is not simply a function of current wealth wt: If wt ever falls to, say, $299, then
the strategy calls for consuming $29.90, and then there is probability 1/2 that,
next period, wt+1 will exceed $300. But the strategy, in this case, says to set
ct+1 = 0.1wt+1, even though wt+1 > 300. I point this out to emphasize that there
are a lot of strategies in this problem, and the decision maker is optimizing over
all of them.

3 How can we also see this other choice? As in Problem 1.16 and in Chapter
4, the story, such as it is, is that we face the decision maker with a selection of
hypothetical choices—“ What would you choose if your feasible alternatives
were …? What if they were …?”—and we look for consistency in these
hypothetical choices.

4 With reference to the previous footnote, note that this is an inconsistency
that we could see with a single choice. A dynamic decision maker who
conforms to the standard model never expends valuable resources to constrain
her later options. But see the next footnote for an important caveat to this
statement.

5 This is true absent concerns of a wholely different sort: An individual with



unchanging, atemporal tastes may choose to limit the actions she can take at a
later date because of the impact this will have on the actions of others. Army
generals from the ancient world are often described as taking actions—burning
bridges behind themselves, placing their army with its rear to a river—that
make retreat impossible. They do this both to imbue their own troops with a
desire to fight, even if they are losing, since no retreat cuts off other options.
And they do this to encourage their opponents not to press on: An army that
cannot retreat is more likely to fight to the death. The conclusion that a decision
maker will never strictly prefer to leave herself fewer options if her tastes are
unchanging is correct in a single-person decision context; but not in general.
When you see a decision maker taking actions that limit her later choices, you
have to ask: Is she doing this because of the impact it will have on the actions
of others, or because she fears what her own later self might do, given the
opportunities she is eliminating?

6 It is obvious, I hope, that the discussion of the last section is directed at the
first implict assumption of fixed atemporal preferences.



Chapter Eight



Social Choice and Efficiency

Our concern so far has been in modeling choice by an individual. Social choice
concerns choice made on behalf of a set of individuals.

The basic question is framed as follows: A social state or outcome x is to be
chosen; X represents the set of all conceivable social states, while A often
represents the subset of X of feasible states. The choice will affect a nonempty set
of individuals or households, denoted by H. Each individual h ∈ H has her
own opinion about the various possible social states, given (for the time being)
by a complete and transitive preference relation h on X. Since the choice of a
social state x affects all the individuals, the choice “ should” be made in a way
that takes into account the preferences of the individuals. The question is, How?
More specifically, suppose we want to construct a social ordering  on X that
aggregates the preferences of the individuals. How “ should” we do this?

Having put scare quotes around the word “ should” twice, let me explain:
This question raises the prospect of engaging in moral philosophy. As
individuals typically have conflicting preferences among the social states, we
presumably must look for principles that allow us to make good compromises
or value judgments. Some economists are also excellent moral philosophers.
But, as you’ll learn in this chapter, economics, or at least mainstream
economics, has by and large avoided the sort of value judgments that seem to be
needed. Mainstream economics is unwilling to go beyond value judgments that
seem, at least at first blush, to be utterly noncontroversial, leaving a theory of
social choice that mixes negative results about strong social choice criteria with
simple characterizations of the weak criteria that are left. That’s the plot for this
chapter.

8.1.   Arrow’s Theorem
Modern social choice theory begins, and in some senses ends, with a remarkable
result variously known as Arrow’s Possibility Theorem and Arrow’s
Impossibility Theorem. Arrow (1951a) is looking for what he calls a social
preference function. This is a function that maps arrays of individual
preferences, ( h)h∈H, into a social preference relation .1 The idea, in
essence, is that, once we learn the preferences over the social states of each



member h in a society H, the social preference function will tell us what
preferences society should have as a function of those individual preferences.2

To keep matters simple, I will assume (as does Arrow) that the set of
possible social states X is finite, and the set of individuals H is finite. The
symbol Φ will be used for a social preference function. The domain of a social
preference function Φ consists of arrays of preferences, one for each individual h
∈ H, and the range provides preferences on X. Until further notice, we make the
following assumptions about the domain and range of Φ:

Assumption 8.1.   The domain of Φ is the set of all H -tuples of preference
relations ( h)h∈H, where each h is a complete and transitive binary
relation on X. The range consists of complete and transitive binary relations
on X.

Both parts of this assumption should be carefully considered. The assumption
on the domain of Φ has two significant parts: First, we assume that each
individual h ∈ H has preferences over X that are standard in the sense of
Chapter 1. We could, conceivably, be interested in social preferences when
individuals have incomplete or intransitive preferences but, at least in this
chapter, we don’t consider this. Second, having assumed each individual has
complete and transitive preferences, we impose no further restrictions on the
array or profile or constellation of preferences. The social preference function
must deliver a social verdict, for every H -tuple of complete and transitive
preferences. And, the second part of the assumption, the verdict must take the
form of coherent (that is, complete and transitive) preferences over all the social
states so that, presumably, no matter what subset A of social states X is feasible,
Φ will tell us, given the preferences of the individuals, what society prefers.3

In the usual fashion, if h’s preferences are given by h, then h will
denote her strict preferences and ~h her indifference relation. When we want to
compare one array of preferences with a second one, we’ll use ,

an d  For a given social preference function Φ, standard notational

conventions would have us write Φ[( h)h∈H] for the value of the function Φ at
the argument ( h)h∈H. That is pretty clumsy, and we’ll also want to be able



to write down the strict preference and indifference relations generated from Φ[(
h)h∈H]. So, on expositional grounds, we’ll denote Φ[( h)h∈H] simply by 
, with  and ~ the corresponding strict preference and indifference relations;

we’ll use ′ for , and so forth. (Where confusion might

result, I’ll try to clarify.)
Now consider the following three properties for a social preference function

Φ:

Definition 8.2.
a.   The social preference function Φ satisfies unanimity if, for any profile

of individual preferences ( h)h∈H and any pair of social states x and y,
if x h y for each h ∈ H, then x  y (where  is the strict preference
relation that goes with  = Φ[( h)h∈H]).

b.   The social preference function Φ satisfies independence of irrelevant
alternatives (IIA) if, for any two profiles of individual preferences (

h)h∈H and  and any two social states x and y such that x 

h y if and only if x  y for all h ∈ H, x  y if and only if x ′ y.

c.   The social preference function Φ is dictatorial if there is some h* ∈ H
such that, for every profile of individual preferences ( h)h∈H and every
pair of social states x and y, x h* y implies x  y.

In words: (a) Φ satisfies unanimity if, whenever every individual strictly prefers
x to y, then the social preference function has x strictly preferred to y. (b) Φ
satisfies IIA if the social preference function’s decision about x versus y depends
only on how each individual feels about x versus y. (c) Φ is dictatorial if some
individual’s strict preferences about any two states x and y are decisive: if she
strictly prefers x to y, then the social preference function says that society does as
well, even if everyone else strictly prefers y to x.

It is hard to argue against unanimity as a desirable property for a social
preference function, at least if the objective is to find a rule that respects the
desires of the individuals involved. Surely, if everyone strictly prefers x to y,
then society should do so as well.



Independence of irrelevant alternatives is also meant to be a desirable
property. One way to think about it is to imagine that X is the set of all
conceivable social states, but some subset A ⊆ X is feasible. The social
preference function generates a preference ordering over X so that society will
choose in coherent fashion no matter what is A. Then: Suppose A = {x, y}.
How society chooses between x and y—which depends on whether x  y or y 

 x or both—“ ought to” depend only on how individuals feel about x versus y
and not on any infeasible and therefore irrelevant alternative social state z. (A
different way to think about this assumption has to do with intensity of
preference, but I want to leave a discussion of that interpretation until after
Arrow’s Theorem is stated and proved.)

Finally, having a dictatorial social preference function is, a priori, meant to
be bad. Think in particular of cases where H consists of many, many
individuals. If Φ is dictatorial, with h* as the dictator, then even in the profile (

h)h∈H for which y h x for everyone except h*, if x h* y, then the social
ordering produced by Φ has x  y. That hardly seems fair or reasonable.

To be clear, if Φ is dictatorial, with h* the dictator, it isn’t necessarily the
case that social preferences  are identical to h*. If, for some pair x and y, the
dictator is indifferent (that is, if x ~h* y), then society’s preferences (as
determined by Φ and the full array of individual preferences) can have x  y or y

 x or x ~ y. Being a dictator means: When the dictator has a strict preference
for one social state over a second, society has that same strict preference. The
converse need not be true.

Arrow’s Theorem says: If there are three or more social states and you have
a social preference function Φ that satisfies Assumption 8.1, unanimity, and IIA,
then, as unhappy as it may be, it is also dictatorial. It is sometimes called
Arrow’s Possibility Theorem, because it limits what is possible in a “ good”
social preference function to dictatorship. And it is sometimes called the
Impossibility Theorem because, since dictatorship is bad, it says that it is
impossible to produce a “ good” social preference function; where good means
Assumption 8.1, unanimity, IIA, and no dictators. With either name, it is the
same formal theorem.



Proposition 8.3 (Arrow’s Theorem).   Suppose that X contains three or more
elements. If Φ satisfies Assumption 8.1, unanimity, and IIA, then Φ is
dictatorial.

Proof. To keep the statement of the theorem as neat as possible, the proof of the
theorem becomes a bit involved. You may wish to skip the proof on a first
reading. But nothing in this proof is hard; it just involves being very clever in
how you maneuver profiles of individual preferences. This isn’t quite the proof
originally given by Arrow, but the basic ideas all derive from his original
argument.

Fix a social preference function Φ that satisfies Assumption 8.1, unanimity,
and IIA.

For any pair x and y, a subset H′ ⊆ H is said to be decisive for x over y if,
whenever x h y for all h ∈ H′ and y h x for h ∉ H′, then x  y. By
unanimity, H is decisive for x over y, for all x and y.

Now take in turn each (ordered) pair x and y, x ≠ y and, for this pair, a
smallest set (measured by the number of elements in the set) Hx, y ⊆ H that is
decisive for x over y. I’ve written a smallest set instead of the smallest set
because there may be ties; that is, there may be (for a particular x and y), three
different five-member sets of individuals that are decisive for x over y, and no
sets of individuals with four or fewer members that is decisive. Take one ordered
pair x and y, x ≠ y, and a smallest set J ⊆ H decisive for x over y, such that J is
smallest (measured by number of elements) among all the Hx′, y′, as we vary x′
and y′. Again, there may be many choices for x, y, and J; the point is to find an
x, y, and J such that for any other pair x′ and y′, no set with fewer members than
has J is decisive for x′over y′.

I assert that J must contain a single element. (By unanimity, J must have at
least one element.) Suppose, by way of contradiction, that J has more than one
element, and let J′ and J″ be a partition of J such that both J′ and J″ each contain
at least one element. Let z be any element of X that is not x and not y. (We are
assuming that X has at least three elements.) Consider any array of individual
preferences where:

For h ∈ J′, z h x h y.
For h ∈ J″, x h y h z.



For h ∉ J, y h z h x.
Since J is decisive for x over y, Φ produces social preferences for this array with
x  y. Now by negative transitivity, either z  y or x  z. Take the two cases
in turn.

Suppose z  y. Take any array of preferences  such that  y for

h′ ∈ J′ and  for h′ ∉ J′. The preferences for z versus y in  match

those of h. So by IIA, Φ must produce the same result for z versus y at the
argument ( )h∈H as it did at ( h)h∈H. Since z  y, it must be that z ′

y. But this means that J′ is decisive for z over y, contradicting the minimality
(in size) of J. Similarly, if x  z, IIA implies that J″ will be decisive for x over
z, a contradiction. The only way out of this contradiction is if J is a singleton
set.

So now we have a distinguished x and y, x ≠ y, and h* ∈ H such that {h*}
is decisive for x over y. The rest of the proof consists of showing that h* is, in
fact, a dictator.

First, we show that if ( h)h∈H is any profile in which x h* z for arbitrary
z ∈ X, then x  z. Assume for the moment that z ≠ y, and construct a profile of
individual preferences ( )h∈H in which  and, for

all other h, y  x and y  z, and x and z are ranked under  for h ≠ h*

precisely as they are ranked under h. Since {h*} is decisive for x over y, x ′
y. By unanimity, y ′ z. Hence by transitivity, x ′ z. But by IIA, since each 

 ranks x and z precisely as does h, this implies x  z.

And if z = y : Then take any element w of X that is not x and not y. The
argument just given shows that for any array of individual preferences such that x

h* w and w h x for h ≠ h*, x  w. This means that {h*} is decisive for x
over w. Now replace y with w in the preceding paragraph (remembering that z is
y) to conclude that x  z = y.

Second, we show that if ( h)h∈H is any profile in which z h* y, then z 



 y. Assume for the moment that z ≠ x, and construct a profile of individual
preferences ( )h∈H in which  y and, for h ≠ h*, z, y 

 x and z and y are ranked precisely as they are under h. Since {h*} is

decisive for x over y, x ′ y. By unanimity, z ′ x. By transitivity, z ′ y.
And then by IIA, z  y. Then, following the argument of the previous
paragraph, you can take care of the case where z = x.

Third, we show that for any element w that is neither x nor y, {h*} is
decisive for w over x. To do this, let ( h)h∈H be any array in which w h* x

and x h w for all h ≠ h*. Construct ( )h∈H, which agrees with ( h)h∈H

co n cern i n g x versus w and which places y as follows: 
 and, for h ≠ h*, y  x  w. By unanimity, y 

′ x. By the previous paragraph, w ′ y. Hence w ′ x by transitivity, and w 
 x by IIA.

But then, since {h*} is decisive for w over x, if z h* x for arbitrary z ∈ X
in any array of individual preferences, the paragraph that begins “ Second” (two
paragraphs previous to this) shows that z  x.

Finally, suppose we have any two outcomes w and z such that w h* z in
some array of individual preferences. If w = x, the paragraph that begins “ First”
shows that w  z. If z = x, the previous paragraph applies and we conclude that
w  z. And if x is neither w nor z, then construct ( )h∈H so that each 

 agrees with h on w versus z and so that 

. (It doesn’t matter what  does concerning x

versus w and z.) By the previous paragraph, w ′ x. By the paragraph that
begins “ First,” x ′ z. By transitivity, w ′ z. By IIA, w  z. Individual h*

is a dictator. 

This result must be viewed as a disappointment, if one had hoped to find a
nice method for mapping individual preferences to social preferences. Each of the



four properties that we’ve asked of Φ—that it work for every possible profile of
individual preferences on social outcomes; that it deliver a complete and
transitive social ranking of outcomes; that it satisfy unanimity and IIA—seems a
reasonable request. But any Φ that satisfies all four is dictatorial, as long as
there are more than two social outcomes.4 And a dictatorial social preference
function is surely not where one wishes to wind up.

There is nothing wrong with the proof, so there must be something wrong
—at least in terms of the four properties—with social preference functions that
seem naturally to suggest themselves. For instance, consider majority rule. To
be precise, consider the social preference function ΦMR that is defined as follows:
For any pair x and y from X and for a profile of individual preferences ( h)h∈H,
say that x  y if x h y for half or more of the h. It is not difficult to show that

ΦMR so defined satisfies unanimity and IIA.5 It certainly isn’t dictatorial, at
least for the case where H has two or more members. So, applied to the
collection of all arrays of individual preferences, this must not be producing
complete and transitive social preferences. In fact, as defined here,  is
complete: For any pair x and y and for each h, either x h y or y h x (or
both). Therefore, half or more of the h must have x h y, or half or more must
have y h x. In the first case, x  y by majority rule; in the second case, y 
x by majority rule.

So it must be that transitivity goes wrong. And it does: Suppose X = {x, y,
z} and H = {1, 2, 3}, and consider the array of individual preferences in which x

1 y 1 z, y 2 z 2 x, and z 3 x 3 y. (This famous counterexample
has a name: It is the Condorcet cycle.) Two out of three people have x h y, so
x  y. Two out of three have y h z, so y  z. Hence, for transitivity, x  z
must hold. But only one out of the three individuals has x h z; this doesn’t
hold.

This is only one way to implement the general principle of majority rule;
other variants require supermajorities or use weighted voting. In most of these
variations, the relationship between x and y socially depends (only) on how
individuals rank x and y; IIA holds by design. And most sensible definitions



will give you unanimity; it is hard to think of an implementation of majority
rule that doesn’t have that, if x h y for every h ∈ H, then society strictly
prefers x to y. Finally, most sensible definitions will not be dictatorial—
however you implement majority rule, if one person has x h y and everyone

else has y h x, it is hard to produce a social strict preference for x over y.6 So,
per Arrow’s Theorem, implementations of majority rule and its variants, when
applied to a domain of all profiles of individual preferences, fail to produce
complete or transitive social preferences. In most cases, the Condorcet example
from the previous paragraph tells the unhappy tale.

A second possible social preference function, often used in athletic contexts
to find consensus rankings of teams, is the Borda rule. Suppose there are N
social states. For each individual h ∈ H, convert her preferences h in a given
profile of individual preferences to a cardinal utility function as follows: Her
highest ranked social state gets utility uh(x) = N. Second highest gets uh(x′) = N

− 1. And so forth, where ties get the average of their ranks. 7 And then, for each
x, compute U(x) = ∑h∈H uh(x), and let  be the preference ordering given by
U. This clearly produces complete and transitive social preferences, since it
produces a numerical ranking. And it clearly satisfies unanimity: If everyone
ranks Stanford’s football team as strictly better than USC’s, then Stanford will
have a higher ranking in the poll. It clearly fails to be dictatorial, if H has more
than one element. So, per Arrow’s Theorem, it must violate IIA. And so it
does: Suppose H = {1, 2} and X = {a, b, c, d}. According to this social
preference function:

The rankings of a versus b are the same in the two profiles of individual
preferences, but changing the positions in 1’s rankings of c and d relative to a



and b changes the social ranking of a and b.

8.2.   What Do We Give Up?
Arrow’s Theorem is, without question, a disappointing result, but it does point
the way forward for further analysis. Assume we are still interested in finding a
“ nice” social preference function. Assume that a dictatorial social preference
function, for more than three social states, is not nice. Then Arrow’s Theorem
tells us that our definition of “ nice” will have to do without one of the
following: The domain of Φ consists of every H -tuple of preferences. The range
is the space of complete and transitive preference orders on X. Unanimity is
satisfied. IIA is satisfied. One of these, and perhaps more than one, has to go.

No one seems very interested in giving up unanimity. If every member of
society thinks x is strictly better than y, it is hard to imagine that society should
conclude otherwise, for any social preference function that is “ nice.”

One way forward, then, is to give up on the notion that the domain of Φ
consists of every H -tuple of preferences on X. One idea here is that X has some
geometric structure that precludes certain preferences. The paramount example
here concerns so-called single-peaked preferences. One assumes that X is one-
dimensional; to be concrete, assume that X ⊆ R, the real line.

Definition 8.4. For X ⊆ R, a complete and transitive preference relation 
on X is said to be single-peaked if, for all x, y, and z such that x > y > z, either
y  x or y  z (or both).

Single-peaked preferences are particularly interesting to political scientists.
Think of social states being arrayed on a single left-wing-to-right-wing
dimension. Each individual has her ideal point on this one-dimensional
political spectrum, with preference falling off as the social state moves further
and further (in one direction or the other) from the individual’s ideal social state.

Proposition 8.5.   Suppose X ⊆ R, and suppose H has an odd number of
elements. The majority-rule social preference function given last section, ΦMR,
produces complete and transitive social preferences for any profile of
individual preferences for which each h is single-peaked and anti-symmetric



(that is, if x h y h x, then x = y).

The proof is left as an exercise. (It is Problem 8.3, and the solution is provided
for you in the Student’s Guide.) To interpret this: If we define a social preference
function Φ as majority rule, in that for any profile of individual preferences (

h)h∈H, Φ produces the majority-rule comparison rule as defined previously,
then, in general, Φ satisfies unanimity and IIA, but it doesn’t produce complete
and transitive social preferences. (See the discussion last section.) But if X is
one-dimensional and we restrict individual preferences in our profiles to be
single-peaked and antisymmetric, then Φ does produce complete and transitive
preferences. (Adding in the assumption that each individual preference relation is
anti-symmetric is an analytical convenience. Note that this was true in the
example given last section; the real bite here is the assumption that preferences
are single-peaked.) If we are allowed to restrict the domain of Φ (in this case to
profiles of single-peaked and anti-symmetric preferences, where X has the
geometric structure needed for this to make sense), we can get everything else
desired while avoiding dictatorship.

The term “ majority rule” here needs to be carefully interpreted. We use
majority rule to make pairwise comparisons, and then use those pairwise
comparisons to choose from a feasible subset of X. It is relatively easy to
construct an example in which there are three options, x, y, and z, for which (a)
pairwise comparisons lead to x  y  z and yet (b) if we asked each h to vote
for its favorite option of the three, option y would command a plurality of the
vote. Most textbooks on the theory of voting systems will discuss the case of
single-peaked preferences in detail.

This is only one example of what might be done by restricting the domain
of the social preference function. For further results, see Caplin and Nalebuff
(1988).

Alternatively, one might give up on the independence of irrelevant
alternatives. We already provided one rationale for IIA, but here is a second: IIA
is desirable because, knowing only each individual’s ordinal ranking of social
states, we have no way to make interpersonal comparisons of utility or utility
differences. If we know, say, that half the population prefers x to y and the other
half prefers y to x, we have no particular basis for preferring one or the other. But



if we know that, for the people who prefer x to y, the difference is really
important to them, while for those who prefer y to x, they are near to indifferent,
then we might choose x. Since we have formulated our knowledge about
individual preferences as ordinal preference relations, we have no direct
knowledge about intensity of preferences. But, within the context of ordinally
expressed preferences, if half the population puts y in, say, third place overall
and x in fourth place, while the other half puts x in third place and y in fifteenth
place—something that depends on how x and y compare to other social states—
it might be thought legitimate to infer that the difference between x and y for the
second group is greater and, on that basis, come to the social conclusion that x
is preferable to y.

That, in essence, is what the Borda rule is doing. It is converting the
ordinal ranking of an individual into cardinal measures of “ worth” and then
adding up those cardinal measures to get a social ranking. This means a
violation of IIA, of course, but the violation is done to facilitate interpersonal
comparisons.

The Borda rule, however, quite ad hoc. Why assign cardinal values N, N −
1, N − 2, …, 1? Why not assign values N2, (N − 1)2, …, 4, 1? Why not use
the pN, pN−1, …, 2, where pn is the nth prime? Or use Fibonacci numbers?
Once you are in the business of assigning ad hoc cardinal values to “ positions”
in an order, a lot of assignments are possible, all of them equally meaningful (or
meaningless, as you prefer). And, of course, it makes a difference to the final
social outcome which you use.

If we want to be in the business of making interpersonal comparisons of
utilities and utility differences, we should probably look for data that provide
meaningful cardinal utilities directly. Introducing lotteries over social states
might be a means for doing this; for a treatment along these lines, see Kaneko
and Nakamura (1979). Or imagine that we are lucky enough to have utility
functions that are quasi-linear in a transferable store of value (money). Then we
can make interpersonal comparisons of utility differences by measuring everying
in money and adding up dollar values. Indeed, in this case, we could imagine
ameliorating disputes over which social state to implement by engaging in
compensation; that is, in transfers from those who benefit from the selected
social state to those who suffer. Arrow (1951a) provides a discussion of
compensation. The bottom line here is: The formulation of the problem of



social choice with which we began, and in particular the formulation of
individual preferences ordinally, makes interpersonal comparisons of preferences
and preference differences suspect. Giving up on IIA would seem to mean
allowing for interpersonal comparisons, and that in turn seems best
accomplished if you assume (as analyst) that you have access to data that permit
meaningful interpersonal comparisons. With such data, Arrow’s Theorem is not
the end of the story of social choice.

8.3.   Efficiency
But without more data (and if we are unwilling to make interpersonal
comparisons based on individual ordinal rankings), if we won’t give up
unanimity or restrict the possible profiles of individual preferences, we are left
with setting our sights lower: Instead of producing a complete and transitive
social ordering of X, we look for something less.

This is the traditional stance of economics and economists: x is comparable
to y if and only if x is a Pareto improvement on y, in which case x is judged
better than y. Within any subset A of X, we look for the Pareto-efficient (often
just “the efficient”) elements of A. And (as economists) we don’t seriously try
to judge the relative merits of two different efficient outcomes. Let me define
the new terms:

The setting is more or less as before, although X need not be a finite set. We
continue to suppose that the set of individuals, H, is finite, and that each
individual has complete and transitive preferences h on X, from which strict
preferences h and indifference ~h are derived.

Definition 8.6. The social state (or outcome) x is Pareto superior to y (or
Pareto dominates y), if x h y for every h in H and x h y for at least one h
∈ H. (In this case, we also say that y is Pareto dominated by or is Pareto
inferior to x.) The social state x is strictly Pareto superior to y (or strictly
Pareto dominates y) if x h y for all h. For a subset A of X and a point x ∈
A, x is Pareto efficient (or just efficient) within A if there is no y ∈ A that
Pareto dominates x. The set of Pareto efficient points within A is called the
Pareto frontier of A.



Fixing the profile of individual preferences, Pareto superiority and strict Pareto
superiority create binary relations among the social states: Write x  y if x is
Pareto superior to y, and write x  y if x is strictly Pareto superior to y. With
our maintained assumption that each h is complete and transitive, it is simple
to establish the following result:

Proposition 8.7.   Both  and  are transitive and asymmetric. If x 
y, then x  y.

But, in general,  (and, therefore, ) is not complete. As for the existence of
Pareto-efficient points within a set A ⊆ X, we have:

Proposition 8.8.   A given set A ⊆ X has a nonempty Pareto frontier (that is,
there exist Pareto efficient points within A) if either (a) A is finite or (b) (if X
is a subset of Rn or otherwise has a suitable topological structure) A is
compact and each h is continuous.

Proof. For notational convenience, I’ll assume that the individuals (members of
H) are denoted by 1, 2, …, N, for some finite N. In either case (a) or (b), let A1
be the set of elements of A that are 1-best. (That is, A1 consists of all the
points that h = 1 likes best among the points in A.) Results from Chapter 1
show that A1 is nonempty. In case (a), it is obvious that A1 is finite. In case (b),
I assert that A1 is compact: Boundedness of A1 is immediate because A1 is a
subset of the bounded A. And A1 is closed: Let xn be a sequence of points in A1
converging to x. Let y be any other point in A; then since xn is in A1, xn 1 y.
But then, by continuity, x 1 y. Since y is arbitrary in A, x is 1 -best in A,
and hence x ∈ A1, showing that A1 is closed.

Now let A2 be the subset of A1 consisting of all the 2 -best points out of
A1. By the arguments just given, A2 is nonempty and, in case (b), A2 is
compact. Proceed in this fashion for all h ∈ H; ending with AN. The argument
shows that AN is nonempty; I assert that any x ∈ AN is Pareto efficient in A.



Suppose, to the contrary, that y ∈ A is Pareto superior to x. Then y 1 x, and
since x ∈ An ⊆ A1, y must also be in A1. Proceeding along these lines, we find
that y ∈ A2, then A3, and so forth. But for some lowest index h, y h x (since
y Pareto dominates x, we have to hit a strict preference somewhere down the
line). Since y ∈ Ah−1, x ∈ Ah−1, and x is among the h -best elements of
Ah−1, we know that x h y, a contradiction to y h x. No such y can exist,
every x ∈ AN is Pareto efficient, and (therefore) the Pareto frontier of A is
nonempty. 

(This is a good place to engage your intuition. We just showed that AN is a
subset of the Pareto frontier of A. AN was constructed by taking the individuals
in H in a particular order; presumably, if we permute the order, we’ll wind up
with a different subset of the Pareto frontier. So suppose we take all the possible
permutations of the individuals and, for each permutation, construct a set
analogous to AN. Does the union of all these AN -like sets give the entire Pareto
frontier of A? No, it does not. In a few paragraphs, we’ll see a picture that shows
this clearly. But before we get to that picture, can you see what is going on
here?)

8.4.   Identifying the Pareto Frontier: Utility Imputations and Bergsonian
Social Utility Functionals

In specific applications, although we (as economists) may be unwilling to select
among Pareto-efficient outcomes, we often do want to find (or otherwise
characterize) all the efficient outcomes. A methodology for doing this, in some
applications, employs so-called utility imputations and Bergsonian social
utility functionals.

Suppose that the profile of individual preferences is given by a collection of
utility functions uh : X → R for h ∈ H that represent the individual’s preference
relations h. In this case, we can map each social state x into the vector of

utilities it provides for each individual in turn; formally, let u : X → RH be
defined by (u(x))h := uh(x). The vector u(x) is called the utility imputation for the
social state x; the range of u is the set of utility imputations; if we have a subset



A ⊆ X of feasible social states, the set u(A) = {u(x); x ∈ A} is called the set of
feasible utility imputations, and so forth. In these terms, the state x is Pareto
superior to y if and only if u(x) ≥ u(y) and u(x) ≠ u(y); the state x is Pareto
efficient in A ⊆ X if and only if there is no v ∈ RH such that v = u(y) for some y
∈ A and v ≥ u(x), v ≠ u(x). Graphically, when H has two members (so that
utility imputations are points in the plane), the Pareto frontier of A is the set of
points x ∈ A such that there is no other point in u(A) to the northeast of u(x);
see Figure 8.1.

Figure 8.1. Pareto efficiency. Imagine that there are two individuals (H has
two elements) and six social states, x1, … , x6. For each social state xi, we
plot the utility imputation of the state, the point u(xi) = (u1(xi) , u2(xi)).
From the picture, we see that x1 is Pareto dominated by x2, by x3, and x5;
x4 is Pareto dominated by x3, x5, and x6; and—since u1(x3) > u1(x2) and



u2(x3) = u2(x2)—x2 is Pareto dominated by x3. The states x3, x5, and x6
are Pareto efficient, and as a set they constitute the Pareto frontier.

Needless to say, the set of utility imputations in any specific context
depends on the specific utility functions uh chosen to represent the preferences of
the individuals.

(Now go back to the proof of Proposition 8.8. Suppose that H has two
elements, so there are two orders in which we can take the individuals. Which
points in the Pareto frontier of X are selected by the procedure in the proof, if we
take first one order and then the other? Can you identify the results for the
example of Figure 8.1, if we assume that A = X?)

In this context, where individual preferences over social states X are given by
some specification of individual utility functions uh and where the vector
function u is defined as above, we have the following obvious result:

Proposition 8.9.   Suppose that W : RH → R is strictly increasing. If x is a
solution to the problem

then x is Pareto efficient.

Proof. We prove the contrapositive statement: If x is not Pareto efficient, some y
∈ X is Pareto superior to it. But then u(y) ≥ u(x) and u(y) ≠ u(x). If W is strictly
increasing, then W (u(y)) > W (u(x)), so x would not be a solution to the
problem of maximizing W  u over X. 

What about the converse? That is, if x is Pareto efficient, is there some
strictly increasing W such that x solves the problem of maximizing W  u?
Suppose the answer is yes. Then, at least in theory, we have a machine for
finding the Pareto frontier of any X (or, more generally, of any A ⊆ X), namely:
Solve the problem of maximizing W  u for every strictly increasing function W
: RH → R. And, in fact, the answer is yes. (See Problem 8.5, which is solved
for you in the Student’s Guide.)



But there are a lot of strictly increasing functions W : RH → R—some of
them extremely ill-behaved—and in finding every Pareto-efficient point in a
given X, you may need some of the ill-behaved ones: For instance, while you
can limit yourself to continuous and strictly increasing W if X is a finite set, if X
is infinite, it may take a discontinuous function W to get at a particular Pareto-
efficient x. And even if we could limit attention to continuous and strictly
increasing W—indeed, even if we could limit ourselves to W that are
differentiable—there are a lot of such functions, and solving the problem of
maximizing W  u for all of them is not a very (excuse the adjective) efficient
machine.

The following proposition comes to our rescue.

Proposition 8.10.   Suppose that the set {v ∈ RH : v ≤ u(x) for some x ∈ X}
is convex. Then every Pareto-efficient point x0 ∈ X is the solution to the
problem

for some set of nonnegative weights (αh)h∈H, not all zero. Moreover, the set {v
∈ RH : v ≤ u(x) for some x ∈ X} is convex if X is convex and if each uh is a
concave function (from X to R).

This proposition amalgamates two different results, and it may help to unpack
them.

Taking the second half first, it provides conditions under which, in a specific
application, the set of utility “ imputations” is convex. The term utility
imputations is put in scare quotes because, in fact, we are really concerned with
vectors of utility levels that lie at or below the set of utility imputations; that is,
we look at all vectors of utility levels v ∈ RH such that v is less or equal to
u(x), for some x ∈ X, the set of social states. Those conditions are: (1) The set
of social states is a convex set. And (2) the individual utility functions are
concave functions. This requires that the set of social states X have a geometric



structure that allows us to talk about convexity: You can think of X being the
subset of some finite-dimensional Euclidean space RK, so that the definition of
concavity of each uh is just the definition given in Appendix 3. But for readers
conversant with more general notions of convexity of a set (within a general
linear space) and concavity of a real-valued function defined on such a set, it will
be obvious from the proof that this part of the result is quite general.

As for the first part, if the set {v ∈ RH : v ≤ u(x) for some x ∈ X} is convex
—in particular, if the conditions of the second half of the proposition hold—
then the proposition tells us that we can identify the Pareto frontier by
maximizing simple weighted averages of the utility functions of the individuals.
Or, to be precise, it almost tells us that: It says that every Pareto-efficient point
is the solution to a maximization problem for this sort of weighted average of
utilities. And Proposition 8.9 tells us that if the weights are strictly positive (so
this objective function is a strictly increasing function of the individual utilities)
then every solution is Pareto efficient. But we have a bit of a middle ground left
to discuss: To find all the Pareto-efficient points, we need to consider cases
where some of the weights αh are zero. But then solutions of the maximization
problem are not guaranteed to be Pareto efficient. We’ll discuss this middle
ground after proving the proposition.

In the previous paragraph, the phrase weighted averages of the utility
functions sounds as if we are imposing the condition that the weights sum to 1.
In fact, we could impose that condition on the weights without changing the
proposition: maximizing ∑h αhuh(x) gives the same solutions as does
maximizing ∑h λαhuh(x) for any strictly positive λ. So, for general weights
(αh)h∈H, if we let λ = 1/∑h αh, then we have weights that sum to 1. (Since not
all the weights are zero, the sum is strictly positive.) As a practical matter,
when we go to apply the proposition, what is important is that all relative
weightings of the various individuals are considered; having the weights sum to
1 works or, in a problem where H is doubleton, setting one αh to 1 and letting
the other weight vary between 0 and ∞ will work (except for the weighting
where the first individual gets 0 weight).

You may wonder why we stated the proposition in this two-stage manner. It
would be cleaner, perhaps, to say “ Suppose X is convex and all the uh are



concave. Then…” and give the conclusion of the first half. But for the
conclusion of the first part to follow, convexity of the set {v ∈ RH : v ≤ u(x)} is
what is needed. Convexity of X and concavity of the uh are sufficient for
convexity of this set, and in almost every application of which I am aware, those
are the sufficient conditions employed. But I don’t want to preclude an
application where, on other grounds, you know that the critical set is convex.

Finally (before we get to the proof), the proposition is stated in terms of the
Pareto frontier of the set of all social states X. In many applications, we are
concerned with the Pareto frontier of a subset A ⊆ X. The proposition works
just as well for such applications; the first part follows if the set {v ∈ RH : v ≤
u(x) for x ∈ A} is convex, and convexity of this set is guaranteed if A is convex
and the uh are concave.

Proof of the second part of Proposition 8.10. We prove the second and easier
part of the proposition first. Suppose that v ≤ u(x) for x ∈ X and v′ ≤ u(x′) for x′
∈ X. We must show, for β ∈ [0, 1], that βv + (1 − β)v′ ≤ u(x″) for some x″ ∈
X. The obvious candidate (and one that works) is x″ = βx + (1 − β)x′. This is in
X because X is assumed to be a convex set. And since each uh is concave, 

This is true for each h ∈ H, so the vector u(x″) is greater than or equal to the
vector βv + (1 − β)v′, which is what we needed to show.

Proof of the first part of Proposition 8.10. The first part isn’t hard to prove
either, once you have the right mathematical hammer in your toolkit. That
hammer is the Separating-Hyperplane Theorem, which is Proposition A3.10.
This is, I believe, the first application in the text of the Separating-Hyperplane
Theorem; it is far from the last, as I believe it is safe to say that no
mathematical hammer gets more widespread use in the remainder of this book.8

Suppose x0 is Pareto efficient. This implies that the sets {v ∈ RH : v ≤ u(x)
for some x ∈ X} and {v ∈ RH : v > u(x0)} are disjoint: If v were in the
intersection of these sets, then u(x0) < v ≤ u(y) for some y ∈ X, and y is Pareto
superior to x0, contradicting the assumption that x0 is Pareto efficient. But the
set {v ∈ RH : v ≤ u(x) for some x ∈ X} is convex by assumption, and {v ∈



RH : v > u(x0)} is easily shown to be convex. Hence there exists a nonzero
vector β and scalar γ that separates the two sets: That is, β · v ≤ γ for all v ∈ {v
∈ RH : v ≤ u(x) for some x ∈ X}, and β · v ≥ γ for all v > u(x0). I assert that β ≥
0; if some coefficient of β, say βh, is strictly less than zero, then taking v to be

uh′(x
0) + 1 for h′ ≠ h and vh = uh(x0) + M for large M gives a vector v > u(x0)

that, for M approaching infinity, has β · v approaching −∞; hence eventually less
than γ. That cannot be. And, I assert, β · v(x0) = γ : Take vn = u(x0) + (1/n, 1/n,
… , 1/n), which is > u(x0). Therefore, β · vn ≥ γ. But as n approaches infinity, β
· vn approaches β · u(x0). Hence β · u(x0) ≥ γ. On the other hand, u(x0) is in the
set {v ∈ RH : v ≤ u(x) for some x ∈ X}; hence β · u(x0) ≤ γ.

But this means that β · u(x0) = γ ≥ β · u(y) for all y ∈ X, since u(y) ∈ {v ∈
RH : v ≤ u(x) for some x ∈ X}. Let the weights αh be the components of the
vector β, and you have the result. 

A picture of this proposition will help readers who are new to separating hyper-
planes understand what is going on and help to shed light on the discussion we
began about the middle ground caused by zero weights. The figure depicts a
case where H has two members, so utility imputations lie in the plane. In
Figure 8.2a, a set of utility imputations u(X) = {v ∈ R2 : v = u(x) for some x ∈
X} is given. This set is not drawn as being convex, but it is “ convex to the
northeast”; this is not atypical of the situation where X is convex and the utility
functions are concave (see Problem 8.6). But when we expand the set by
including everything less or equal to a utility imputation—that is, when we
look at {v ∈ R2 : v ≤ u(x) for some x ∈ X}—then we get a convex set (when X
is convex and the uh are concave), as depicted in panel b. Now take any Pareto-

efficient point x0 and the corresponding utility imputation u(x0), and look at all
points in the space of utility imputations that are strictly greater than u(x0). See
panel c of Figure 8.2, where the dashed lines indicate that the second set is open
along its boundaries. Precisely because x0 is Pareto efficient—so that u(x0) lies
along the northeast border of the set of utility imputations, the two sets depicted
are disjoint. The two sets are convex, the set {v ∈ R2 : v ≤ u(x) for some x ∈
X} by assumption and the set {v ∈ R2 : v > u(x0)} by a simple argument, so



according to the Separating-Hyperplane Theorem, a hyperplane separates them.
This is depicted by the line that separates the two sets in panel c, {v : β · v =
γ}, where the vector β is the normal to the line (see panel c) and the scalar γ
gives the “ height” of the line (in general, the hyperplane) perpendicular to this
normal. You can imagine tracing out all of the Pareto frontier of X (or, more
precisely, their utility imputations) by changing the slope of the hyperplane; as
you make the hyperplane “ flatter”—by making β more nearly vertical, which
means more relative weight on the second component—you get points more to
the north; as the hyperplane becomes more nearly vertical—by making β more
nearly horizontal, which means more relative weight on the utility of the first
individual—you get points more to the east.





Figure 8.2. Proposition 8.10 in pictures. See the text for explanation.

Panel d of Figure 8.2 shows why we need the second part of Proposition
8.10. If the set {v ∈ RH : v ≤ u(x) for some x ∈ X} is not convex, then there
are Pareto-efficient points, with utility imputations such as u(x0) as shown, that
can’t be found as the solutions to a maximization problem where the objective
function simply weights the individuals’ utilities and adds. This point can be
picked out by a fancier strictly increasing function of the utilities, but the
proposition (and method it presents) is useful precisely because we can identify
the entire Pareto frontier with a relatively simple collection of such functions.

These objective functions have a name: They are known as the Bergsonian
social utility functionals. Definitions vary from source to source, so you should
be careful when consulting a different book, but we’ll define things as follows: A
social utility functional is a function W from RH to R that maps each utility
imputation vector u(x) into an overall level of “ social utility” W(u(x)).9 You can
imagine, if you’d like, that a given social utility functional describes how a
social planner or dictator decides on a social state: She learns what utility each
individual ascribes to each possible social state x, then uses W to find the
“ social utility” of each x, and then (presumably) chooses whichever social state
is feasible and maximizes social utility.

In most contexts, and following in the general spirit of the unanimity
assumption, attention is restricted to social welfare functionals that are
increasing, at least weakly; the adjective benevolent is sometimes used to
describe this. And Bergsonian social welfare functionals (after the public choice
economist Abram Bergson) are those that are simple weighted sums of the
individuals’ utilities.

Note that in Proposition 8.10, some (but not all) of the weights αh are
allowed to be zero. If this happens, if some of the weights are zero, the
functional is not strictly increasing, and maximizing the social utility functional
may lead to social states that are not Pareto efficient. Figure 8.3 illustrates why
allowing zero weights may be necessary. As before, this is for the case where H
has two members, and we are drawing sets of utility imputations. Panel a
depicts a set of utility imputations for some set X, and panel b all points that are
less than or equal to the set of these utility imputations. So that the first part of
Proposition 8.10 can be enlisted, the set of utility imputations is convex to the



northeast, so the set in panel b is convex. (In fact, I’ve drawn it so that the set
of utility imputations is convex, but the essential feature is that it is convex to
the northeast.) Focus attention on the utility imputations u(x0) and u(x1). I’ve
drawn the picture so that x0 is Pareto efficient and so that x1 is not: x0 is strictly
preferred by the first individual to x1, while the second individual is indifferent
between them (gives her the same utility). But I’ve also drawn the picture so
that the Pareto frontier (in the space of utility imputations) approaches u(x0) in
an “ assymptotically flat” manner. (Think, for instance, of a Pareto frontier in the
space of utility imputations that describes a quarter circle.)

Figure 8.3. The need for and consequences of zero weights in Proposition



8.10. To pick out the Pareto-efficient point x0 with a Bergsonian social
utility functional, it is necessary to put zero weight on the utility of the
first individual. But by putting zero weight on the utility of the first
individual, we introduce Pareto-inefficient points such as x1 as solutions
to the problem, Maximize the Bergsonian social utility functional.

To separate the set in panel b from the set of utility imputations strictly
greater than u(x0), we need a hyperplane that is horizontal, which means that the
normal to the hyperplane is vertical, putting all its weight on the second
individual. If we maximize this weighting of the individual utilities over X, x0

emerges as an answer, but so does x1. We can’t produce x0 with any other
weights (in a simple linear weighting of utilities); if any strictly positive weight
is put on the utility of the first individual, maximizing will push u down and to
the right along the Pareto frontier. But giving the first individual zero weight
gives answers that are not Pareto efficient.

There is, unhappily, nothing to be done about this. When you go to apply
Proposition 8.10, either you can use only strictly positive weighting vectors,
and potentially miss some of the Pareto-efficient social states; or you can use
zero weights and be sure to find all the Pareto-efficient social states, but run the
risk of finding some other, inefficient states besides.

After what we said about mainstream economics being unwilling to make
interpersonal comparisons of utility, the direction we’ve taken in this section
may be puzzling. When we maximize a Bergsonian social utility functional, we
seem to be doing precisely what we said we would not do, and with a great deal
of exactness: if we are maximizing with weights where αh = 2αh′, we are
apparently saying h’s utility is worth twice the utility of h′. We said we would
eschew the use of cardinal representations of utility; now we have a section that
is devoted entirely to specific numerical representations. What is going on?

The answer is, We are developing an analytically convenient way to find
Pareto-efficient social states, at least for some applications, and we are moreover
giving conditions under which this “ machine” is guaranteed to find all the
Pareto-efficient social states. If we went on to choose among the Pareto-efficient
states that we identify—say, by giving special credit to the equal-weighting



social utility functional, or by any other means—then we’d be breaking with
what we said earlier. But unless and until we say that one efficient point is, on
some grounds, better than another—as long as we are using this machine only
to characterize the Pareto frontier—we are keeping to the notion that, as
economists, efficiency is as far as we are willing to go.

8.5.   Syndicate Theory and Efficient Risk Sharing: Applying Proposition
8.10

Proposition 8.10 is typically employed in the analysis of specific contexts, to
find and/or characterize efficient arrangements in those contexts. To provide a
model for how to attack such problems, in this section we characterize efficient
risk sharing, following the treatment given by Wilson (1968) under the title
syndicate theory.

A finite collection H of individuals has formed a syndicate that will share the
proceeds from various risky ventures. To keep matters relatively simple, we
imagine that there is a finite set S of states of nature, with generic element s, and
the syndicate collectively holds a finite collection J of risky ventures or
gambles, wherezjs is the amount that venture j returns in state s. A sharing rule
for the syndicate is an element (yhs) ∈ RH×S such that, for each state s, ∑h∈H
yhs ≤ ∑j∈J zjs, with the interpretation that under the sharing rule (yhs), yhs is

individual h’s share of the total in state s.10 You might imagine, for instance,
that each individual h starts with a risky venture and that members of the
syndicate pool these ventures and then share in the outcomes—this would mean
that j ∈ J corresponds in one-to-one fashion to h ∈ H. You might imagine
further that each individual’s venture involves only losses (that is, each zjs ≤ 0),
in which case the story suggests that the individuals are engaged in a mutual
insurance scheme. Alternatively, the index set of ventures might bear no
particular relationship to the list of individuals. Regardless of how these different
ventures arise, what is important to the analysis to follow is that the returns
from the different ventures are pooled and then shared out among the members of
the syndicate. A social state x is then one of these sharing rules (yhs), and we
seek to answer the question: Which are the Pareto-efficient sharing rules?

Of course, to answer this, we need to know the preferences of the individuals



concerning the sharing rules. Assume that each individual h is an expected-
utility maximizer, with (cardinal, or von Neumann–Morgenstern) utility
function Uh : R → R, and with (subjective) probability assessment πh(s) that
state s occurs. Assume that each individual h owns a private endowment
amounting to ehs in state s, which is not part of the pooled risky ventures but
which represents resources that h can call upon to facilitate the risk sharing.
Then the preferences of individual h are given by her subjective expected utility;
that is, individual h evaluates sharing rule (yhs) as having the utility

We assume that the utility functions Uh are continuous, strictly increasing, and
concave. To avoid pathologies, we assume that πh(s) > 0 for all h and s; that is,
each individual subjectively assesses positive probability for each state.

We also need to know whether there are any constraints that apply to
feasible sharing rules. One constraint, the adding-up constraint, has already been
mentioned: ∑h yhs ≤ ∑j zjs for each s.11 But beyond this, three other constraints
seem worthy of discussion:

•   yhs ≥ 0 for all h and s. Of course, for this to work, we’ll need to have ∑j zjs
≥ 0 for each s, so if the story is one of mutual insurance, this constraint
won’t work. This constraint says that the sharing rule never asks an
individual to contribute out of her private resouces, to make up the shares of
others, beyond what is provided in the shared ventures.

•   yhs + ehs ≥ 0 for all h and s. If we assume that each ehs is nonnegative, this
relaxes the previous constraint: It allows for negative values in the sharing
rule, but not so negative that the individual ends up, net of her own
endowment, with a negative outcome. Depending on the domain of the
utility function Uh, something like this may be necessary.

•   ∑s πh (s)Uh(yhs + ehs) ≥ ∑s πh(s)Uh(ehs) for each h. This constraint, which



would be implied by the first constraint (since each Uh is increasing) but
which is neither implied by nor implies the second, says that the ex ante
position of each individual after sharing rules are assigned leaves the
individual at least as well off as if the individual gets nothing from the
sharing rule. In the insurance interpretation, this would not be natural to
assume: The individual h starts with some lottery with bad outcomes, so to
say that her expected utility post-sharing should be at least as large as her
expected utility if she faced no risk of this sort at all is … optimistic.
Indeed, if the individuals’ outside endowments, given by the ehs, are all
constant, and if the shared gambles zjs are all nonpositive (and not
identically zero), this constraint would make the problem infeasible.

We’ll have more to say about these constraints momentarily. But first we have
the following result:

Proposition 8.11.   (Recall that we assume that each Uh is concave and strictly
increasing.) No matter which subset of the three constraints above are
imposed, the set of feasible sharing rules X is convex, and the individual utility
functions are all concave.12 Therefore, the first part of Proposition 8.10
applies to this problem.13

Details of the proof are left to you to write out. (It is assigned as Problem 8.7,
and the solution is provided in the Student’s Guide.) To show the concavity of
the function ∑s πh(s)Uh(yhs + ehs) in the sharing rule (yhs), you may wish to
enlist Proposition A3.17b.

Therefore, according to the proposition, if we want to find the family of
Pareto-efficient sharing rules under some set of constraints, we should solve the
problems



where the maximization is over the variables (yhs), subject to the adding-up
constraints ∑h yhs ≤ ∑j zjs for each s, plus any other of the constraints we wish
to include. As we solve this problem, parametrically varying the weights
(αh)h∈H (where the weights must be nonnegative), we are sure to pick off every
Pareto-efficient sharing rule, although we may find solutions that are not Pareto
efficient, if any of the weights have value 0. (In fact, for this specific problem,
this won’t happen. The explanation follows in a bit, but you may wish to see if
you can figure out the reason on your own.)

The analysis is a bit clearer if we make a change of variables. Rather than
work in terms of the sharing rules (yhs), it is more convenient to work in terms
of the net-of-endowment positions of the individuals, the vector (xhs) ∈ RH×S,
where xhs = yhs + ehs. Making this substitution, and letting Ws = ∑h ehs + ∑j
zjs, the problem can be restated as

plus any additional constraints we care to impose. Please note that we have used
the simple symbol x to denote a social state, which is a sharing rule. So, with
this change of variables, we are thinking of x = (xhs) as a social state or,
equivalently, a net-of-endowments sharing rule. Also, for a given net-of-
endowment sharing rule x = (xhs), we write uh(x) for ∑s πh(s)Uh(xhs), and u(x) for
the vector of utility imputations (uh(s))h∈H.

What about the constraints? In terms of the xhs variables, they are



I want to argue that the third type of constraint can be imposed post-analysis, so
needn’t be considered in the analysis, while the first is “ uneconomical” in
spirit; only the second sort of constraint should concern us.

To take up the third sort of constraint first: Each Pareto-efficient sharing rule
x = (yhs) and its equivalent net-of-endowment vector (xhs) gives a utility
imputation u(x); this third type of constraint simply requires that the vector u(x)
satisfy u(x) ≥ v0, where v0 ∈ RH is the vector whose h component is v0

h = ∑s
πh(s)Uh(ehs). The constraint takes the larger Pareto frontier (without it) and
restricts attention to a subset, without changing the shape, structure, or character
of social states in that subset. We can worry about whether a particular Pareto-
efficient allocation gives each individual enough utility after we find the
allocation; if h is not getting enough expected utility when we maximize for
some weighting vector (αh)h∈H, we can improve her situation by increasing her
relative weight.

As for the first sort of constraint, suppose some sharing rule x is Pareto
efficient with this constraint but not when the constraint is relaxed. That is,
there is some sharing rule x′ that Pareto dominates x, but that is ruled out
because it violates this constraint. This means that x′ is ruled out because it
calls for some individual h to take resources provided by her endowment and, in
some state, transfer them to another member of the syndicate. But since x′ Pareto
dominates x, this individual is just as well off, in terms of overall utility, as at
x; presumably, the individual is compensated (and perhaps more) by a larger
transfer (relative to what she gets under x) from the syndicate members in some
other state(s). And someone is better off at x′ than at x. In the context of this
problem, we can find the individual who is strictly better off and, in at least one
state, take a bit away from him and distribute that to every other individual in a
way that makes everyone strictly better off than at x; that is, if x′ Pareto



dominates x, then there is some x′ that strictly Pareto dominates x. Now h is
strictly better off than at x. Will h really object to drawing upon her private
endowment in some states, if by doing so she winds up in a strictly better
position overall? In fact, there may be good economic reasons for this, but they
lie beyond the story we are telling here;14 our objective for now is to find
efficient sharing rules, where we suppose we (and everyone) has all the
information that makes up this problem, in which case it is difficult to justify
the first sort of constraint.

To be clear, this argument completely blurs any distinction between the set
of jointly owned ventures, given by (zjs), and the private endowments (ehs). The
syndicate may have formed to share in the risk of those jointly owned ventures.
But once we start looking for efficient sharing rules, where Pareto efficiency
inevitably involves the private endowments, since those endowments affect
preferences, risk sharing of the private endowments enters the picture. Put it this
way: Suppose that the jointly owned ventures didn’t really exist, in the sense
that zjs ≡ 0. If members of the syndicate H can engage in mutually beneficial risk
sharing of their private endowments, then getting rid of constraints of the first
type will have them do so (in Pareto-efficient sharing rules). The argument
given in the previous paragraph essentially says (in this context): “ If it makes
everyone better off, why not?”

In comparison, constraints of the second type could be quite reasonable.
What does it mean, that xhs < 0 in some state s? Where does h obtain the
resources to make good on this net debt? What if Uh is undefined for negative
arguments?

This leaves us with two possible formulations of the problem; one with no
constraint other than the adding-up constraint ∑h xhs ≤ Ws for each s; and one
where we add the constraints xhs ≥ 0 for every h and s.

The decision whether to add the constraints xhs ≥ 0 or not should be made
on grounds of what is right in terms of economics. But those constraints
provide a measure of analytical convenience as well: With them, the space over
which the maximum is taken—the space {(xhs) ∈ RH×S : ∑h xhs ≤ Ws for each
s, xhs ≥ 0 for all h and s}—is compact, and we are assured that the



maximization problem has a solution for every weighting vector (αh). Without
the nonnegativity constraints, the set over which the maximum is taken is not
compact, and for particular weights or even in general, the maximization
problem may have no solution. Among the ways in which a solution may fail
to exist are the following two:

•   First, suppose individual h0 is given no weight, or αh0 = 0. Then

providing h0 with an immensely negative share has no impact on the
objective function and allows an individual with positive weight to have an
immensely positive share. Depending on the behavior of the utility
functions of individuals with positive weight (whether their utility functions
are bounded above), this may or may not mean that unbounded objective-
function values are possible. But as long as each Uh is strictly increasing
(which we’ve assumed), it does mean that there cannot be a solution to the
maximization problem.

We may as well take this opportunity to deal with the issue of zero
weights in the weighting function. As just discussed, if we do not have the
constraints xhs ≥ 0 and if the weighting vector has some of weights equal to
zero, then the maximization problem has no solution. On the other hand, if
we do have the constraints xhs ≥ 0 and some αh0 = 0, then maximizing the

weighted sum of utilities leads to xh0s = 0 for all s: If xh0s > 0 for any s,

then transferring that share in state s to some h1 with αh1 > 0, increases the

utility of h1, and hence the sum of utilities, with no impact through the
decrease in expected utility for h0. (If Uh0(0) = −∞, we have to worry about
how to interpret 0 · Uh0(0), but the interpretation we’ll adopt is that this is
zero.) Therefore, if we do have these nonnegativity constraints, when
maximizing the weighted sum with some zero weights, the thing to do is
to give individuals with zero weights zero shares and maximize over
everyone else. And the resulting solutions will necessarily be fully Pareto
efficient. It isn’t always true, but in this specific application of Proposition
8.10, we do not need to worry about producing Pareto-inefficient solutions
when the weighting vector includes some zeros.



•   Second, suppose individuals h0 and h1 differ in their assessment of some
state. Suppose, in particular, that πh0(s0) > πh1(s0). Since each individual’s
probabilities must sum to one, this means that

for some other state s1. But then, if Uh1 and Uh0 are “ insufficiently
concave,” we get existence problems for nearly every vector of weights. To
be very specific, suppose both Uh1 and Uh0 are linear, so both individuals
are risk neutral. Disagreeing as they do over the relative probabilities of
states s0 and s1, you can construct a bet between them where h1 wins if s1

occurs and loses if s0 occurs, and with h0 taking the other side of this bet,
which both of them view as having subjective positive expectation. If they
are both risk neutral, increasing the scale of this bet between them, whatever
else happens in the sharing rule, drives the expected utilities of both of them
to +∞, and regardless of the weighting vector, as long as it gives one or the
other positive weight, this drives the objective function to +∞; the problem
has no solution. (If one or the other has zero weight, we already know from
two paragraphs ago that there can be no solution.)

Please note carefully that while the maximization problem may not have a
solution for some weighting vectors, this doesn’t affect our earlier results: We
still know that any Pareto-efficient social state will be a solution of this problem
for some weights (αh)h∈H, and every solution that we do manage to find will be
Pareto efficient. So the plot remains the same: We want to characterize solutions
to those maximization problems, as we parametrically vary the weighting
vectors, since solutions are Pareto efficient and Pareto-efficient sharing rules
correspond to solutions. And when it comes to looking for solutions to the
maximization problems, the following result simplifies the task.

Proposition 8.12.   (xhs)h∈H;s∈S maximizes



subject to the constraints ∑h xhs ≤ Ws for all s (and, depending on the
formulation, xhs ≥ 0 for all h and s) if and only if the net-of-endowments
sharing rule for each state s, or (xhs)h∈H, maximizes

subject to the constraint ∑h xhs ≤ Ws (and, depending on the formulation, xhs ≥
0 for all h), for each state s independently.

In other words, we can solve the maximization problem state by state and then
paste the results together. Seeing that this is so is a matter of noting that

This just involves changing the order of the two summations. Maximizing the
objective function (on the left-hand side of the last displayed equation) amounts
to maximizing the right-hand side, and since none of the constraints cut across
the states, this amounts to maximizing separately each term in the sum on the
right-hand side.

At the risk of (once again) being overly pedantic, let me be clear what this is
saying. Once we fix the weights (αh)h∈H and set out to maximize, to find
Pareto-efficient sharing rules, we maximize on each state independently of what
happens in the other states. But this is for fixed weights. When it comes to
picking from among the Pareto-efficient sharing rules, if it ever does come to
that, then a selection of which Pareto-efficient sharing rule is equitable will



involve the computation of overall expected utilities, which cuts across states.
Now assume that each Uh is differentiable, with derivative denoted by 

We are looking for solutions to

plus possibly nonnegativity constraints. Letting λs be the multiplier on the
adding-up constraint and noting that the adding-up contraint will bind at any
optimum, the first-order, complementary slackness (FOCS) conditions for an
optimum if we do not have the nonnegativity constraints are

If we do have the nonnegativity constraints, the FOCS conditions change to

Since the constraints are all linear and the objective function is concave, the
FOCS conditions are sufficient for an optimum; since the constraint qualification
holds, they are necessary. That is, these FOCS conditions characterize the
Pareto-efficient net-of-endowmentoutcomes for each individual or, equivalently,
the Pareto-efficient sharing rules. They can be used, for instance, to derive the
following:

•   Suppose every individual except possibly one is strictly risk averse. Then
for each weighting vector, there is a unique solution to the maximization
problem.

•   With or without the nonnegativity constraints, the Pareto-efficient net-of-
endowment outcome rules depend on the total endowment vector Ws and



not on how the total endowment is divided between the income from the
ventures held by the syndicate and the private endowments of each
individual. Roughly put, while the syndicate may have been formed to share
in income produced from risky ventures that are jointly held by the
syndicate, Pareto-efficient sharing rules propel members of the syndicate into
sharing the risks of their private endowments. (This is not true if constraints
of the form xhs ≥ ehs are added.)

•   Suppose individuals have common subjective probability assessments; that
is, πh(s) = πh′(s) for all states s and pairs of individuals h and h′. Then the
(common) probability assessment is irrelevant to Pareto-efficient sharing
rules; if the (common) probability assessment changed to some different but
still common assessment, the set of Pareto-efficient sharing rules would not
change at all.

•   Suppose individuals have common subjective probability assessments and
every individual except exactly one is strictly risk averse, and the one
exception is risk neutral. Suppose as well that (at least) the risk-neutral party
is not subject to the nonnegativity constraint. Then every Pareto-efficient
rule has all the (strictly) risk averse individuals receiving a net-of-
endowment outcome that is constant across the states, with the one risk-
neutral individual absorbing all the risk. (The size of the various constant
net-of-endowment outcomes determines where on the Pareto frontier the
sharing rule is found.)

•   Suppose individuals have common subjective probability assessments,
nonnegativity constraints are not imposed, and every individual has a
constant-absolute-risk-aversion utility function, or Uh(x) = −e−μhx. Let τh =
1/μh; τh is sometimes called the coefficient of risk tolerence of individual h.
Let T = ∑h τh. Then Pareto-efficient rules have the form

for constants kh that sum to zero (and move the sharing rule from one point



on the Pareto frontier to another).

Problem 8.10 provides you with the opportunity to prove each of these claims.

8.6.   Efficiency?
By restricting attention to efficiency, economics avoids controversy. Surely, the
argument goes, we can all agree that an inefficient social outcome is bad and
should be replaced by an outcome that Pareto dominates it. Who would argue
against moving from one social state to another, if the second social state is
weakly preferred to the first by everyone and strictly preferred by some?
Controversy arises when we debate among the Pareto-efficient states. But can
there be any reason not to look for an efficient outcome?

Taken for what it says and not misused for what it doesn’t say, this
argument is largely unexceptional, which is why controversy-averse economists
are fond of it. But (1) it can be and, in some instances, has been misused. And
(2) some situations present complications or, at least, reasons to wonder about
the appeal of efficiency defined in the fashion of this chapter.

The misuses arise when the focus is on the comparison of processes or
policies or mechanisms, rather than on social outcomes. One
process/policy/mechanism may guarantee an efficient outcome. Another may
offer no such guarantee; indeed, another process/policy/mechanism may
guarantee a social outcome that is inefficient. Does this make the first better
than the second? Suppose the first guarantees a social outcome that, while
efficient, is vastly inequitable; the competing mechanism may provide an
inefficient outcome that is substantially more equitable. To reject the second
mechanism on grounds that it is “ inefficient” is, in essence, to say that any
efficient outcome is better than any inefficient outcome. The argument for
efficiency in this chapter certainly doesn’t imply that. To give a concrete
example (for readers with background in the relevant parts of economics), free-
trade policies may lead to efficient outcomes, while protectionism may lead to
inefficient results. But this doesn’t mean that everyone in the economy benefits
when a society moves from protectionism to free trade. Don’t misunderstand,
I’m not saying that protectionism is better. (I’m also not trying to defend the
proposition that free trade leads to efficient outcomes; that is a complex question
that is well beyond the scope of this volume or even the material planned for



subsequent volumes.) But, granting the assertion that free trade leads to an
efficient outcome and protectionism does not, this is not, by itself, a compelling
argument in favor of free trade. (This takes one into the issue of compensation,
and I again recommend Arrow’s chapter on the topic.)

The complications all have to do with the basic premise of Pareto efficiency,
sometimes called consumer sovereignty, that the preferences of the individuals
involved are all that matters.

1.   Suppose the context is dynamic and, contrary to the standard models of
dynamic choice/behavior, the preferences of the individuals involved change
through time. Do we regard the individual’s initial preferences as
controlling the definition of efficiency, or her final preferences? Instead,
perhaps we should define efficiency as: One social outcome is Pareto
superior to a second if each individual, at each point in time, regards the
first as at least as good. And if this is the criterion employed, what if the
choice of social state endogenously informs the way in which the
individual’s preferences change? That is, she has one set of “ later”
preferences in social state x, and a different set of “ later” preferences in social
state y. How do we compare x and y in such circumstances?

2.   Changing preferences are not standard in economics, so item 1 might be
regarded as something of a diversion from the mainstream of economic
thought and practice. But, still in a dynamic context, suppose the choice of
social state affects which individuals come into (later) existence. How do we
treat the preferences of the not yet born if, under state x, they will be born,
while in state y, they never will be?

3.   A third dynamic effect concerns the distinction between ex ante and ex
post utility or preferences. It is easiest to raise the issue with a story:
Throughout the 1970s, the Institute for Mathematical Studies in the Social
Sciences (or IMSSS) sponsored a biweekly series of seminars in economic
theory at Stanford University. Speakers would talk for an hour, and then
everyone would adjourn for coffee or tea and cookies in the lounge, after
which the seminar would continue for another hour or so. In the lounge was
a sofa with small pillows and, one day, two famous economic theorists, Joe
and Bob, were arguing over the contents of the pillows. Joe maintained that
the pillow had a natural down filling, while Bob thought a synthetic filling



was more likely. Being famous economic theorists, they quantified their
uncertainty, with Bob assessing probability 0.2 that the filling was natural
and Joe assessing probability 0.9. They decided, therefore, to construct a
bet about this: If the pillow had natural down, Bob would pay Joe $100,
but if it had artificial down, Joe would pay Bob $200. The problem was
that they could only discover the truth by cutting the pillow open, which
would destroy it. A new pillow would cost $50, and after consulting their
utility functions, they discovered:
 •   Relative to not betting at all, Bob would prefer a bet in which he wins

$150 if the pillow has artificial down filling and loses $100 if it did not
(a 0.8 chance at $150 and a 0.2 chance at −$100).

 •   Relative to not betting at all, Joe would prefer a bet in which he wins
$50 if the pillow has natural filling and loses $200 if not (a 0.9 chance
of $50 and a 0.1 chance of −$200 if it does not).

They could conduct this bet, which would destroy the pillow but leave
$50 in hand with which to buy a new pillow. Hence, from the ex ante
perspective, betting is Pareto superior to not betting. But ex post, all that
happens is that money has changed hands and a perfectly good pillow has
been destroyed. Is this really what we mean by Pareto superiority?

4.   The final complication, which is not specifically dynamic, goes right at
the heart of consumer sovereignty and might be called paternalism. Few
economists would think of extending the idea that the individual’s
preferences are all that matters to, say, the preferences of children. This
could be labeled as a manifestation of changing tastes (with a clear preference
for what, one hopes, will be where tastes end up), or perhaps as preferences
that are not adequately informed by all available information. But in the
latter case, do we then define Pareto superiority in terms of what individuals
would prefer if they had full information? What if the choice of social state
affects what information individuals have? What if, for instance, the verdict
is that social state x would be judged efficient if everyone had full
information, but x precludes that everyone has full information, so that a
number of individuals regard x as inferior to y? And what if it is not a
question of information, but simply a case of pure paternalism: An



individual prefers an outcome that, society strongly believes, is bad for that
individual? (Suppose the individual is genetically predisposed to
alcoholism, for instance. Or, to take an example that is a bit less extreme
and certainly more controversial, suppose some members of society save too
little for their own good, at least according to “ experts.”)

In mainstream economics, these sorts of issues rarely arise. So the general
lure of efficiency in mainstream economics is and remains very strong. But,
rarely is not never, and categories 2 and 4 given above are the starting point for
some controversies. Especially as economics expands its grasp in the directions
of behavioral phenomena, it is worthwhile to maintain a somewhat skeptical
view of efficiency as defined by an economist.
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Problems

 8.1. In the text, we observed that if h* is a dictator in the social preference
function Φ, this doesn’t imply that Φ produced social preferences  that are

identical to h*. In particular, if h* is indifferent between x and y, then Φ can

produce strict preference in either direction, while still having h* be a dictator
according to Φ.

(a) We never settled the question of whether there is any social preference
function that satisfies unanimity and IIA (and Assumption 8.1); Arrow’s
Theorem only shows that if there is such a social preference function, it must be
dictatorial. So, please clear up the existence question by producing a social
preference function that satisfies Assumption 8.1, unanimity, and IIA.

(b) Suppose that Φ works as follows: The individuals in H are sequenced
arbitrarily as h1, h2, …, hn (where n is the cardinality of H). For the array (



h)h∈H, Φ gives social preferences  that work as follows: For every x and y, x 
 y if: x h1 y;or x ~h1 y and x h2 y;or x ~h1 y and x ~h2 y and x h3 y; and

so forth. If x ~h y for all h, then x ~ y. In words, we have a sequential
dictatorship: If h1 has a strict preference, society adopts that; if h1 is indifferent
between x and y, we go on to consult h2, and so forth. Does this social
preference function satisfy Assumption 8.1, unanimity, and/or IIA?

(c) Suppose that X contains more than three elements. Does (b) exhaust the set
of social preference functions that satisfy Assumption 8.1, unanimity, and IIA?
(If so, you must prove it. If not, you can simply supply a social preference
function that satisfies these properties and is not a sequential dictatorship.)

 8.2. Arrow’s Theorem makes the assumption that X has at least three
elements. What happens if X has two elements?

 *8.3. (a) Prove Proposition 8.5.

(b) Give the sort of example described two paragraphs after the statement of
Proposition 8.5. (You can do this even if you can’t do part (a).)

 8.4. Prove Proposition 8.7.

 *8.5. Prove that if x0 is Pareto efficient in A and if, for each h ∈ H (for a finite
H), uh is a utility function representing h’s preferences, then there is a strictly

increasing function W : RH → R such that x0 maximizes W  u over the set A.
(Warning: If A is infinite, the function W may have to be discontinuous.)

 *8.6. I assert in the course of discussing Figure 8.2 (and the proof of
Proposition 8.10) that even if X is convex and each uh is a concave function, the
set {v ∈ RH : v = u(x) for some x ∈ X} may not be convex “ to the southwest.”
(See Figure 8.2a, in particular.) Give an example to demonstrate this.

 *8.7. Prove Proposition 8.11.



 8.8. Give proofs of the following three results claimed in the discussion of
syndicate theory: (a) If constraints of the form xhs ≥ 0 are not imposed and if αh
= 0 for some h, then the maximization problem has no solution. (b) If
constraints of the form xhs ≥ 0 are imposed, then even if αh = 0 for some of the
h, any solution of the maximization problem provides a Pareto-efficient sharing
rule. (c) If some sharing rule x′ Pareto dominates another sharing rule x, then
some sharing rule x″ strictly Pareto dominates x. (Why are parts (b) and (c)
connected?)

 8.9. In the formulation where the shares are not constrained, suppose that
individuals h1 and h2 differ in their assessment of state s0; specifically, suppose
that πh

1(s0) > πh2(s1). And suppose that both h1 and h2 are risk neutral. In the

text, a loose argument is given that this will mean that the maximization
problem will have no solution, as long as either αh1 or h2 is nonzero. Give a
tight argument that this is so. (Since a different argument covers the case where
any individual has zero weight, you may if you wish assume that both of them
have strictly positive weight.) Then: in the discussion, it first says that this sort
of thing will cause existence problems if Uh1 and Uh2 are “ insufficiently
concave.” Show by example that existence problems can occur if both Uh1 and
Uh2 are strictly concave, but still “ insufficiently concave” (where part of the
problem is to figure out what that vague phrase might mean).

 *8.10. Prove each of the bullet-point claims on pages 191–2.

 8.11. Consider a two-person society in which there are two consumption
g o o d s , x1 and x2. Individual 1’s utility function is 

 while

individual 2’s utility function is 
 The social endowent

consists of 15 units of the first good and 20 units of the second good, to be split
between the two.



What division of the social endowment between the two individuals maximizes
the social utility functional 2 min{u1, u2} + max{u1, u2}?

Hint: What does Figure 8.4 depict, and how did I construct it?



Figure 8.4. Hint for Problem 8.11.

 

1 In fact, Arrow calls these objects social welfare functions; I use the
alternative social preference function to prevent confusion with what later will
be called a social utility functional and also to signal clearly that this is an
object that maps arrays of preferences into social preferences.

2 You might wonder how we will get members of the society to tell us their
preferences. If they know the rule by which their preferences will be mapped into
a social preference relation and, thence, into some social state, mightn’t they
have the incentive to misrepresent how they feel? A remarkable variation of
Arrow’s Theorem, known as the Gibbard-Satterthwaite Theorem, takes up this
question. This result properly belongs to Volume 2, and it is left for there.

3 The first half of Assumption 8.1 is often called the universal domain
assumption; the second half is sometimes called the coherence assumption
(vaguely related to the terminology choice coherence from Chapter 1).

4 What if there are only two social outcomes? See Problem 8.2.
5 Unanimity is defined in terms of strict preferences and since, as we are about

to learn, the social preferences produced by majority rule are not complete and
transitive, it isn’t altogether obvious how one defines social strict preference.
I’m using the following definition: For any binary relation  that is meant to
represent weak preferences, the corresponding strict preference relation is defined
by x  y if it is not the case that y  x. Hence, if x h y for all h, where h
are strict preferences defined from the complete and transitive individual
preferences h in the usual fashion, then y h x for no h, and so it is not true
that y  x by majority rule (in fact, no one votes for this). Therefore x  y in
the social strict preferences; unanimity holds.

6 You can do it with weighted majority rule, if one person has more than
50% of the weight. But that is just another way to define dictatorship.

7 That is, if N = 6 and h has x1 h x2 ~h x3 ~h x4 h x5 ~h x6, then set
uh(x1) = 6, uh(x5) = uh(x4) = uh(x3) = (5 + 4 + 3)/3 = 4, and uh(x2) = uh(x1) = (2



+ 1)/2 = 1.5.
8 I will use the Separating-Hyperplane Theorem, but readers who prefer can

concoct an argument that enlists the Supporting-Hyperplane Theorem,
Proposition A3.13. In fact, if you are new to arguments using separating
hyperplanes, it might be good practice to construct the supporting-hyperplane
version of the proof.

9 As with the term social preference function, the term social utility
functional is not standard, but I use it to help prevent confusion. Please note
that the difference is not simply that one operates on preferences and the other on
utilities: The domain of a social preference function is the space of arrays of
preference relations and the range is a preference relation; the parallel concept
would be a function operating on an array (an H -tuple) of utility functions, and
mapping to a utility function. A social utility functional has a much less
complex domain and range; it maps a subset of RH into R. (Of course, a social
utility functional implicitly creates a mapping from H -tuples of utility functions
into a utility function; if (uh)h∈H is an H -tuple of utility functions defined on
some set X and W : RH → R, then W  (uh)h∈H is a utility function on X.)

10 Rather than the weak inequality ≤, you might want to insist on an equality
constraint. But we’ll shortly make assumptions on preferences that guarantee
that, for any Pareto-efficient sharing rule, the inequality constraint will bind.
Because we’ll enlist the optimization techniques of Appendix 5, an inequality
constraint is preferred.

11 To follow up on footnote 10, since the Uh are strictly increasing, this
constraint will bind for any Pareto-efficient sharing rule.

12 To be clear about what this means: To say that the individual utility
functions are concave is not to say that the individual’s von Neumann–
Morgenstern utility functions Uh are concave, which we are assuming. Instead,
thinking of a social state x as a sharing rule (yhs), the proposition is saying that
the function uh(x) = ∑s πh(s)Uh(yhs + ehs) is a concave function of x. This uses
the concavity of the Uh, of course, but still requires some proof.

13 If we impose some of the constraints mentioned, depending on the
parameters of the problem, there may be no feasible sharing rules. To cover this



unhappy possibility, we follow the usual convention that the empty set is
convex.

14 Suppose that h’s endowment is unknown to other members of the
syndicate; in the terminology of Volume II, the endowments are private
information to their owners. And suppose that which Pareto-efficient sharing rule
the syndicate chooses is influenced by how well off are syndicate members
overall; richer syndicate members are given less weight. Then h might want to
hide her endowment if she is relatively rich, which might mean imposing this
sort of constraint; the syndicate can only share in the resources its members hold
jointly. But please note that this story imposes major difficulties on the project
of finding efficient sharing rules: If h’s endowment is not known to her fellow
syndicate members, how would they know her level of risk aversion, unless we
supposed that they assume she has constant risk aversion?



Chapter Nine



Competitive and
Profit-Maximizing Firms

Two categories of entities inhabit neoclassical microeconomic theory,
consumers and firms. We’ve met consumers at length already, with more to
come in Chapters 10 and 11. The story about firms is shorter and simpler; it
can be contained within a single albeit lengthy chapter.

In neoclassical economics, firms are optimizing entities, similar to
consumers. In more recent developments, firms are analyzed as institutions,
within which individual optimizing agents (investors, managers, employees,
and so forth) interact. In this volume and, in particular, in this chapter, we
explore the neoclassical theory only, treating firms as entities.

Also, we will restrict our attention to the special case of a competitive (or
price-taking), profit-maximizing firm. A large portion of the neoclassical theory
of the firm concerns firms with the power to affect prices, in the so-called
theories of monopoly, oligopoly, and monopolistic competition. Consumers,
with the exception of people such as Bill Gates, are naturally thought of as
being so small relative to the markets in which they participate, that their
actions do not materially affect the prices they face; for firms, this assumption is
certainly much less natural. Yet we will study only competitive firms and,
moreover, firms that face linear prices for their inputs and outputs. For reasons
to be discussed, we will study firms with a single objective function:
maximization of profit. And we will restrict attention to the “ static” theory of
the firm: Firms, we will see momentarily, are entities that transform bundles of
commodities into different bundles of commodities via production; we will deal
only with instantaneous production, in which inputs are purchased, transformed,
and sold in an instant of time.1 We will have more to say on this point when
we discuss the assumption that firms maximize their profits.

Finally, even within the context of competitive, static, and profit-
maximizing firms, one finds a number of ways to model the capabilities of firms
and the problem they face. Our attention in this chapter is almost entirely fixed
on the firm’s capabilities modeled as a production-possibility set from which it
chooses a profit-maximizing production plan given the prices for inputs and
outputs it faces. Alternatives include the problem of minimizing the cost of
producing a fixed amount of output, using input-requirement sets and facing



prices on inputs, or the profit-maximization problem but with the firm’s
capabilities given by a production function. We briefly outline the theory of cost
minimization and input-requirement sets near the end of the chapter.

9.1.   The Production-Possibility Set

The commodity space is Rk. The (one) firm has the power to transform vectors
of commodities into other vectors of commodities; we say that the firm engages
in production. A netput vector is a vector from Rk, where a negative component
connotes a net input into the firm’s production process and a positive
component connotes a net output. So, for instance, if k = 5, the netput vector
(−2, 0, 3, −1, 2) is interpreted as the firm transforming two units of the first
commodity and one unit of the fourth into three units of the third and two units
of the fifth. These are net input and net output amounts—the −2 in the first
component could represent an initial input of three units, but with one unit
“ returned” at the end of the production process. In this idealization, production
takes no time and, in fact, when we get to markets for inputs and outputs, the
story will be that the firm buys its net inputs and simultaneously sells its net
outputs, which doesn’t leave a lot of time for the transformation to take place.

The firm is capable of some but not all netput vectors, and the full set of
production possibilities for the firm is given by a set Z ⊆ Rk, the so-called
production-possibility set or set of feasible netput vectors for this firm. It is
typical to make assumptions on the shape of Z. Some common assumptions
are:

•   No free production.  In words, the only

nonnegative netput vector that could possibly be feasible is the zero vector.
The firm can’t turn nothing into something.

•   Free disposal. If z ∈ Z and z′ ≤ z, then z′ ∈ Z. In words, if the firm can do
z, it can get by with more net input and less net output (or even turning
some net outputs into net inputs). Another paraphrase, very much in line
with the term free disposal, is: Dumpsters are freely available and free to use.

•   The ability to shut down. 0 ∈ Z. Or, in words, the firm can choose to do
nothing.

•   Convexity. The set Z is convex.



•   Closedness. The set Z is closed.

•   Increasing returns to scale. If z ∈ Z and α > 1, then αz ∈ Z.

•   Decreasing returns to scale. If z ∈ Z and 0 ≤ α < 1, then αz ∈ Z.

•   Constant returns to scale. If z ∈ Z, then αz ∈ Z for all α ≥ 0.

These are fairly straightforward properties, although decreasing returns to
scale may give you a moment’s pause. The phrase “ returns to scale” implicitly
means “ scaling up,” and so increasing returns to scale says: The firm has the
ability to scale up any feasible production plan. On the other hand, decreasing
returns to scale says: If the firm can do some production plan, it can do the same
plan on any (proportionally) smaller scale. It is when scale increases that feasible
production plans may become infeasible. Also, “ increasing” and “ decreasing”
here really mean “ nondecreasing” and “ nonincreasing,” respectively, so that an
alternative definition of constant returns to scale is that Z has both increasing
and decreasing returns.

In a moment, we will introduce the firm’s optimization problem, which is
to maximize profit, a linear function of production. We will want, when the
time comes, to make assumptions that guarantee the existence of a solution, at
least for strictly positive prices, for which purpose the following property of Z
comes into play.

•   The recession-cone property. If {zn} is a sequence from Z such that | |zn| |  →
∞, then every accumulation point of the set {zn/| |zn| | ; n = 1, 2, …} lies in
the negative orthant of Rk.2

This property deserves considerable pondering. In words, if we have a sequence
of feasible production plans whose norms diverge, and if we normalize them by
dividing each one by its norm, so the result lies on the unit circle, then the
normalized vectors will only accumulate in the negative orthant. Rephrasing
roughly, if we take any ray in Rk from the origin that has some strictly positive
components (that doesn’t run off into the negative orthant), this ray eventually
“ leaves” Z. Put this way, you can see that, except for cases where Z lies within
the negative orthant (the firm can only destroy commodities), the recession-cone
property is inconsistent with increasing (hence constant) returns to scale.



9.2.   Profit Maximization
The production-possibility set Z describes the capabilities of the firm. The other
piece of this chapter’s model of the firm is the firm’s objective function, which
determines what the firm chooses to do. The firm, the model assumes, chooses
z to maximize its profit: A vector of prices p ∈  is fixed, so that p · z is

the firm’s profit if it undertakes z; the firm chooses z ∈ Z to maximize p · z.
Note well, p · z is the value in the market (at the given prices) of all net outputs
(positive components of z) less the cost to the firm in the market of all its net
inputs (negative components of z).

We’ve already said it, but to reiterate, this assumes:

•   The firm’s level of activities doesn’t affect the price of any good, whether an
input or an output.

•   The firm faces linear prices.

And, as we’ve already said, especially when it comes to its outputs, it is less
than completely sensible to assume that firms have no impact on the prices they
face. General Motors has a pretty direct impact on the price of Cadillacs; it is
perhaps less obvious, but still plausible, that agribusiness giant ADM affects the
price of high-fructose corn syrup, one of its products, and perhaps (but less
likely) the price of corn, an input. Those are real and interesting possibilities
that are not considered in this chapter.

Even assuming that the firm has no effect on the prices it faces and that those
prices are linear, it is by no means obvious that the firm chooses to maximize
the profit it earns. Begin by thinking of a firm that is a sole proprietorship,
where the person making decisions is the owner of the firm and, therefore, the
residual claimant to the firm’s profit. Why would this individual choose z to
maximize profit? If, for instance, the sole proprietor has a particular interest in
some activity—it is fun, say—might not the person engage in that activity,
even at the cost of some profit? Or what if the firm has separation between
owners and managers? The person(s) choosing the production plan is not the
residual claimant(s) to the profit of the firm but instead her agent(s). What
motivates the manager cum agent to choose a profit-maximizing plan? Finally,
in real life (but not this model) firms exist for multiple periods. Profit is not a
clearly defined concept in this case: Does it mean accounting earnings or



income? And how should trade-offs be made between income in one period and
in the next? (We will confront these issues in Chapter 16, when time is
introduced into our models in a serious way.)

These are all good questions, and a large literature in economics exists to
deal with them. It is impossible to do justice to this literature here, without
expanding this chapter unreasonably and, in any case, some of the answers
require pieces of economics that we haven’t yet studied. So I’ll plead simply
that profit maximization is a modeling assumption, one with which economists
are comfortable not as a law of nature but as an approximation to reality. Having
said that, three specific points are worth making, albeit briefly.

•   Profit maximization as an objective function for firms is a lot more specific
than utility maximization for consumers. When we assume that a consumer
maximizes her utility, we leave it up to the consumer how she feels about
apples versus oranges. But, once prices are given, the trade-offs facing a firm
are fixed if the firm maximizes profit. (On the other hand, the choice set of a
consumer is fixed once prices are fixed and the consumer’s income is given.
For firms, the production-possibility set Z gives a lot of latitude to the
modeler.)

•   Accounting earnings or income is not economic profit. Accounting income
does not include any return on capital equipment.

•   The arguments in the literature for profit maximization when there is a
division between managers and owners of the firm turn to some extent on a
contention that managers act on behalf of the firm’s owners, who prefer profit
maximization. Why managers do this is usually the issue being studied in
the literature. But it is worth noting that the assertion that owners prefer
profit maximization is very bound up in the assumption that the firm has no
impact on prices. When firms affect prices, and when owners of the firm
consume (or are endowed with) the goods whose prices the firm affects, it is
no longer clear that the owners either should or do prefer profit-maximizing
choices by firms.

9.3.   Basics of the Firm’s Profit-Maximization Problem
For most of the remainder of this chapter, then, we study the firm’s profit-



maximization problem: For a given Z ⊆ Rk and p ∈ ,

maximize p · z, subject to z ∈ Z.

Fixing Z, wedefine

Elements of Z*(p) are called both optimal netput vectors and optimal production
plans for the firm at prices p; the correspondence p ⇒ Z*(p) is the firm’s
optimal netput correspondence. The function π is called the profit function. For
the remainder of this chapter, we assume that Z ≠ , so that π(p) > −∞ for all p.

Because Z is not necessarily compact, we don’t know, for a given price
vector p, that a solution to this problem exists. A solution could fail to exist on
either of two (general) grounds: π(p) may be finite, but Z isn’t closed. And π(p)
could be infinite: For each n = 1, 2, …, there could be some zn ∈ Z such that p
· zn ≥ n. In either case, we would say that Z*(p) = . And, in the second case,

we say that π(p) = ∞.
These are real possibilities, depending on what is assumed about Z. In

particular, assumptions of increasing returns to scale are problematic.

Proposition 9.1.   Suppose that Z exhibits increasing returns to scale. Then
for every p ∈ , if π(p) > 0, then π(p) = ∞.

Proof. Suppose π(p) > 0. Then for some z0 ∈ Z, p · z0 > 0. But by increasing
returns to scale, for each positive integer n, nz0 ∈ Z, so π(p) ≥ p · (nz0) = n(p ·
z0), which goes to ∞ as n goes to ∞.

Corollary 9.2.   Suppose that Z exhibits increasing returns to scale and 0 ∈
Z. (In particular, if Z exhibits constant returns to scale, this is true.) Then for
every p ∈ , either π(p) = 0 or π(p) = ∞.

Proof. If 0 ∈ Z, then π(p) ≥ 0 for all p. Apply the previous proposition. 



 

Results that work even if Z*(p) =  for some p

We know that π(p) is either finite or +∞ for all p.3 Because π(p) = −∞ has been
ruled out, we can talk about π being convex and homogeneous of degree 1, even
if it is sometimes infinite valued:

•   The convex combination απ(p) + (1 − α)π(p′) for α ∈ [0, 1] equals π(p) if α
= 1, π(p′) if α = 0, the usual thing if α ∈ (0, 1) and both π(p) and π(p′) are
finite, and ∞ if α ∈ (0, 1) and either π(p) or π(p′) orbothareinfinite.

•   The term απ(p) for α ≥ 0 is defined to be 0 if α = 0 (even if π(p) = ∞), the
usual thing if α > 0 and π(p) < ∞, and ∞ if α > 0 and π(p) = ∞.

With these conventions, convexity and homogeneity are defined precisely as in
the case of real-valued functions.

Proposition 9.3.   The function π is homogeneous of degree 1 and convex. For
all p and z* ∈ Z, z* ∈ Z*(p) if and only if z* is a subgradient of π at p.

Proof. For homogeneity, take any p and α > 0. If π(p) < ∞, then for each  > 0,
there is some  such that  But then

Since  is arbitrary here, this implies that π(αp) ≥ απ(p). If π(p) = ∞, then for
any positive integer n, for some zn ∈ Z, p · zn ≥ n. But then π(αp) ≥ (αp) · zn =
α(p · zn) ≥ αn, and since n is an arbitrary positive integer here, we again
conclude that π(αp) ≥ απ(p). These are the only two cases, so π(αp) ≥ απ(p)
unconditionally. Apply this to p′ = αp and α′ = 1/α, and you conclude that π(p)
≥ (1/α) π(αp), and combining the two inequalities shows that π(αp) = απ(p).

This leaves the special case α = 0. The function π has only been defined for
p ∈ , so in one sense, we don’t have to worry about α = 0; 0 · p = 0, so

π(αp) for α = 0 is not defined. But there is no problem in extending the domain



of definition of π (: = supz∈Z p · z) to all nonnegative p (or even p with negative
components); if we do this for p = 0, we get (of course) π(0) = 0. And our
convention is that 0 · π(p) = 0, whether π(p) is finite or infinite, so π(αp) =
απ(p) works for α = 0.

Hence, the function π is homogeneous of degree 1.
To show that π is convex, we need to show that π(αp + (1 − α)p′) ≤ απ(p) +

(1 − α) π(p′) for all p, p′ ∈  and α ∈ [0, 1]. Let p″ denote αp + (1 − α)p′

for the duration of this proof. The cases α = 0 and α = 1 are trivial. So suppose
α ∈ (0, 1). Suppose π(p″) < ∞. For every  > 0, there is (then) some 

 such that  But then

Since  > 0 is arbitrary, this implies that

This leaves the case α ∈ (0, 1) and π(p″) = ∞. If either π(p) = ∞ or π(p′) =
∞, then απ(p) + (1 − α)π(p′) = ∞, and we are done. So we only need to worry
about the case there both π(p) and π(p′) are finite. But if both are finite, since
π(p″) = ∞, we can find a z* ∈ Z such that p″ · z* > max{π(p), π(p′)}. That is,

an obvious contradiction. This covers all cases; π is convex.
In general, subgradients of π at p are affine functions, but since we know that

π is homogeneous of degree 1, Proposition A3.26 tells us that subgradients are
linear; that is, they have the form p · z* for some z* ∈ Rk. And z* is a



subgradient at p if p · z* = π(p) and p′ · z* ≤ π(p′) for all p′ in the domain of π.
Now as long as z* ∈ Z (which is part of the premise), p′ · z* ≤ π(p′) for all p′ ∈

 (the domain of π). So this part of the proposition comes down to: for p

and z* ∈ Z, z* ∈ Z*(p) if and only if p · z* = π(p). This is, pretty much, a
definition of Z*(p).4

It would be nice to be able conclude that if z* is a subgradient of π at p,
then z* ∈ Z*(p), without assuming that z* ∈ Z. But this isn’t true. It isn’t
hard to construct examples where z ∈ Rk is a subgradient of π at some p, but z∉
Z. (Let k = 2 and let Z = {(−1, 1), (−3, 2), (0, 0)}. What is π?) However, while
this isn’t true, it is sort-of true, in a sense that we will explain later in the
chapter.

Moving from convexity and homogeneity of the profit function to convexity
and homogeneity of the solution set, a few results can be harvested, even
allowing for nonexistence of a solution. Keep in mind that, by definition, the
empty set is trivially convex.

Proposition 9.4.   If Z is convex, then Z*(p) is convex for each p.

Proof. Suppose z and z′ are both in Z*(p). For all α ∈ [0, 1], αz + (1 − α)z′ ∈
Z because Z is convex, and p·(αz + (1−α)z′) = αp·z+ (1−α)p · z′ = απ(p) +
(1−α)π(p) = π(p); therefore αz + (1 − α)z′ ∈ Z*(p). 

In the spirit of earlier results on uniqueness of solutions, we’d like to give
conditions under which Z*(p) is at most singleton. We say “ at most” here
because we aren’t (yet) going to rule out that Z*(p) is empty. But if Z*(p) is
nonempty, we’d like it to be singleton. Unhappily, the method we employed
previously to get a unique solution result does not work here. That method
invokes strict quasiconcavity of the objective function (typically, the utility
function). But the objective function here is linear. What we need instead is an
assumption that the feasible set Z is “ strictly convex.” This isn’t a concept
we’ve encountered; hence the scare quotes. But something like the following
seems to capture what we might mean: If distinct z and z′ are both in Z, points
along the line segment that joins them are not on the boundary of Z but are



instead interior to Z.
In fact, we need something less than this to be true of Z, because we only

need “ interiority” in directions that increase profit.

Proposition 9.5.   Suppose Z has the property that, if z, z′ are distinct
elements of z, then there exist an α ∈ (0, 1) and a nonzero, nonnegative vector
ζ ∈  (depending on z, z′, and α) such that ζ + αz + (1 − α)z′ ∈ Z. Then

for all strictly positive p, Z*(p) is either empty or singleton.

Before giving the (pretty simple) proof, remarks about the property are worth
making. We aren’t looking at all convex combinations of z and z′ because we
only need one. And you should think of ζ as a small addition to the convex
combination of z and z′; we will settle for any (small) nonnegative combination,
because prices are strictly positive. Of course, this property is implied by the
more restrictive assumption that, for all distinct z and z′ in Z, every nontrivial
convex combination of them (that is, αz + (1 − α)z′ for α ∈ (0, 1)) is in the
interior of Z.

Proof. Suppose z and z′ are distinct elements of Z that, for some p, are both in
Z*(p). Produce the ζ and α assumed to exist, and note that p · (ζ + αz + (1 −
α)z′) = p · ζ + π(p). Since ζ is nonnegative and nonzero and p is strictly
positive, p · ζ is strictly positive, and this immediately gives a contradiction. It
is impossible for Z*(p) to contain two distinct production plans. 

Proposition 9.6.   For all p and α > 0, Z*(p) = Z*(αp).

In words, the set of solutions is homogeneous of degree 0 in p, as long as we
don’t go to the extreme of a price vector that is identically zero (that is, by
taking α = 0). I assume you don’t need the details of a proof for this.

Existence of solutions, and a technical lemma
Proposition 9.7.   Suppose Z is closed and nonempty. For a given z, a
solution to the firm’s profit-maximization problem exists for every strictly
positive price vector p if and only if Z satisfies the recession-cone property
(repeated here for convenience): If {zn; n = 1, 2, …} is a sequence from Z such



that | |zn| |  → ∞, then every accumulation point of the set {zn/| |zn| | ; n = 1, 2,
…} lies in the negative orthant of Rk.

Remark: It will become obvious in the course of the proof that if Z admits a
solution to the profit-maximization problem for every strictly positive p, then Z
has the recession-cone property, even if it is not closed. And if Z is empty, then
clearly the profit-maximization problem never has a solution, so Z being
nonempty is necessary for there to be solutions. The assumption that Z is
closed is sufficient but not, strictly speaking, necessary for there to be solutions
for all strictly positive p, since Z could fail to be closed in inessential places,
places where the firm would never go to find a profit-maximizing production
plan regardless of prices (such as, in the negative orthant, if 0 ∈ Z).

Proof. First we show that the recession-cone property is sufficient: Fix a strictly
positive price vector p. Take any z0 ∈ Z (Z is nonempty), and let L = p · z0 −
1. Of course, L is then a lower bound on the feasible profit at the price vector p.

Take a sequence { zn} of production vectors in Z such that p · zn approaches
the value supz∈Z p · z. If this sequence lives inside a bounded set, or even if
some subsequence of the sequence lies inside a bounded set, then an
accumulation point (of the subsequence) can be extracted. This accumulation
point will be in Z, because Z is closed, and (by continuity of p · z in z) it will
be a solution to the firm’s profit-maximization problem. The only case we must
worry about, then, is if {zn} eventually leaves every bounded set, which implies
that | |zn| |  → ∞. Also, p · zn > L for all sufficiently large n.

Let  (Do this for n large enough so that zn = 0 no

longer happens and so that p · zn > L.) The sequence  lives on the unit

circle; hence it has accumulation points. Since p · zn > L, 
 The limit in n of the right-hand side is zero,

and hence, for any accumulation point, z* of the sequence 
 p · z* ≥ 0. But by the recession-cone property,

any and all accumulation points z* must lie in the negative orthant. Since p is
strictly positive, p · z* < 0, a contradiction.



And to show that the recession-cone property is necessary: Suppose the
recession-cone property fails. That is, for some sequence {zn} from Z, | |zn| |  →
∞ and zn/| |zn| |  → z*, which is not in the negative orthant. Let i be any
component of such that  Consider the price vector p* that is 1 in

all components but the ith, and has the value  in the ith

component. Since z* lies on the unit circle, none of its components can have an
absolute value greater than 1, so in p* · z*, the contribution of the ith term in
the inner product is at least k + 1 (positive) and the contribution of all other
terms can be no less than −1 (there are k − 1 of these), so the inner product is at
least 2. Moreover, by continuity of the inner product, there is some N
sufficiently large so that for all n ≥ N,

Therefore, for all these n,

which goes to infinity, and the firm’s profit-maximization problem has no
solution at p*. 

The proof of this proposition shows why the recession-cone property is just
the thing for the result we want. If we can go arbitrarily far out (in norm) in a
direction that is not in the negative orthant, we can find a strictly positive price
vector that gives strictly positive profit in that direction, and going further and
further in that direction (at those prices) will give unbounded profit. If there is a
solution to the profit-maximization problem for every strictly positive price
vector, the recession-cone property is necessary. On the other hand, while Z can
be unbounded, if we know that there is some feasible profit level L, then we
know that the solution to the profit-maximization problem at prices p must lie
within {z ∈ Z : p · z ≥ L} = Z ∩ {z ∈ Rk : p · z ≥ L}. The recession-cone



property tells us, essentially, that for every strictly positive price vector p, this
intersection of Z and a half-space is a bounded set. As long as Z is closed, it is
moreover a compact set and, fixing the prices p, we can restrict our attention to
a compact set when looking for a profit-maximizing production plan.

The following technical lemma extends the result announced at the end of
the previous paragraph. Can you guess the purpose of this lemma?

Lemma 9.8.   Suppose Z is closed, nonempty, and has the recession-cone
property. Then for any z0 ∈ Z, the correspondence

is locally bounded and upper semi-continuous.

Proof. Upper semi-continuity of the correspondence is easy: Suppose {(pn, zn)}
is a sequence of price–production plan pairs in the graph of the correspondence
with limit (p, z). By assumption, p remains in the domain of the
correspondence; we assume that p is strictly positive, and the key is to prove
that z lies in the correspondence evaluated at p. Since Z is closed and z is the
limit of points zn in Z, z is certainly in Z. And since pn · zn ≥ pn · z0 for each n
and the dot product is jointly continuous, we know by continuity that p · z ≥ p
· z0. That’s it for upper semi-continuity.

Local boundedness is harder. If the correspondence is not locally bounded,
then it fails at some strictly positive price vector p. At this price vector p, there
is a sequence of prices {pn} with limit p and corresponding {zn} such that zn ∈
Z and pn · zn ≥ pn · z0, and limn | |zn| |  = ∞. Define 

Each  lies in the unit circle, a compact set, so by looking along a
subsequence if necessary, we can assume that the sequence  converges to

s o m e z*. Since pn · zn ≥ pn · z0 for each 
 We

know that the pn converge to p, the  converge to z*, and z0/| |zn| |  converges

to 0, so we know that p · z* ≥ 0. But p is strictly positive and z* lies in the



negative orthant by the recession-cone property, a contradiction. The
correspondence is indeed locally bounded. 

Before we make (the obvious?) use of the lemma, one final remark on
existence of solutions is in order. The recession-cone property is, essentially,
just what is needed to ensure the existence of solutions to the firm’s profit-
maximization problems for all strictly positive p. But it isn’t the most
transparent property in the world, and you will find treatments of the theory of
the firm that give more transparent properties on Z that are sufficient for
solutions to exist. One that is particularly prevalent is the assumption that Z is,
up to free disposal, generated by a compact set. To be precise, the property is
that there is some compact set Z0 such that Z0 ⊆ Z and, for every z ∈ Z, there
is some z0 in Z0 (depending on z) such that z0 ≥ z. It is straightforward to see
that, if such a Z0 did exist, then all points z ∈ Z and not in Z0 are not
candidates for solutions to the profit-maximization problem at any strictly
positive price p, since any disparity between z and its z0 is, at strictly positive
prices, a recipe for lowering profit. Hence with such a Z0, we can restrict
attention in solving the profit-maximization problem to Z0. And if Z0 is
compact, life becomes very easy.

Of course, this means that if such a Z0 exists, then Z satisfies the recession-
cone property. As a bit of drill, you might wish to prove that directly.

Berge’s Theorem for the profit-maximization problem
Getting back to the lemma, it is the key step to proving the following:

Proposition 9.9 (Berge’s Theorem for the profit-maximization problem). If
Z is closed, nonempty, and satisfies the recession-cone property, then the
correspondence p ⇒ Z*(p) is nonempty valued, locally bounded, and upper
semi-continuous, and the function p → π(p) is continuous (and real valued).
For any (open) domain of prices over which Z*(p) is singleton valued, the
function p → z*(p) that is described by the correspondence is continuous.

Proof. This is a straightforward application of Berge’s Theorem, Proposition
A4.7, and its Corollary A4.8. The parameter θ is the price vector, the variable



is the production plan z. The objective function is p · z, which is certainly
jointly continuous. The A correspondence—the large feasible set—is the
constant correspondence A(p) ≡ Z. Being constant, this is certainly lower semi-
continuous. And the B correspondence—wherein all solutions are found—is
constructed as follows: Letting z0 be any fixed element of Z (here is where the
nonemptiness of Z comes in), set B(p) = {z ∈ Z : p · z ≥ p · z0}. Of course, the
maximum profit over all of Z is the same as the maximum over B(p) for each p,
and B(p) contains Z*(p). And the lemma establishes that this correspondence is
locally bounded (hence so is Z*(p)) and upper semi-continuous. 

9.4.   Afriat’s Theorem for Firms
In the spirit of Afriat’s Theorem ( Chapter 4, remember?), suppose that you are
given a finite amount of data alleged to be a firm’s profit-maximizing production
choices. Specifically, for a finite list of price vectors, {pn; n = 1, … , N}, it is
alleged that zn is “ the” profit-maximizing choice of the firm at prices pn, for n =
1, …, N. We put the in scare quotes here because we don’t preclude that there
are other profit-maximizing choices the firm might have made at the prices pn.
The question is, Is there some production possibilities set Z that rationalizes
these data; that is, such that each zn is in Z, and zn ∈ arg max{pn · z : z ∈ Z}
for each n? Compared to Afriat’s Theorem, the answer is remarkably simple in
this context.

Proposition 9.10.   Given a finite list of prices and production plans, {(pn,
zn); n = 1, …, N} (where each pn ∈  and zn ∈ Rk), a set Z ⊆ Rk exists

such that zn ∈ arg max{pn · z : z ∈ Z} for each n if and only if

Moreover, if (9.1) holds, the set Z works if and only if it satisfies

To paraphrase: The necessary and sufficient condition is that, for each listed



production plan zm and each price vector pn, the production plan zn that is
alleged to be profit maximizing at prices pn must make at least as much profit at
prices pn as does zm. And the last part of the proposition says: To work, a
production-possibility set Z must contain at least all the listed production plans
and cannot contain any production plan z that, at any of the prices pn, makes a
greater profit than does zn.

If you think about it, this is obvious. First, (9.1) is necessary: For a Z to
exist, it certainly has to contain (at least) all the zn. And if at some price pn, it
is true that pn · zm > pn · zn for some zm, then zn can hardly the be profit-
maximizing choice out of Z, which must contain zm, at the prices pn.

As for sufficiency of (9.1), suppose it holds. Let Z = {zn; n = 1, …, N}.
The condition says that, for each n, pn · zn ≥ pn · zm for all m; hence zn is a
profit-maximizing choice in this Z at the prices pn. So this Z works.

Of course, no Z that works can be any smaller in the sense of set inclusion
than the set {zn; n = 1, …, N}. And as long as the set Z contains nothing that
gives greater profitat pn than zn, for each n, it will work. If it contains any plan z
that, for some n, gives greater profit at pn than does zn, then this Z will not
work. These two statements together give the right-hand set inclusion in (9.2).
(If we had been formal and written Proof at the start of this argument, we would
now conclude with an endproof mark.)

Recall that, in Afriat’s Theorem for consumer choice, the continuity,
nondecreasing, and convexity of preferences were all untestable: If any preferences
rationalized a finite set of demand data, we would find continuous, strictly
increasing, and convex preferences that did so. The corresponding properties in
this context would be a Z that is closed, has free disposal, and is convex. We
might also wish to insist that the Z produced has the recession-cone property.

Proposition 9.11.    Suppose a finite set of prices and production-plan data
{(pn, zn); n = 1, …, N} satisfies (9.1) and so can be rationalized as the choice
of a profit-maximizing firm in the sense of Proposition 9.10. Let



(In words,  is everything that lies (weakly) below points in the convex hull

of the {zn}.) Then  works—the data are consistent with the firm having

production possibility set —and  is closed, convex, and satisfies the free-

disposal and the recession-cone properties. Moreover,  is the smallest (by

set inclusion) convex and free-disposal set that rationalizes the data.

Proof. To show that  works, we need to show that, for each n, pn · zn ≥ pn ·

z for all z ∈ . But if z ∈ , then  where

the αm are nonnegative and sum to 1. So, since pn is strictly positive, pn · z ≤
pn · [∑m αmzm] = ∑m αm(pn · zm) ≤ ∑m αm(pn · zn) (because (9.1) holds) = pn ·
zn. It is obvious that  satisfies the free-disposal property. It is easy (and left

to you) to show that  is convex. To see that  is closed, suppose that {z}

is a sequence from  that converges to some z∞; since each zl is from , we

h a v e , where for each l, the weights 

 are nonnegative and sum to 1. Therefore, all

the weights lie in the unit interval, and by looking along a subsequence l′, we
can assume that  exists for each m. Call this limit ;

then we know that these limits are all nonnegative and, by passing to the limit
along the subsequence in the equation , sum to one. But

then because , we can again look along this

subsequence to conclude that , which means

that .



To show that  satisfies the recession-cone property: Let {zl} be a

sequence from  whose norms diverge to infinity and such that zl/| |zl| |

converges to some  on the unit circle. Write 

where the sum on the right-hand side is a convex combination of the zm. Let me
rewrite this as , where ζl ≤ 0; then

Now as l goes to infinity, the term  must go to

zero, because the norm of the numerator is bounded above by largest of the
norms of the zm (use the triangle inequality and the fact that the weights are all
between zero and one for each l), while the denominator goes to infinity. So

and since the ζl are all nonpositive, the latter limit must lie in the negative
orthant.

Finally, suppose Z is a set that contains {zm; m = 1, …, N} and is convex
and has free disposal. Since Z is convex, it contains every convex combination
of the zm, and since it has the free-disposal property, it contains every z less than
or equal to a convex combination of the zm. Therefore, Z must contain ; 

is the smallest convex and free-disposal set that works. 
It is perhaps worth pointing out that the set on the right-hand side of (9.2),

{z ∈ Rk : pn · z ≤ pn · zn for n = 1, …, N} is closed, convex, and has the free-
disposal property (recall that each pn is strictly positive). But this set fails to
satisfy the recession-cone property.



The own-price effect for profit-maximizing firms
You might also recall from Chapter 4 the discussion of the own-price effect for
consumers, and the corresponding discussion of Giffen goods. For firms, once
again, things are much simpler. We start with a lemma.

Lemma 9.12.   Suppose z ∈ Z*(p) and z′ ∈ Z*(p′). Then (p − p′) · (z − z′) ≥ 0.

Proof. Since z ∈ Z*(p) and z′ ∈ Z*(p′), both z and z′ are in Z. Therefore, p · z
≥ p · z′ and p′ · z′ ≥ p′ · z. Therefore, p · z + p′ · z′ ≥ p · z′ + p′ · z, or p · z − p ·
z′ − p′ · z + p′ · z′ ≥ 0, which is (p − p′) · (z − z′) ≥ 0. 

Corollary 9.13.   Consider a profit-maximizing firm and its response to two
price vectors, p and p′, which differ only in the ith coordinate. That is, 

 for j ≠ i. Suppose that  If z is a profit-

maximizing choice by the firm at prices p, while z′ is a profit-maximizing
choice at p′, then

Proof. From the lemma, (p − p′) · (z − z′) ≥ 0. By assumption, in (p − p′), the
only nonzero component is the ith, which is strictly positive. Hence zi ≥ z′i is
required if the dot product is to be nonnegative. 

A bit of interpretation is in order. Suppose first that good i is an output of
the firm. The corollary then says that, as the price of output good i increases,
the firm’s profit-maximizing choice cannot be to decrease the amount of good i
it produces. To say a word more about this, fixing all prices but the price of
good i, let Zi(pi) be the set of levels of output of good i consistent with profit
maximization and a price pi for good i. The correspondence pi ⇒ Zi(pi) is then
the supply “function” of firm i, fixing all prices but the price of its output good
i. I’ve put scare quotes around “ function” because, of course, this is really a
supply correspondence. What we’ve just seen is if 

 and  then 

 Or, in words, a profit-maximizing firm’s supply “function”

must be “upward sloping,” where now we have two sets of scare quotes, the



first because it is a correspondence, and and the second because we have no
justification for using the term “ slope” at this level of generality. (If we knew
that it was a function—that each Zi(pi) is singleton valued—would we know
that the function described is continuous?)

On the other hand, suppose that good i is an input to the firm. Then the
corollary says that, as the price if input i increases, the (profit-maximizing) firm
will never increase the amount of this input that it uses. (Since inputs have
negative signs,  for input i means that zi is less negative than 

it constitutes less of input i.)

9.5.    From Profit Functions to Production-Possibility Sets
What we’ve done to this point in this chapter runs very much in parallel with
results for the theory of the consumer in Chapters 3 and 4. In Chapter 3, we
discuss the solution of the consumer’s problem using calculus and the theory of
constrained maximization, something we haven’t done here (and will not do).
But, except for that, we’ve replicated the results of Chapters 3 and 4.

Now we step off into territory we didn’t cover in the theory of the consumer.
(And, to foreshadow developments, this is territory we’ll cover for the consumer
in Chapters 10 and 11.) The plot line, overall, runs as follows. In the previous
section, we investigated what one concludes from a finite set of data about the
(alleged) activities of a profit-maximizing firm. Now we ask: Suppose you are
handed what is alleged to be the full set of activities of a profit-maximizing firm.
That is, we are told what the firm will choose to do not for a finite set of price
vectors, but for every strictly positive price vector. Are these alleged profit-
maximizing production plans really and truly the plans that would be selected
by a firm with some production-possibility set Z?

The proof of Proposition 9.10 suggests a simple answer. We’re being given,
for each p ∈ , an alleged profit-maximizing production plan z*(p). For a

Z to exist that rationalizes this now infinite collection of data, we know that Z
must be at least {z*(p); p ∈ }. That is, every production plan that, it is

alleged, the firm chooses must be in any Z that rationalizes these choices.
Adding more things to Z only makes it harder for these choices to be profit
maximizing, so, as long as we aren’t concerned with free disposal or convexity,



why not stop with precisely this smallest possible set Z? Then we are fine, as
long as

That’s easy enough. However, it isn’t quite useful, since those are a lot of
conditions to check. We aim to find a condition that is easier to check in
practice. And that is really where we are headed.

To get there, let me give an alternative formulation to the question. Suppose
you are handed an alleged profit function π. That is, for each p ∈ , you

have a number π(p) that is alleged to be the profit earned by a firm that is
characterized by some unspecified Z. Is there some Z that generates this π and, if
so, what can you say about it?

This sounds like a lot less data than are contained in a z*(p) function. And,
in fact, the profit function cannot provide any more information than you have in
a z*(p) function: If someone provides you with, for each p ∈ , a

production plan z*(p) that is meant to be the optimal production plan for some
firm, you have also simultaneously been handed the profit function for this firm,
since π(p) = p · z*(p). So it can’t be any easier to answer the question
formulated this way, and it probably seems a lot harder.

Next, recognize that we know a number of necessary conditions for a
candidate profit function π : π must be convex, continuous, and homogeneous of
degree 1. Is it possible that these necessary conditions are also sufficient?
Perhaps suprisingly, they are.

Proposition 9.14.   Suppose π :  → R is convex and homogeneous of

degree 1.5 Let

Then Z* is closed, convex, and has free disposal. And π is the profit function



for a firm with production-possibility set Z*; hence Z* satisfies the recession-
cone property.

Proof. Rewrite

This is the intersection of half-spaces, each of which is closed and convex, so
the intersection is closed and convex. To show that Z* has free disposal,
suppose that z ∈ Z* and z′ ≤ z. Since z ∈ Z, p · z ≤ π(p) for each p ∈ ,

and since z′ ≤ z and each p is strictly positive, p · z′ ≤ p · z ≤ π(p) for each p ∈ 
; therefore z′ ∈ Z*.

What is left? We need to show that, for each p* ∈ , there is some z*

∈ Rk such that p* · z* = π(p*) and p · z* ≤ π(p) for all p ∈ . This z* will

be a member of Z*, and since p* · z ≤ π(p*) for all z ∈ Z* by definition, it will
be profit maximizing, producing profit π(p*), at p*. If we do this, we have
completed the proof. Please note: At this point, we don’t even know that Z* is
nonempty. But we haven’t used the convexity and homogeneity of π, yet. Now
we do.

Since π is convex and each p* ∈  is in the interior of the domain of π,

there exists a subgradient of π at p*. (See Appendix 3 and, in particular, section
A3.6. The discussion there is about concave functions and supergradients, but
all the results there work for convex functions and subgradients.) Since π is
homogeneous of degree 1, its subgradients are linear functions (Proposition
A3.26); that is, there exists some z* ∈ Rk such that p* · z* = π(p) and p · z* ≤
π(p) for all p ∈ . That’s what we needed to show.

The last conclusion follows from Proposition 9.7. 



Recall the second half of Proposition 9.3: For a given Z, p, and z* ∈ Z, z*

is a subgradient of π at p if and only if z* ∈ Z*(p). We said at the time that we
would like to drop the condition that z* ∈ Z* and conclude simply that z* ∈
Z*(p) if and only if z* is a subgradient of π at p. But, for general Z, we cannot
do this, because the given Z may not be big enough. Since z* is a subgradient
of π at p, adding it into Z* won’t affect π at all. But we don’t know, a priori,
that z* is in the originally provided Z. I have emphasized the previous two
sentences, so don’t rush past them too quickly. To reiterate: To say that z* is a
subgradient of π at p means that p′ · z* ≤ π(p′) for all p′. Hence, if z* is not a
member of Z already, adding it to Z does not increase the profit the firm can earn
at any price p′. Being a subgradient at p also means that p · z* = π(p); z*, upon
joining Z, will become a solution to the firm’s profit-maximization problem at
the price vector p. But it is possible (see Problem 9.1) that some subgradients
of π at some prices p are not members of Z, initially. This raises the question
that is the title of the next section.

9.6.   How Many Production-Possibility Sets Give the Same Profit
Function?

The answer to this question involves the closure of the free-disposal convex
hull of a set Z.

Definition 9.15. For any set Z ⊆ Rk, the free-disposal convex hull of z, or
FDCH(Z), is the set



And the closure of the free-disposal convex hull of z, or  is

the closure of FDCH(Z).

In words, take Z, take its convex hull and then take everything that is in or
below the convex hull, and you have FDCH(Z). Add in all the limit points of
this set, and you have . It is obvious, I hope, that if Z is

convex, closed, and has free disposal, then  = Z.

With this concept in place, the answer to the title of this section is, almost,

Z and Z′ give the same profit function if and only if  = 

.

In one direction, this is exactly true.

Proposition 9.16.   If  = , then Z and

Z′ have the same profit function.

Remark. Before getting to the details of the proof, let me clarify the possibility
of infinite-valued profit functions: In this section, they are allowed. That is, we
will deal in this section with general production-possibility sets Z, with only
one restriction: Z must be nonempty. Once we know that Z is nonempty, we
know that its profit function π, defined for p ∈  as

is never equal to −∞. But unless we assume that Z is closed and has the
recession-cone property, we cannot rule out the possibilities (a) that, for a
particular p, the supremum is not attained by any z ∈ Z, even if π(p) < ∞, and
(b) that, for a particular p, the supremum is +∞, in which case the supremum is
certainly not attained at any z. I don’t wish to preclude either of these
possibilities, and proofs of this proposition and Proposition 9.17 are valid, even
if these possibilities are not precluded.



Compare with Proposition 9.14. The statement of that proposition begins
with a function π :  → R that is convex and homogeneous of degree 1. By

assumption, the range of π is the real line, not the extended real line (i.e., values
of ∞ are ruled out by assumption), and so the Z* that is produced (which we
know is closed, convex, and has free disposal) must satisfy the recession-cone
property. It is interesting to speculate on what would happen if we had a
candidate profit function π that was allowed to take on values of ∞; of course, if
we allow this, we’d better be clear what we mean by things like “ convex” and
“ homogeneous of degree 1.” We’ll get back to this, although a bit informally,
next section.

Proof. We prove this by showing that if π is the profit function generated by a
set Z and  is the profit function generated by , then π ≡ 

. This shows the result, since if this is true, and if π′ is the profit function
generated by some other Z′ such that  = 

, then π′ ≡  ≡ π.
Since Z ⊆ , it is clear that  ≥ π; maximizing over a

larger set of production possibilities can only increase profits. So we are done if
we show that  can never strictly exceed π.

Suppose by way of contradiction that it does. That is, for some strictly
positive price p, (p) > π(p). Then for some  > 0, we can find z ∈ 

 such that p · z > π(p) + . By continuity of the dot

product, we can find some z′ ∈ FDCH(Z) close enough to z so that 
 Since z′ ∈ FDCH(Z), there is some z″ ∈

CH(Z) (the convex hull of Z) such that z″ ≥ z′, which (since prices are strictly
positive) implies that  But z″ is a convex

combination of elements of Z; write  where each zj

∈ Z and the scalars are nonnegative and sum to one. Since 
 and since

t h e αj are nonnegative and sum to one, for some index 



 Since this zj is from Z, we have a

contradiction. 

The converse is only almost true.

Proposition 9.17.   Suppose (nonempty) Z and Z′ have different closed free-
disposal convex hulls; that is,  ≠ . Then

either (a) they generate different profit functions, or (b) they both generate
profit functions that are identically +∞.

Proof. Z generates the same profit function as does , and Z′

generates the same profit function as does ., so we can

rephrase this proposition as follows: If Z and Z′ are closed, convex, and have free
disposal, and if they are not identical, then either (a) they generate different profit
functions or (b) they both generate the profit function that is identically +∞.
We’ll prove the proposition stated this way.

So suppose Z and Z′ are both closed, convex, have free disposal, and are
different. Let π be the profit function for Z, and let π′ be the profit function for Z′.
If π = π′ and both are the constant function equal to +∞, there is nothing to
show, so suppose that one or the other of these functions is finite valued at some
price.

Since Z and Z′ are different, there are points in one that are not in the other. I
need either

•   a point z* ∈ Z \ Z′ and a strictly positive price  such that π′( ) < ∞, or

•   a point z* ∈ Z′ \ Z and a strictly positive price  such that π( ) < ∞.

I claim that it must be possible to find z* and  that satisfy one or the

other (or both) of these joint conditions. Suppose Z ⊆ Z′. Then π(p) ≤ π′(p) for
all strictly positive p. Of course, in this case, we can find a z* ∈ Z′ \ Z. And
since either π or π′ is finite valued for some price , π, being smaller, must be



finite valued for some ; that is, the second of the two bullet points holds. The

case Z′ ⊆ Z is handled symmetrically, landing us in the condition of the first
bullet point. And if neither Z nor Z′ is a subset of the other, then there are
points in either one not in the other one, and we pick the first or second bullet
point depending on which of π or π′ is not identically ∞.

So, it is without loss of generality to assume that z* and  exist as in the

first bullet point: z* is in Z but not Z′, and π′( ) < ∞.

Since Z′ is convex and z* is not in Z′, and since the set {z*} is compact, we
can strictly separate z* from Z′. That is, we can find a vector q ∈ Rk and a
scalar b such that q · z < b < q · z* for all z ∈ Z′. Since Z′ has free disposal, q
must be nonnegative: Suppose qi < 0. Take any vector z ∈ Z′, and let dN be
the vector (0, 0, …, 0, −N, 0, …, 0), where the −N is in component i. Then z
+ dN ∈ Z′ by free disposal, and q · (z + dN) = q · z −Nqi which, as N goes to
infinity, will certainly exceed any finite b.

Let δ  = q · z* − b. Let  > 0 be such that  and

π′( ) < δ /3, and then let  Note that p* is strictly

positive. We have 

while for all z ∈ Z′, 

and so

Hence the two profit functions are different at p*. 

This result gives us the following corollary, which may be obvious but is
still worth stating explicitly.



Corollary 9.18.   Suppose that a production possibility set Z that is closed
and convex and has free disposal generates a profit function π :  → R.

Then if

Z* = Z. Moreover, Z = Z* is closure of the free-disposal convex hull of all the
subgradients of π.

The proof is left for you to supply (it should be very quick and easy); it
basically consists of juxtaposing results already provided.

Propositions 9.16 and 9.17 would be so much nicer if we could simply say
that Z and Z′ have the same profit function if and only if  = 

. The caveat in Proposition 9.17 about them sharing the

profit function π(·) ≡ ∞, even when  ≠ ,

messes up an otherwise very pretty picture. It isn’t a hugely offensive mess, but
if you tracked the proofs closely, you may see a way around it.

We’ve defined the profit function π for strictly positive prices. Now enlarge
its domain, to be all positive (that is, nonnegative) prices. Define for any set Z
⊆ Rk the extended6 profit function  by

I’m subscripting  by the set Z that generates it as a notational convenience.
As is true throughout this section, I allow Z to take on the value +∞. (I
assume throughout that Z is nonempty, so I don’t need to worry about the
value −∞.)

Corollary 9.19.   For any Z, Z′ ⊆ Rk,  = 

 if and only if Z ≡ Z′.



That is, allowing nonnegative (as opposed to only strictly positive) prices gets
us the no-mess result. It is a bit of an abuse of language to call this a corollary,
but it does follow fairly easily from the proofs of Propositions 9.16 and 9.17. If
you aren’t sure why, see Problem 9.7.

9.7.   What Is Going On Here, Mathematically?
(You may skip this section if the mathematics is getting too thick for you, but if
you want to understand what just happened, you should persevere.)

Except for the little bit of mess that is cleaned up by Corollary 9.18,
Propositions 9.16 and 9.17 establish a one-to-one relationship between closed,
convex, free-disposal production-possibility sets (or the equivalence classes of
production-possibility sets that share the same ) and their profit
functions. That there should be this one-to-one relationship may seem fuzzy to
you, in which case consider the following.

Section 3 of Appendix 3 provides a fairly intuitive mathematical result, the
Support-Function Theorem, which says that a closed and convex set Z ⊆ Rk

that is not all of Rk is the intersection of all the closed half-spaces that contain
it. Once you have a good feel for separating-hyperplane theorems, it isn’t hard to
see why this should be: If  is any point not in Z, we can strictly separate 
from Z with a hyperplane, so  won’t be in the intersection of all the closed
half-spaces that contain Z. And, of course, Z is in that intersection.

But now write out in symbols “ the intersection of all the closed half-spaces
that contain Z”: A half-space is a set of the form {z ∈ Rk : p · z ≤ β} for some p
∈ Rk and β ∈ R. Don’t be confused here by the use of p; now we have no sign
restrictions on the components of p. And the half-space { z ∈ Rk : p · z ≤ β}
contains Z if and only if sup {p · z : z ∈ Z} ≤ β. So if we define 

we know that Z is contained within the closed sub-space defined by p and β if
and only if  and the Support-Function Theorem says that



Moreover, in that big intersection, we can limit ourselves to one value of β for
each value of p, namely  since the half-space with any larger

β is a strict superset of the half-space with this specific β. In other words, for this
wonderful function  the Support-Function Theorem says that For any
closed and convex set Z,

Therefore, there is a one-to-one correspondence between each closed and
convex set Z in Rk and its respective support function , where the function

 defined in (9.3) has been given its mathematical name, the support
function.

This is nearly identical to what went on in the previous two sections, except
that the profit function is defined only for strictly positive prices, and instead of
getting a correspondence between closed and convex sets and their support
functions, we (almost) got a correspondence between closed, convex, and free-
disposal sets and their profit functions. But please note: A support function is
defined precisely the way a profit function is defined, except for a larger domain
(all p ∈ Rk instead of strictly positive p), and recovering Z from its support
function via (9.4) should look awfully familiar to you after reading earlier
sections of this chapter.

But there are more parallels. You should have no problem proving the
following result, if you understood the proofs of the previous two sections.

Proposition 9.20.
a.   Suppose Z and Z′ are arbitrary sets in Rk. Then  ≡ , if and

only if  where  is the closure of



the convex hull of Z.
b.   Suppose Z is closed and convex. The support function of Z, , is

finite valued for all p ∈ Rk if and only if Z is compact. And, in this case,
 is convex and homogeneous of degree 1.

c.   Suppose  : Rk → R is convex and homogeneous of degree 1. Then it is
the support function of the closed and convex set Z defined by (9.4), which
is (of course) compact.

I leave the proof of this proposition for you (as Problem 9.9).
But now to dig still deeper, I assert that even if  is not finite valued

for all p, itis still convex and homogenous of degree 1, if you define convexity
and homogeneity appropriately (see Problem 9.10). Moreover, for any extended
real-valued function  on Rk that is convex and homogeneous of degree 1, the
set {p ∈ Rk : (p) < ∞} is a convex cone. Call this convex cone  and

introduce another set,

This set is also a convex cone; it is called the negative conjugate cone to 

Why look at these sets? Go back to the construction of Z from  via (9.4),
which is

If  then (p) = ∞, and p · z ≤ (p) for this p is no constraint at

all on z. Hence we can rewrite our definition of Z as

Moreover, suppose  and z ∈ Z. I assert that, automatically, z +



z* ∈ Z : For every 
 so if z

satisfies the constraints, so does z + z*. In words, the set Z explodes out in
directions given by the cone 

Suppose, for instance, that  That is, (p) = ∞, or is

thought of as being equal to ∞, for all vectors p that are not strictly positive.
Then  is the negative orthant. That, pretty much, is the story for the profit

function. We only look at strictly positive price vectors, so we generate no
constraints on z for p outside of the strict positive orthant, and the sets Z we
generate explode out in the direction of the negative orthant; in other words, we
get free disposal.

Suppose then that we had a profit function π that had infinite value for some
strictly positive prices. Its set of prices-for-which-π -is-finite is still a convex
cone (as long as π is convex and homogeneous of degree 1), and when we go
looking for the corresponding Z, we’ll explode out in directions Z* that are
more than just the negative orthant; that is, we get free disposal plus.

There’s a quite general theory lurking here, but I’m not going to develop it
any further. To do justice to it would take an already long excursion away from
the main lines of this chapter and make it very much too long. I hope this gives
you either enough of a lead to do it on your own or enough of a taste for you to
seek out the general theory. If you do seek out the general theory, look for
conjugate convex functions and Fenchel duality.

9.8.   Differentiability of the Profit Function

We know that if π is a profit function and z ∈ Z*(p) for some p, then z is a
subgradient of π at this p. If π is differentiable at p, it has a unique subgradient,
namely its derivative, and so Z*(p) must be the singleton set consisting of this
derivative. This not-very-remarkable result will in fact prove to be quite useful
(for instance, when we get to producer surplus in Chapter 12), and so has a
name:

Corollary 9.21 (The Derivative Property, or Hotelling’s Lemma).  Suppose



the profit function π is continuously differentiable at price p* and suppose that
Z is closed.7 Then Z*(p*) is a singleton set consisting of the netput vector
z*(p*) whose ith component 

We can harvest one relatively quick and somewhat surprising corollary from this
immediately. Suppose that, for whatever reason, we know that π is not only
continuously differentiable, but twice continuously differentiable in some open
region of prices. Hotelling’s Lemma then implies that the optimal production
plans of the firm, in that neighborhood of prices, can be written as a function
z*(p). We already know that this function is continuous (How? Berge’s
Theorem), but now we know that it is continuously differentiable. And since the
second partial derivatives of any twice-continuously differentiable function are
symmetric, we know that

Think of i and j as two different inputs to the production process. This says that
the rate at which the firm (optimally) changes its use of input i, as the price of
input j changes, exactly equals the rate at which the firm changes its use of input
j, as the price of input i changes. We’re not just saying that the changes have
the same sign. We’re saying that the numerical rates of change are identical!

All very nice, but this is premised on smoothness of π. Is there any reason
to believe that the profit function is differentiable, let alone twice continuously
differentiable? Setting aside the harder question of two continuous derivatives
momentarily, we see in the next proposition that the question about the first
derivative of π has a simple answer.



Proposition 9.22.   The profit function π* is differentiable at a price p0 if and
only if Z*(p0) is singleton, in which case the gradient of π at p0 is the single
element of Z*(p0).

Proof. We already have one direction: If the profit function is differentiable at p0,
then Z*(p0) is singleton, and the gradient of π is the single element of Z*(p0).
We need to show the converse. So suppose Z*(p0) is contains a single element,
which we denote by z0.

Suppose we have some sequence of price vectors {pn} with limit p0. Write
each pn as . Let zn be any element of Z*(pn) (I assume there are

solutions in at least an open neighborhood of p0), and write zn = z0 + δ n. From
Proposition 9.9 and the fact that Z*(p0) is singleton, we know that {zn} has
limit z0 or, equivalently, {δ n} approaches zero as n approaches ∞: Because p ⇒
Z*(p) is locally bounded, the sequence {zn} lives inside a bounded set. Hence
every subsequence has a convergent sub-subsequence, and upper semi-continuity
tells us that the limit of every convergent subsequence must be z0. This implies
that the limit of {zn} exists and is z0.

To show differentiability at p0 (and that the derivative is z0), we must show
that

We have

substituting this into the numerator in the previous display, we must show that



To show this, we enlist two inequalities:

Putting these two together, we have

So if we show that

then we are done; the other term in (9.5) is clearly being driven to zero because
of (9.6). And Berge’s Theorem ensures that this last limit is true: Coordinate
by coordinate,  is bounded above by 1 by the triangle inequality,

while  goes to zero by Berge. 

The profit function, then, is differentiable at p0 if and only if Z*(p0) is
singleton. What does it take for this to be true? Referring back to Proposition
9.5, we need that Z is “ strictly convex” in the sense of that proposition. (The
scare quotes around strictly convex are certainly merited, since Z doesn’t even
have to be convex in areas where profit-maximizing production plans will not be
found.) Conversely, if Z is not “ strictly convex” in the sense of Proposition 9.5



—if there are z and z′ on the northeast boundary of Z, such that all convex
combinations of z and z′ are on the northeast boundary of Z—then prices can be
found so that z and z′ and all the convex combinations between them that are in
Z are profit maximizing, and then we know that (at least) z and z′ are in Z* at
those prices, and they and all their convex combinations will be subgradients of
π at those prices. (Depending on Z, some of the convex combinations of z and z′
will not be in Z* at the prices in question. But all convex combinations will be
subgradients of π at these prices. Be sure you understand this distinction.)
Therefore, π will not be differentiable at those prices.

Suppose we know that π is differentiable on some open set of prices; hence
Z*′is singleton for those prices, and we can write z*(p) for the function that gives
the optimal netput vector as a function of prices. What (more) does it take to
conclude that these optimal netput functions are differentiable? I will not give
the answer here, prefering to reserve this discussion for Chapter 11, where we’ll
discuss the issue in the context of the theory of the consumer. But, anticipating
what we’ll say there, suppose one is able to describe the production technology
in ways (typically, with production functions, which you may recall from
intermediate microeconomics) that permit a solution of the firm’s profit-
maximization problem as a constrained maximization problem. Suppose there is
enough convexity so that solutions to the first-order, complementary-slackness
conditions are certain to be solutions of the profit-maximization problem. Then
(with some technical conditions met) those first-order, complementary-slackness
conditions implicitly define the optimal netput functions, and you can think of
using the Implicit-Function Theorem to prove that the optimal netput functions
are differentiable. However, where nonnegativity constraints (on the amount of
an input being used, on the amount of a particular output being produced for
sale) go from binding to no-binding, differentiability of the optimal netput
functions will usually be lost. (And if you want to see what all this means, wait
for the discussion in Chapter 11.)

Some practical criteria
So, to sum up, if someone hands you a function π :  → R and asserts that

it is the profit function for a firm that has some Z and maximizes profits, you
test whether π is indeed a profit function by asking: Is π homogeneous of degree



1 ? I s π convex? If the answer is yes to both questions, then π is a profit
function. (Remember, continuity of π is superfluous, since it follows from the
convexity of π.) Moreover, you have a machine for resurrecting from π its Z or,
rather, the closure of the free-disposal convex hull of the original Z. If π is
differentiable (and Z is closed), Z*(p) will be singleton at each p, with the
gradient of π at p being the optimal netput vector at p. More generally,
subgradients of π at p are elements of Z*(p) or, rather, elements of Z*(p) if the
original Z is convex, closed, and has free disposal.

And if someone hands you a vector-valued function z* :  → Rk and

asserts that it is the optimal netput function for a profit-maximizing firm, you
construct the implicit profit function π by setting π(p) = p · z*(p) for each p and
proceed as above.

That summarizes the theory of the situation. But checking on convexity on
first principles can be difficult. Happily, if you have sufficient differentiability,
some simple criteria are available: If someone hands you a candidate profit
function π that is twice-differentiable, you have to check that it is homogeneous
of degree 1 and that the matrix of mixed second partials, whose ij th term is

is positive semi-definite. While if someone hands you a candidate optimal
netput (vector) function z*, you must check that these functions are all
homogeneous of degree 0 and that the Jacobian matrix whose ij th term is

is symmetric and positive semi-definite.

9.9.   Cost Minimization and Input-Requirement Sets



This chapter has (so far) concerned the firm’s profit-maximization problem. We
specify the capabilities of the firm by a production-possibility set Z and then,
given prices, find the optimal (profit-maximizing) levels of inputs and outputs
simultaneously. A related treatment of the firm begins by assuming a clear
distinction between the firm’s inputs and outputs. Technological capabilities are
given by so-called input-requirement sets, which tell us, for a given vector of
outputs, what combinations of input are sufficient to obtain those outputs. And
the problem studied is the firm’s cost-minimization problem: For each vector of
outputs and given prices for the inputs, what is the least-cost method for
producing the specific output vector? One reason for studying this problem is
that, while it may be hard to swallow the assumption that the firm is a price
taker in its outputs, it is more reasonable to assume that its activities have no
impact on the prices of its inputs.

In some ways, the firm’s cost-minimization problem is simpler than its
profit-maximization problem; for one thing, the required compactness
assumptions arise very naturally (once strictly positive prices for inputs are
fixed). In other ways, the story becomes more complex; in the firm’s profit-
maximization problem, prices are the only parameters and (so) the feasible set
doesn’t shift with changes in parameters; now prices of inputs and the level of
outputs enter as parameters, and a shift in the level of outputs changes the
feasible set over which the firm is optimizing. It turns out, moreover, that the
cost-minimization problem shares a lot of mathematical structure with the
consumer’s expenditure-minimization problem (also known as the dual
consumer’s problem), the subject of next chapter. So in this section, we will
give some results about the firm’s cost-miminimization problem. But we won’t
be complete, and all the proofs are left as exercises for you. (Many of the proofs
are provided in the Guide.) With regard to the incompleteness of results, you
may want to take up the challenge of filling in the gaps. But if you do, it may
be best to wait until you have finished Chapter 10.

Firms with fixed inputs and output, and input-requirement sets
Suppose for a firm (whose production-possibility set is denoted by Z ⊆ Rk), the
k commodities are divided into inputs, outputs, and no-puts. Specifically, there
are m possible outputs of the firm, and n inputs, with the first set disjoint from
the second and with n + m ≤ k. Assume for convenience that commodity labels



are ordered so that the first m components of a netput vector z are the outputs of
the firm, and the next n are inputs, and write z = (y, −x, 0) for z ∈ Z, where 

 is an output vector and  is an input vector. The

following assumptions are always made:

If z = (y, −x, w) ∈ Z where y ∈ Rm, −x ∈ Rn, and w ∈ Rk−m−n,
then x ≥ 0, w ≤ 0, and, if we write y+ for the positive part of y (that
is,  = max{yi, 0}), then (y+, −x, 0) ∈ Z.

The explanation is: The middle n coordinates are inputs for the firm, and they
must be nonpositive in a netput vector z. The final k − m − n coordinates are
neither inputs nor outputs; to allow the firm to have free disposal, we allow it to
dispose of some of these commodities (hence w ≤ 0), but this disposal is
inessential to the firm’s actual production processes (hence we can replace w
with 0 in these coordinates and still be feasible). And the first m coordinates are
outputs: These are the only coordinates that can take on strictly positive values.
Again to allow for free disposal in Z, we allow these coordinates to have
negative values. But these are never net inputs to the firm’s actual production
process, and so if we replace any negative coordinate among these first m with
zero, we remain feasible.

It goes almost without saying that, as long as prices are nonnegative and
this assumption holds, the firm would never choose a production plan z in
which one of the first m or the final k − m − n coordinates are negative. So we
can (and do) restrict our attention to that subset of Z where z has the form (y, −x,
0), where y and x are both nonnegative. Let  be the subset of the firm’s Z of

vectors of this form. Let Y denote the subset of  such that y ∈ Y if (y, −x,

0) ∈  for some  that is, Y is the set of feasible output vectors

for the firm. And, for each y ∈ Y, let 
 For a given output

vector y, the set V (y) is called the input-requirement set for y.
Under the assumptions made,  can be reconstructed from Y and, for each y



∈ Y, V (y). (Alternatively, one can specify a V (y) for all  where

V (y) =  if the firm is incapable of producing output vector y.) So instead of

specifying the firm’s production possibilities by Z (or ), one can begin with

Y and the V (y).
What properties of Y and the V (y) correspond to the properties of Z given at

the start of this chapter? Because the input-requirement sets tell us nothing
about the structure of Z away from , we will have to adapt some of the

properties of Z to . But with that caveat, we have the following result:

Proposition 9.23.
a.   Z has no free production if and only if 0 ∉ V (y) for all y such that y ≥ 0

and y ≠ 0.
b.   Z has the ability to shut down (0 ∈ Z) if and only if 0 ∈ Y and 0 ∈ V

(0).
c.   If Z has free disposal, then each V (y) i s comprehensive upward,

meaning that if x ∈ V (y) and x′ ≥ x, then x′ ∈ V (y). But the converse is
not true. Instead,  exhibits free disposal (if (y, −x, 0) ∈  and 0 ≤ y′

≤ y, x’ ≥ x, then (y′, −x′, 0) ∈  if and only if y ∈ Y and 0 ≤ y′ ≤ y

implies y′ ∈ Y, each V  (y) is comprehensive upward, and the V (y) sets
nest in the sense that if y, y′ ∈ Y are such that y ≥ y′, then V (y) ⊆ V (y′).

d.   If Z is convex, then each V (y) is convex. But each V (y) can be convex and
 is not. Instead,  is convex if and only if Y is convex and, for all y,

y′ ∈ Y, x ∈ V (y), and x′ ∈ V (y′), and for all α ∈ [0, 1], αx + (1 − α)x′
∈ V (αy + (1 − α)y′).

e.   The correspondence y ⇒ V (y) is upper semi-continuous if and only if 

is closed. As a corollary, if   is closed, then each V (y) is closed. But Y

may not be closed, even if  is closed.

Proofs of parts of this proposition amount to little more than restating or
rearranging definitions. But other parts have some substance, and examples that



illustrate the negative statements are worth seeing. See Problem 9.11 and its
solution in the Student’s Guide for more on this.

The increasing/decreasing/constant returns to scale properties can be
formulated in terms of input-requriement sets, but only in ways that, essentially,
translate the old properties into the new context. So they are not interesting.
The recession-cone property is also not of interest in this context, but for a very
different reason: Once attention moves from Z to the V sets, maximizing overall
profit gives way to minimizing cost and, as you will see momentarily, existence
of a solution to the cost-minimization problem is never an issue if prices of
inputs are strictly positive.

Cost minimization for a fixed level of output
Now we introduce prices for the inputs. Inputs are also called factors of
production, and prices for them are often called factor prices. Regardless of the
name, they are denoted by r ∈ ; note that we are looking only at strictly

positive prices for the inputs.
Fixing some y ∈ Y and prices r for the inputs, the firm’s cost-minimization

problem is to
Minimize r · x, subject to x ∈ V(y).

We can write V′*(y, r ) for the set of solutions to this problem and C(y, r ) for
inf{r · x : x ∈ V (y)}; C is called the cost function. Throughout this
subsection, y will be fixed, and we’ll abbreviate with V*(r) and C(r). Note that
since y ∈ Y, V (y) is nonempty, and hence C(r) < ∞ for each r.

Proposition 9.24.
a. C(r) ≥ 0 for all r ∈ .

b.   If V (y) is closed, a solution to this problem exists for every r ∈ .

c.   If V (y) is a convex set, V*(r) is convex for each r.
d.   The cost function r → C(r) is concave.
e.   The cost function C is homogeneous of degree 1 in r.
f.   If x ∈ V*(r) (for fixed y), then x is a supergradient of C at r. Conversely,



if x ∈ V (y) is a supergradient of C at r, then x ∈ V*(r).
g .   (Berge’s Theorem) For fixed y, if V  (y) is closed, then r → C(r) is

continuous and r ⇒ V*(r) is nonempty valued and upper semi-continuous.
h.   For X ⊆ , let 

 for

nonnegative scalars α1, …, αl that sum to one, and x1, …, xl ∈ X} . And
let  be the closure of CCH(X) . Then the cost function

associated with X—that is, C(r) = inf {r · x : x ∈ X} for r ∈  —is

the same as the cost function associated with . Therefore,

if  =  then X and X′ have the same cost

function. Conversely, if   ≠  then X and

X′ have different cost functions.
i.   Suppose that C :  → R+ is concave and homogeneous of degree 1.

Define

    Then X is closed, convex, and comprehensive upwards, and for every r ∈ 
, C(r) = min{r · x : x ∈ X}.

j.   (Hotelling’s Lemma) The cost function C(r) is differentiable (in r) in an
open neighborhood of r0 if and only if the firm’s cost-minimization
problem has a unique solution for each r in that neighborhood, in which
case the vector whose ith component is ∂C/∂ri—that is, the gradient of
C—is the solution of the cost-minimization problem at each r. Moreover,
if the solution is unique in an open neighborhood of r0 and, writing x*(r)
for the solution (in ) as a function of r, if this (vector-valued)

function is differentiable, then



That is, the rate of change in factor i per unit change in price of factor j
exactly equals the rate of change in factor j per unit change in the price of
factor i.

The proof of all parts of this proposition except part j is left as an exercise
(Problem 9.12) for you; or see the solution to the problem in the Guide. Parts a
through f are all fairly straightforward, but g, h, and i are good tests of whether
you understood the details of the proofs in this chapter.

Note that, in parts h and i, the generic set X is a stand-in for an input-
requirement set V (y). Paraphrasing the two parts, the cost function can be used
to recover V (y) up to the closure of the comprehensive convex hull of V (y).
Two input-requirement sets with the same closures of their comprehensive
convex hulls give the same cost function; if two input-requirement sets have
different closures of their comprehensive convex hulls, they have different cost
functions. And a candidate for a cost function (for a single output vector) is in
fact a cost function for some input-requirement set, as long as it is nonnegative
valued, concave, and homogeneous of degree 1.

Part j is easily proved if you understand the proof of Proposition 9.22, and
so I omit it. The final pieces of part j have as premise that the solutions are
differentiable in r; conditions that would guarantee this are developed in the
context of consumer problems in Chapter 11. Otherwise, the symmetry of the
partial derivatives derives from the fact that, under the conditions given,

Since C is concave in r, the matrix of these mixed second partials (assuming
they exist) must be negative semi-definite.

The proposition does not provide the Afriat’s Theorem analogue for input-
requirement sets. That is relatively simple (for a single output level) and is left



entirely to you.

Cost functions with varying output levels
Now we ask: What can be said about C(y, r) as a function jointly of the target
output vector y and input prices r?

If we are looking for properties such as convexity of C in y, it will take
further assumptions on how the V (y) knit together. Problem 9.14 asks you (in
open-ended fashion) to see if you can find such conditions.

It is natural to suppose that the V (y) nest. There are a variety of ways to
formalize this, of varying strength. For instance:

•   Say that the V (y) satisfy weak nesting (or simply nesting) if y ≥ y′ implies V
(y) ⊆ V (y′). (In words, to produce less output, you can get by with just as
much input.)

•   And say that the V (y) satisfy strong nesting if they satisfy weak nesting
and, in addition, y ≥ y′, y ≠ y′, and x ∈ V (y) imply that, for some x′ ≤ x, x′
≠ x, we have x′ ∈ V (y′). In words, to produce (somewhat) less output, you
can get by with (somewhat) less input.

Proposition 9.25.   Suppose y and y′, both in y, satisfy y ≥ y′, y ≠ y′. If the
input-requirement sets satisfy weak nesting, then C(y, r ) ≥ C(y′, r) for all r.
And if the input-requirement sets are closed and satisfy strong nesting, then
C(y, r) > C(y′, r).

The proof of the first part is very easy: The infinimum taken over a smaller set
(over V (y)) is necessarily as least as large as the infimum taken over a larger set
(V (y′)). The second part is nearly as easy: Fix some r ∈ . If V (y) is

closed, let x be any element of V′*(y, r). By assumption, there is some x′ ∈ V
(y′) that is ≤ x and ≠ x, and at strictly positive prices, C(y′, r) ≤ r · x′ < r · x =
C(y, r).

We’d like C to be continuous in y and r. The obvious vehicle for obtaining
this is Berge’s Theorem. But assuming that the  corresponding to V (y) is

closed won’t be sufficient: This only tells us that y ⇒ V (y) is upper semi-
continuous; to apply Berge, we need that y ⇒ V (y) is lower semi-continuous



(and that there is a locally bounded and upper semi-continuous sub-
correspondence with all the requisite properties, but we’re able to manufacture
such a subcorrespondence in the proof, under the right conditions). This is not
merely a lack of imagination on our part; we really need something more than
that the corresponding  is closed. To see why, consider the following simple

example: m = n = 1, so there is one input good and one output. Suppose

(If the picture isn’t immediately clear to you, graph the corresponding Z,
assuming free disposal; a graph will be given in the Guide. The graph makes it
clear that this y ⇒ V (y) is indeed upper semi-continuous.) Assuming the input
good has price r, we get

This is, of course, discontinuous in y at y = 1. It is lower semi-continuous, and
we can (in fact) settle for that (if we are not willing to assume more than y ⇒ V
(y) is upper semi-continuous). Or we can assume that y ⇒ V (y) is continuous,
and get the desired continuity:

Proposition 9.26.   Suppose that the input-requirement sets (weakly) nest. Let
Y° denote {y ∈ Y : There exists some y′ ∈ Y that is strictly greater than y} . If
y ⇒ V (y) is upper semi-continuous, then (y, r ) → C(y, r ) is lower semi-
continuous on Y° × . If y ⇒ V (y) is continuous, then (y, r ) → C(y, r ) is

continuous and the correspondence (y, r) ⇒ V′*(y, r ) is upper semi-continuous
on Y° × .

Restricting attention to Y° is done for analytical convenience in the proof; other



situations can be dealt with, but I’ve given the result in a form that permits a
particular approach to the proof. (See Problem 9.23 and its solution in the
Student’s Guide  for details.) I won’t go any further with this development,
except to leave you with two challenges, which are probably best pondered after
you have consumed Chapter 10.

•   If you assume that the V (y) nest in the sense of Proposition 9.26, the lower
semi-continuity of y ⇒ V (y) is analogous to local insatiability. Recall what
lower semi-continuity says: If x ∈ V (y) and {yn} is a sequence with limit y,
then we can produce a sequence {xn} with limit x, where xn ∈ V (yn). In
view of the nesting assumption, producing such a sequence is most difficult
if the yn approach y from above. The following property then is equivalent to
lower semi-continuity (on Y°, at least): If x ∈ V (y), then in any
neighborhood of x, however small, we can find an x′ and a y′ where x′ ∈ V
(y′) and y′ is strictly larger (larger in every component) than y. How is this
akin to local insatiability? Think of y as the utility level and x as the
consumption bundle. The key here is that y′ must be strictly larger than y;
in the case of local insatiability, since there is only one dimension to utility,
larger means strictly larger. Challenge number 1: Can you make everything
just stated exact?

•   Suppose a candidate cost function C with domain  ×  is

nonnegative valued, concave and homogeneous of degree 1 in r,
nondecreasing in y, and jointly continuous in (y, r). If, for each y, we define
V (y) : = {x ∈  : r · x ≥ C(y, r) for all r ∈ }, then we know from

Proposition 9.24i that each V (y) is closed, convex, and comprehensive
upwards and, for every r ∈ , C(y, r) = min{r · x : x ∈ V (y)}. It is

relatively easy to show that these V (y) sets nest. Challenge number 2: Is y
⇒ V (y) a continuous correspondence?

9.10.   Why Do We Care?
The bulk of this chapter has been about the connections between a firm’s
production technology, modeled by the production-possibility set Z, and its
profit function π. Simplifying drastically, there is a one-to-one correspondence



between production-possibility sets Z and profit functions π, where the many
propositions we’ve developed make exact what is the real one-to-one
correspondence.

Why do we care about this? The answer to this question takes us from the
world of higher economic theory to more applied concerns, both theoretical and
empirical. In terms of more applied theory, economists are often concerned with
so-called comparative statics exercises; in the current context, this would mean
asking and answering questions about how the maximizing decisions of a firm
change as parameters of the firm’s environment change. Knowing (directly) what
is the class of optimal netput functions of the firm makes such results
immediately available. And if we want to study data generated by a real firm, we
may be lucky enough to be able to identify important aspects of the firm’s
technology and to obtain data that allow us to estimate that technology. But in
many cases, the data available are economic and not technological in nature: We
know that, facing one set of prices, the firm chose z; facing a second set of
prices, it chose z′, and so forth. The results that make up the bulk of this chapter
tell us that economic data of these sorts identify (to some extent) the underlying
technology of the firm, under the maintained hypothesis that the firm maximizes
profit, taking prices as given. (Since for many firms the price of outputs is not
given—that is, the firms have market power over their output prices—for many
empirical purposes, the more useful version of this sort of thing is the theory of
the cost function, in Section 9.9.) The next step, then, is to blend this
theoretical development with empirical concerns, which often means identifying
functional forms for the economic data we are likely to have—functional forms
that permit estimation—and the corresponding technologies. Diewert (1974) and
Fuss and McFadden (1978) are good places to begin your study of such matters.

Bibliographic Notes
The theory of the competitive, profit-maximizing firm is in some sense the poor
relation of the theory of the utility-maximizing consumer in the literature of
economics; not because it isn’t important, but because it is, in comparison,
relatively simple. Being simple, there isn’t a lot to say, and what there is, is
straightforward. (If this didn’t seem straightforward to you, wait until you have
finished Chapters 10 and 11!) But the theory is only the precursor to
applications, and the chapter by Diewert and book by Fuss and McFadden just



cited will begin to show how rich is the subject. These are also good, classic
references to the theory developed here (in Fuss and McFadden, see Chapter 1),
and both the article and the introduction to the book contain sketches of the
history of thought on this topic.

Problems

 1.   (a) On page 203, I suggest that you look at the example k = 2 and Z =
{(−1, 1), (−3, 2), (0, 0)}. What is π in this example? What is the connection
between this example and the discussion there? What does the sort of in that
discussion mean, precisely?

(b) Provide the (simple) proof of Corollary 9.18. How does this connect with
part a of this problem?

 *2. It is sometimes useful to know that 0 ∈ Z; a firm has the ability to shut
down. Suppose you are given the profit function π associated with some Z. To
what extent does π alone tell you whether 0 is or is not a member of Z? (I am
leaving this question somewhat open-ended; the challenge for you is to say as
much as you can about whether 0 ∈ Z, based on knowledge of π. To avoid
complications, assume that π is real valued.)

 3.   When we proved Berge’s Theorem for the firm’s profit-maximization
problem, we assumed the recession-cone property, so that π(p) < ∞ for all p ∈ 

. But suppose that π is infinite valued for some price vectors and finite for

others. Suppose that, in such a case, we know that π(p) < ∞ for all p in an open
neighborhood of some price p0. Assume that Z is closed. Does Berge’s
Theorem work locally near p0? Is p ⇒ Z*(p) upper semi-continuous, and is p
→ π(p) continuous, for all p in some (possibly smaller) open neighborhood of
p0?

 *4. Suppose that a firm has a production-possibility set Z that is closed and
nonempty and has the recession-cone property. Focus attention on good 1, by
fixing strictly positive prices p2, p3, …, pk for all the other goods, and let 



 be the set of values of z1 such that z1 is part of a profit-maximizing

production plan for the firm at prices (p1, p2, …, pk); that is,  is the

projection along coordinate 1 of Z*(p1, p2, …, pk), or

Suppose that, for some open interval of prices for good 1, say, 
 we know that  is a singleton set, say,

{z1(p1)}. For p1 in this interval, is z1(·) a continuous function? (Hint: How is
this connected to Corollary A4.8?)

 5.   Production-possibility set Z is said to be additive if it has the property
that if z and z′ are both in Z, then so is z + z′. The idea is: If the firm can do z
and can do z′, then by setting up separate operations, it can do both z and z′.

(a) Show by example that additivity neither implies nor is implied by
increasing returns to scale.

(b) Suppose Z is additive. What can you say about its profit function π?

 6.   Proposition 9.10 concerns a finite set of price-and-production-plan data
that is meant to come from a single Z. Suppose we imagine a firm whose
production possibilities expand through time. Specifically, Zt for t = 1, 2, …
gives the production possibilities for this firm at time t, and with Zt ⊆ Zt+1 for
all t. The data (p1, z1), (p2, z2), …, (pT, zT) are alleged to record the prices that
face the firm and the production choice it made at times t = 1, …, T, given this
(expanding) production technology. Suppose we assume that the choice of the
firm at time t maximizes the firm’s profit at that time; that is, zt ∈ arg max {pt
· z : z ∈ Zt}. (This is a very debatable assumption: Perhaps the firm’s choice of
production plan at time t affects the production possibilities it has at later times.



Then its choice at time t should balance current profit against enhanced
opportunities for profit in the future. But we do not take that possibility into
account.) In the spirit of Proposition 9.10, give necessary and sufficient
conditions for the data (p1, z1), (p2, z2), …, (pT, zT) to be consistent with this
story, for some sets Z1, Z2, …, ZT.

 *7. Concerning the messy caveat in Proposition 9.17 and Corollary 9.19,
first show by example that the caveat is needed. That is, give two closed and
convex free-disposal production possibility sets Z and Z′ that both give π ≡ ∞
as their production function. Then provide a detailed and explicit proof of the
corollary. (You are allowed to say stuff like “ Now insert the text from xxxx to
yyyy verbatim,” assuming that what is in the text works in the context of the
profit function defined for the extended domain.)

If you would like a further challenge (not answered in the Student’s Guide :
Suppose we had permitted nonnegative (instead of strictly positive) price vectors
from the start in this chapter. What difficulties would this raise?

 8.   Suppose we have two production-possibility sets Z and Z′ (both in Rk for
some k) and their corresponding profit functions π and π′. How are the following
two relationships connected:

Does one of these imply the other? Are they equivalent? Do not just settle for
answers to those two questions; you should develop as (economically)
meaningful and general a proposition as you can about what it takes for one
profit function to be everywhere at least as large as another in terms of the
underlying production-possibility sets. (The term “ develop” here means “ state
the result and give its proof,” of course.)

 *9. Prove Proposition 9.20.

 10.   Recall (from the discussion just before Proposition 9.3) what it means
for a function f : Rk → R ∪ {∞} to be convex and/or homogeneous of degree 1.



(a) Let Z be an arbitrary nonempty set in Rk, and let  : Rk → R ∪ {∞} be
defined by (p) = sup {p · z : z ∈ Z}. Show that  is convex and
homogeneous of degree 1.

(b) Suppose that f : Rk → R ∪ {∞} is convex and homogeneous of degree 1.
Show that the set X* = {x ∈ Rk : f(x) < ∞} is a convex cone.

(c) The next step in the development of this theory is to think about continuity
properties of  as defined in part a. What can you say about this? It might
b e helpful to let  and consider

separately the continuity of  on the interior of  on its boundary, and

on the interior of its complement. (What if anything can you say about the value
of  on the boundary of ?) Before setting out to try to do this (it isn’t

easy), you might find it helpful to look at some examples. Begin with the
following two: 

 *11. Prove Proposition 9.23. and give examples that illustrate the negative
statements in parts c, d, and e.

 *12. Prove Proposition 9.24, omitting part j.

 *13. Prove Proposition 9.26. For a hint on how to attack this (getting the
locally bounded and upper semi-continuous sub-correspondence is a bit tricky),
look ahead to the proof of Proposition 10.3 and, in particular, the paragraph at
the end of the proof that begins “ Now we resort to a trick.”

 14.   Consider the cost function C for a fixed r. Under what conditions is this
a convex function of y?

 15.   Suppose the firm has a single output good. The level of this output
good will still be denoted by y, but now y ∈ R+. A production function is a
function  that gives, for a vector of inputs x ∈ ,



the greatest amount of output that can be obtained from that vector of inputs.
That is, if we start with a production-possibility set Z (where now the first
component is the sole output good, and components 2 through n + 1 give the
vector of inputs), we define

Your assignment is to re-create the theory of the firm if the firm (a) has a single
output and (b) has its technology specified by a production function f; begin
with properties of f that correspond to the various properties of Z used in the
chapter, and move on to either the firm’s cost-minimization problem

or the firm’s full profit-maximization problem

Warning: you may find it helpful to wait until you have finished Chapter 10.

 

1 By labeling commodities with the time at which they exist, the theory we
develop here can be reinterpreted as a theory of dynamic production; see the
discussion of general equilibrium, time, and uncertainty in Chapter 16. But for
reasons that we will only be able to explain later, these extensions are not
altogether satisfactory.

2 The negative orthant in Rk is the set of z ≤ 0; coordinate values of 0 are
permitted.

3 A mathematician would say that π is an extended real-valued function,
where the extended reals are the real numbers plus ±∞ .

4 Proposition A3.26 is about functions that are real valued, while π is
allowed to take on the value +∞ . But if you go through its proof, you’ll see



that this presents no problems. Of course, π cannot have a subgradient at a price
p where π(p) = ∞ , asnoaffine function can take on the value ∞  at p.

5 I don’t list continuity of π as one of its properties because, in the current
context, it is redundant: since the domain of π is an open set, convexity of π
implies continuity (Proposition A3.17g). But see two sections further on for
more on this point.

6 “ Extended” here refers to the extended domain and not the extended-reals
range.

7 If Z is not closed, then Z*(p*) could be empty.



Chapter Ten



The Expenditure-Minimization Problem

In this chapter, we return to the theory of consumer demand. Our ultimate
objective is to get a theory as complete as the theory of the firm, with results
similar to Propositions 9.14 through 9.19. Unhappily, the theory of the utility-
maximizing consumer is more complex than the theory of the profit-maximizing
firm, on two grounds:

1.  The firm’s profit-maximization problem has the price vector p as parameter.
In the consumer’s utility-maximization problem, prices enter parametrically,
but so does the consumer’s income y.

2.  In the firm’s profit-maximization problem, prices enter the objective
function, but the feasible set never changes. In the consumer’s utility-
maximization problem, prices (and income) shift the feasible set.

Rather than take on both of these complications simultaneously, we take them
one at a time: In this chapter, we examine a problem related to the consumer’s
utility-maximization problem, known as the (consumer’s) expenditure-
minimization problem, which has an extra parameter (beyond prices), but in
which the feasible set does not shift with shifts in prices. Then in Chapter 11,
we take on both complications at once, to finish off as best we can the theory of
the consumer.

10.1.   Defining the EMP
As in Chapters 3 and 4, we study a consumer whose preferences on  are

given by the utility function u, about which the following assumption is made.

Assumption 10.1.   Until otherwise indicated (near the end of the chapter),
the utility function u is continuous and globally insatiable.

We sometimes assume that u is quasi-concave and/or locally insatiable, but we
will say so whenever either of those assumptions is made.

Recall the consumer’s utility-maximization problem (abbreviated CP):



for parameters p ∈ , a strictly positive price vector, and y ∈ R+, the

nonnegative level of income. The (consumer’s) expenditure-minimization
problem (abbreviated EMP) has as parameters the price vector p ∈  and a

level of utility v ∈ R and is to

That is, we are seeking the bundle x that gets the consumer the utility level v as
cheaply as possible, given the prices p. (Since the utility function is u, and we
will be working with values of the utility function, we use the letter v to denote
values of utility; u will always be the utility function.) Pictures of the two
problems are shown in Figure 10.1.



Figure 10.1. The CP and the EMP in two pictures.

To tie back to the introduction, the target utility level v moves the feasible
set, but not the objective function. Hence, the feasible set is not entirely free of
all the parameters. But prices no longer impact the feasible set, which makes life
a lot easier.

While the CP is a problem about which we could gather empirical evidence
for a given consumer (at least, to the extent of asking hypothetical questions),
the EMP as formulated is artificial. By this I mean, we can ask a consumer, “ If
you have so much income and face such-and-such prices, what will you buy?”



And the answer that comes back is some bundle of goods. Both question and
answer are concrete. Imagine, however, going to the consumer and asking,
“ Facing prices p, what bundle is the cheapest way for you to attain utility level,
say, 36.5?” What, exactly, do we mean by utility level 36.5? Utility levels and
the utility function u are artifices of our model of the consumer; they aren’t
anything tangible. Even so, the EMP has an important mathematical role to
play.

We can render the EMP somewhat less artificial by reformulating it as, “ For
a given reference bundle x0, what is the cheapest (at given prices p) bundle you
could buy that would make you at least as well off as you would be if you had
to consume x0?”1 Concerning this reformulation, see Problems 10.8 and 10.9.

10.2.   Basic Analysis of the EMP
Before analyzing the EMP, consider the target utility level v.

•   If v ≤ u(0), then the obvious solution to the EMP is x = 0, with a zero level
of expenditure.

•   Since we assume that u is globally insatiable, if we define 
 then the problem is infeasible for 

 (No x can satisfy  if u is globally insatiable.)

Therefore, whenever we talk about a target level of utility v for the EMP, we
tacitly assume that  where  is of course

possible.

Proposition 10.2.   Fix a consumer (characterized by her continuous and
globally insatiable utility function u), prices p ∈ , and a target utility

level v 

a.   If x solves the EMP for this p and v, then x also solves the EMP for
prices λp and utility level v, for λ > 0.

b.   The EMP has a solution for this p and v.
c.   If u represents convex preferences (if u is quasi-concave), the set of



solutions of the EMP is a convex set. And if u represents strictly convex
preferences, the EMP has a unique solution.

d.   If x solves the EMP at p and v, then u(x) = v.

The details of the proof are left for you (as Problem 10.1, solved in the Student’s
Guide), with a few hints:

1.  Part b takes a bit of work, because the feasible set, {x ∈  : u(x) ≥ v},

is not compact. But because  and because u is

continuous, some x0 ∈  satisfies u(x0) = v (why?). The set {x ∈ 

: u(x) ≥ v and p · x ≤ p · x0} is compact (why?). And the set of solutions to
the problem

is the same as the set of solutions to the EMP (why?).

2.  In part c, quasi-concavity of u is needed to show convexity of the feasible
set. Also, the proof of uniqueness is not the standard proof, because x → p ·
x is not a strictly quasi-concave function. You have to work at this one.

3.  In contrast to the CP, where we need local insatiability of u to show that p
· x = y at the solution, in the EMP we get u(x) = v at solutions “ for free.” It
isn’t really for free, of course; continuity of u is required. But local
insatiability is certainly not needed. This is because, in the EMP, the
objective function p · x is “ locally insatiable”; wherever you are, unless you
are spending nothing, you can always spend a bit less locally. Please note,
though, that continuity of u is needed in the argument; if you haven’t used
it in your proof, your proof doesn’t work.

10.3.  Hicksian Demand and the Expenditure Function
Recall that for the CP, we use D(p, y) to denote the solutions for given p and y,
calling D(p, y) Marshallian demand at (p, y) and (p, y) ⇒ D(p, y) the
Marshallian demand correspondence. We denote the value of the objective



function at the solution by ν(p, y), calling ν the indirect utility function.
We use the following notation and names for the EMP:

•   The set of solutions for given p and v is denoted H(p, v) and is called the
Hicksian demand at (p, v). The correspondence (p, v) ⇒ H(p, v) is called
the Hicksian demand correspondence.

•   The value of the objective function at the solution is denoted by e(p, v), and
(p, v) → e(p, v) is called the expenditure function.

Next, we get the standard continuity results.

Proposition 10.3.
a.   For fixed  the function p → e(p, v) is continuous

and the correspondence p ⇒ H(p, v) is nonempty valued, locally bounded,
and upper semi-continuous.

b.   If u satisfies local insatiability, the function  (p, v) → e(p, v) is
continuous and the correspondence (p, v) ⇒ H(p, v) is nonempty-valued,
locally bounded, and upper semi-continuous.

c.   If u is strictly quasi-concave, H(p, v) is singleton for each (p, v). Let h(p,
v) denote the single element of H(p, v) for each p and v; then the function
(p, v) → h(p, v) is continuous.

Proof. These “ standard” continuity results are not so simple to obtain.
Obviously, we want to apply Berge’s Theorem, but the original constraint
correspondence (p, v) ⇒ {x ∈  : u(x) ≥ v} is not locally bounded. So we

need to patch together some sort of fix.
Before tackling this issue, let’s get the easy stuff out of the way. Part c

claims uniqueness of the solution for each p and v, but that only repeats
Proposition 10.2c. So this is a standard result about singleton-valued, upper
semi-continuous, and locally bounded correspondences, once we know that (p,
v) ⇒ H(p, v) is upper semi-continuous and locally bounded. Part b gives us
this, if we know that u is locally insatiable. Fix arbitrary x. By global
insatiability, u(x′) > u(x) for some x′. Because u is strictly quasi-concave, u(αx +
(1 − α)x′) > u(x) for all α ∈ (0, 1). But taking α arbitrarily close to 1 shows that



u is locally insatiable at x. Since x is arbitrary, u is locally insatiable.
If v is fixed, the constraint set {x ∈  : u(x) ≥ v} is constant in the

parameter p; hence it is lower semi-continuous. Since  there exists 
 such that  Fix , and let 

 It

is clear that H(p, v) ⊆ B(p) for all strictly positive p and that minimizing
expenditure at prices p over B(p) gives the same value as minimizing over the
set of x such that u(x) ≥ v. Upper semi-continuity and local boundedness of p ⇒
B(p) is shown by the argument given back in the proof of Proposition 3.3. So
Berge can be applied, giving part a.

Now for part b. To show that (p, v) ⇒ {x ∈  : u(x) ≥ v} is lower semi-

continuous, reason as follows. The p argument plays no role here; so we don’t
carry it along in the notation. We need to show that, if {vn} is a sequence of
utility targets with limit v and if x is such that u(x) ≥ v, then there exist xn such
that u(xn) ≥ vn for each n and limn xn = x. The first step is to use local
insatiability to produce, for m = 1, 2, …, a point ym such that u(ym) > u(x) and
| |ym − x| |  ≤ 1/m. Of course, this means that limm ym = x.

Now for each n, compare vn with the set {u(y1), u(y2), …, u(yn)}. If vn is
strictly greater than all these values, set xn to be any (arbitrary) point in 

such that u(xn) ≥ vn. But if vn is less than or equal to any of these n values, then
let xn = ym where m is the greatest index in the set {1, …, n} such that vn ≤
u(ym).

I assert that for any integer M, there is an N such that for all n > N, xn will
be chosen by this rule to be some ym with m > M. We know that u(yM+1) > u(x)
≥ v, and we know that vn → v, so eventually (for all sufficiently large n), vn ≤
u(yM+1). But then for n ≥ M + 1 and large enough for this condition to hold,
yM+1 is a candidate for assignment as xn, and so if xn is not assigned to be yM+1,
it must be because xn = ym for some m > M + 1.

But this assertion finishes the proof of lower semi-continuity. The sequence
{xn} that we’ve constructed has u(xn) ≥ vn for each n, and since xn for large n is



ym for large m and the sequence {ym} converges to x, so does the sequence {xn}.
Now we resort to a trick. We want to show upper semi-continuity and local

boundedness of a correspondence and continuity of a function, jointly in p and v,
for  These are local properties of the correspondence and

the function in the sense that if we show that they hold for some open
neighborhood of each (p, v), then they hold globally. So, as in the proof of part
a, fix some  and some  such that 

 For all p ∈  and 

define 

Just as in part a, H(p, v′) ⊆ B(p, v′), and minimizing expenditure at prices p′
over B(p, v′) gives the same infimum as minimizing over {x ∈  : u(x) ≥ v′}

(as long as  of course). And, again using the argument from the

proof of Proposition 3.3, (p, v′) ⇒ B(p, v′) is upper semi-continuous and locally
bounded. So we conclude from Berge’s Theorem that (p, v) ⇒ H(p, v) is upper
semi-continuous and locally bounded, and (p, v) → e(p, v) is continuous, for 

 But this domain contains an open

neighborhood of (p, v0) for any p ∈ , and  was

arbitrary, proving part b. 

10.4.  Properties of the Expenditure Function
Now that we’ve gotten the basics and continuity properties out of the way, it is
time to develop the theory of the EMP in a way that will give us some
economic punch. This begins with a characterization of the expenditure function.

Proposition 10.4.
a.   The expenditure function is homogeneous (of degree 1) in p; that is, e(λp,

v) = λe(p, v) for λ > 0.
b.   For all p, e(p, v) = 0 if v = u(0) and e(p, v) > 0 if v > u(0).
c.   The expenditure function is strictly increasing in v and nondecreasing in



p.
d.   The expenditure function is concave in p.
e.   The expenditure function e(p, v) is unbounded above in v for each p.

Proof. Part a follows from Proposition 10.2(a): If x ∈ H(p, v), then x ∈ H(λp,
v); hence if e(p, v) = p · x, e(λp, v) = λp · x = λe(p, v).

For part b, since e(p, v) = p · x for some x ∈ , e(p, v) ≥ 0 is obvious. If v =

u(0), x = 0 is a feasible way to achieve utility v, which gives the minimum
possible expenditure, 0. If v > u(0), then to achieve utility level v, we must
choose a consumption bundle x ≠ 0, and then p · x > 0 for all strictly positive p.
(Remember, the EMP always has a solution; for v > u(0) and p ∈ , there

is some x* that solves the EMP; hence e(p, v) = p · x*, and this is > 0.)

To prove part c, suppose v′ > v. Pick x ∈ H(p, v′), so that e(p, v′) = p · x. By
part b and v′ > v ≥ u(0), e(p, v′) > 0. By continuity of u, we know that u(αx)
approaches u(x) ≥ v′ as α approaches 1; hence for some α* < 1, v(α*x) ≥ v. But
then e(p, v) ≤ p · (α*x) = α*e(p, v′) < e(p, v′). Suppose p′ ≥ p. Pick x ∈ H(p′, v),
so that e(p′, v) = p′ · x. Since x is feasible for the EMP at (p′, v), it is feasible as
well for (p, v); hence e(p, v) ≤ p · x ≤ p′ · x = e(p′, v), where it is the last
inequality that uses p′ ≥ p.

For part d, let x solve the EMP for (ap + (1 − a)p′, v), so that e(ap + (1 − a)p′,
v) = (ap + (1 − a)p′) · x. Since u(x) = v, the bundle x is always a feasible way to
achieve utility level v, although it may not be the cheapest way at prices other
than ap + (1 − a)p′. Accordingly,

Combining these two inequalities gives



Finally, for part e, fix p and K > 0. Let x0 maximize u on the set {x ∈  : p

· x ≤ K}. Since preferences are globally insatiable, there is some  (that

is, v is an attainable utility level) such that u(x0) < v. It is immediate that e(p, v)
> K (since the best you can do spending K or less at prices p is x0, which gives
utility less than v. Since K is a free variable here, e must be unbounded in v for
the fixed p. 

Two remarks about part d are worth making: First, once we know that e is
concave in p, we know that it is continuous in p (since the domain of p is
open). So the proof of part d constitutes an independent proof of the first part of
Proposition 10.3a. Second, the proof of part d should remind you of how, in
Chapter 9, we showed that the profit function in the firm’s profit-maximization
problem is convex. In fact, this is a proof that you should fully internalize; if
shaken awake at 3:00 a.m. and asked to prove this, you should be able to do so.

Recall that after showing that the profit function was convex in p, we went
on to show that any solution to the firm’s profit-maximization problem was a
subgradient of the profit function. You can guess, then, what comes next.

Proposition 10.5.   If x ∈ H(p0, v), then x is a supergradient of e at (p0, v) in
p, which is to say that

a.   p0 · x = e(p0, v), and
b.   p · x ≥ e(p, v) for all p.

Hence, in particular, if e is differentiable in p at (p0, v), the vector

is the unique solution of the EMP at (p0, v).

Proof. If x ∈ H(p0, v), then part a follows immediately. And then, since we
know that u(x) = v, we know that x is feasible for any prices p when the target
utility is v, and part b follows immediately. The rest of the proposition is a



simple consequence of what it means for a concave function to be differentiable at
a point: Its gradient is its sole supergradient at the point. 

At least two partial converses could be stated for Proposition 10.5. One
would be If x ∈  is a supergradient of e in p at (p0, v), then x ∈ H(p0,

v). This is not true in general, because we have no way of knowing that u(x) ≥ v.
(Compare with the discussion beginning on the bottom of page 212 and with
Problem 9.1, in the context of the theory of the firm. Can you construct a
counterexample in this context along those lines?) But a second partial converse
is true:

Proposition 10.6.   If the EMP at a given (p, v) has a unique solution x, then
the expenditure function is differentiable in p at (p, v), and x is its gradient.

The proof is very similar to the proof of Proposition 9.22, so I will not bother
to give it in this context.

10.5.  How Many Continuous Utility Functions Give the Same
Expenditure Function?

We are now (almost) ready for a hoped-for, double-barreled climax to this
chapter, namely answers to the following two questions:

1 .  Given an expenditure function e generated from the utility function u,
(how) can we recover u?

2.  Given a function e that is purported to be an expenditure function, is it
the expenditure function for some well-behaved utility function u (which we
can then recover, once we have an answer to question 1)?

This is similar to the recovery of the firm’s production-possibility set Z from its
profit function π, but with the added complication of the extra parameter v in the
expenditure function. Of course, our experiences with this sort of thing in
Chapter 9 warn us that we can’t expect to recover the utility function u that
generated e, since more than one utility function u will generate the same e. But
we can hope to characterize all utility functions that generate the same
expenditure function. We’ll first tackle that.



The key geometric concept needed to answer the question that is the title of
this section is the so-called comprehensive convex hull of a set. The setting is
Rk, and we have the following definition.

Definition 10.7. For any set X ⊆ Rk, the comprehensive convex hull of X,
denoted CCH(X) is the smallest (by set inclusion) set Y that (a) contains X, (b)
is convex, and (c) has the property that if x ∈ Y and x′ ≥ x, then x′ ∈ Y.2

T he convex hull part of this definition should be obvious from the general
notion of a convex hull (see Appendix 3). The adjective comprehensive has to
do with property c: If x′ ≥ x and x is in this set, then x′ is in the set.

It may not be obvious to you that a smallest set with these properties exists.
But it isn’t hard to show existence. Take the intersection of all sets that have
these three properties. Since Rk itself contains X, is convex, and is
comprehensive, we aren’t taking the intersection over an empty collection of
sets. If we take the intersection of an arbitrary collection of sets that all contain
X, the intersection contains X. If all the sets in the collection are convex, the
intersection is convex. And if all the sets are comprehensive in the sense the
term is being used here, their intersection is comprehensive. So the intersection
is in the collection of sets with these three properties. And, of course, it is
automatically minimal in terms of set inclusion.

Thinking in terms of this intersection allows us to give a constructive
definition of CCH(X):

Proposition 10.8   For any set X ⊆ Rk, the comprehensive convex hull of X
is the set of points

Proof. Fix X, and call the set defined in the display Y. Y clearly contains X and
is comprehensive. It is a bit harder (but not hard) to see that Y is convex (and
I’m leaving that for you). So Y is one of the sets over which the intersection is



taken when constructing CCH(X); CCH(X) ⊆ Y. But, at the same time, if Z is
any convex and comprehensive set that contains X, then Y ⊆ Z; if x ∈ Y, then
x is greater than or equal to a convex combination of points in X, and Z by
definition contains all such points. Therefore, when we form CCH(X) by taking
the intersection over all such Z, Y lies in that intersection, or Y ⊆ CCH(X).
Therefore, Y, the set in the display, is CCH(X). 

Please note: The characterization of CCH(X) just given can be rephrased as
follows: CCH(X) = {x ∈ Rk : x ≤ x′ for some x′ ∈ CH(X)}, where CH(X) is the
convex hull of X.

The following general proposition will be needed.

Proposition 10.9.   If X is a closed subset of , then CCH(X) is closed.

There is more to this proposition than you may think at first. It isn’t true that
CCH(X) is necessary closed, if X is merely a closed subset of Rk (as opposed to 

), and it isn’t true that the convex hull of a general closed subset of  is

always closed. (Can you provide counterexamples?)

Proof. Fix X. Suppose {xn} is a sequence from CCH(X) with limit x. For each
n, there are nonnegative weights αni that sum to 1 and bundles xni such that xni

∈ X, where  I haven’t said how many i’s there

are for each n and, you might think, the number (call it Kn) might explode to
infinity. But, in fact, Carathéodory’s Theorem (Proposition A3.5) ensures that
we can assume that, for each n, the index set of i is {1, 2, …, k + 1}.

Since each αni lies between 0 and 1, we can by looking along a subsequence
of the n assume that, for each i = 1, …, k + 1, limn αni exists. Call the limit αi.
For some of the i, αi may be zero; for others, it is strictly positive; let I denote
the subset of {1, …, k + 1} such that αi > 0. Because  for

each n, the same is true in the limit, or  For i ∈ I, αi = 0,

so we know that ∑i∈I α
i = 1.



We know that  Since the αni are all

nonnegative scalars, and the xni are all nonnegative vectors, if we drop some
terms in the sum, we maintain the inequality. In particular, xn ≥ ∑i∈I αnixni.
Now the xn live inside a bounded set (they have limit x, so eventually they stay
in neighborhoods of x, and there are only finitely many other terms to take into
account). And the αni for i ∈ I are all eventually strictly bounded away from
zero (they have limits that are strictly positive). Therefore, the inequalities xn ≥
∑i∈I α

nixni ensure the xni for i ∈ I must, eventually, live inside a bounded set.
So, by looking along a further subsequence, we can assume that, for each i ∈ I,
limn xni exists; call the limit yi. Since X is closed, yi ∈ X. And, by taking
limits on both sides of xn ≥ ∑i∈I α

nixni, we getx ≥ ∑i∈I αiyi. We already have
established that ∑i∈I α

i = 1 and that yi ∈ X for each i, so this tells us that x ∈
CCH(X). Therefore, CCH(X) is closed. 

The next result links the concept of CCH sets with functions that are quasi-
concave and nondecreasing.

Proposition 10.10.   A function u :  → R is quasi-concave and

nondecreasing if and only if its upper-level sets are convex and comprehensive;
that is, for all v ∈ R,

Proof. Suppose u is quasi-concave and nondecreasing. Then we know that the
sets {x ∈  : u(x) ≥ v} are convex and comprehensive. (For convexity of the

sets, enlist Proposition A3.19. Showing that the sets are comprehensive is a
matter of writing down a sequence of definitions.) Fix v ∈ R and temporarily let
X = {x ∈  : u(x) ≥ v}. Since CCH(X) is the intersection of all convex and

comprehensive sets that contain X, X ⊆ CCH(X) and, on the other hand, since
X is convex and comprehensive and contains X, it is among the sets in the
intersection, so CCH(X) ⊆ X. Hence X = CCH(X).



And suppose, for each v, the set {x ∈  : u(x) ≥ v} = CCH({x ∈  :

u(x) ≥ v}). Then this set is convex and comprehensive. But the convexity of
such sets for all v implies that u is quasi-concave; again enlist Proposition
A3.19. And if x′ ≥ x, then 

hence x′ is also in that set (since the set is comprehensive), and so u(x′) ≥ u(x).
The function u is nondecreasing. 

We come to the central result of this section.

Proposition 10.11.   Fix two continuous utility functions u and u′. Let e be
the expenditure function defined from u, and e′ be the expenditure function
defined from u′. For v ∈ R, if

then e(p, v) = e′(p, v) for all p ∈ . Conversely, if u and u′ are both

continuous and, for some v,

then for some p ∈ , e(p, v) ≠ e′(p, v).

Before getting to the proof, two comments (one of which will give us a
corollary) are in order:

•   Note my emphasis on the utility functions being continuous. In view of
Assumption 10.1, you may wonder why I even mention this; aren’t all
utility functions in this chapter assumed to be continuous? They are indeed,
but if you go back to the proof of Proposition 10.10, you can see that the
proposition is true even if u is not continuous. And the first half of
Proposition 10.11—if the comprehensive convex hulls of the upper-level
sets for a given v are the same, then the expenditure functions agree for that
v—also doesn’t need continuity of the utility functions. But the second half



of Proposition 10.11 does need continuity, because it will be proven using
the Strict-Separation Theorem (Proposition A3.11), for which we need the
CCH sets to be closed.3 However, I don’t need to assume that the utility
functions are globally insatiable for Proposition 10.10 or for either half of
Proposition 10.11, which leads to the question, How much of our earlier
results in this chapter needed the two parts of Assumption 10.1? Problem
10.3 asks you to go back and investigate this question.

•   The proposition is stated one v at a time: The comprehensive convex hulls
of the upper-level sets for a given v are the same if and only if the
expenditure functions agree for that v. But this immediately implies a result
for “ all the v at once”:

Corollary 10.12.   Fix two continuous utility functions u and u′. Let e be the
expenditure function defined from u and e′ be the expenditure function defined
from u′. Then e ≡ e′if and only if

Proof of Proposition 10.11. Suppose first that, for some v,

Fix any p ∈ , and suppose that e(p, v) < e′(p, v). Since e(p, v) is the

minimal expenditure needed to obtain utility level v at prices p under u, there is
s o m e x such that u(x) ≥ v and p · x < e′(p, v). Of course 

 and, therefore, 

 This means that there

exist nonnegative weights αi summing to 1 and bundles xi with u′(xi) ≥ v such
that x ≥ ∑i α

ixi. But then p · x ≥ ∑i α
i (p · xi), and so p · x ≤ p · xi for at least

one i. And for that i, u′(xi) ≥ v. Hence e′(p, v) ≤ p · xi, contradicting the assertion
that p · x < e′(p, v).

As for the converse, note first that since u and u′ are both continuous



functions, both {x ∈  : u(x) ≥ v} and {x ∈  : u′(x) ≥ v} are closed. So

by Proposition 10.9, both CCH({x ∈  : u(x) ≥ v}) and CCH({x ∈  :

u′(x) ≥ v} are closed.

Now suppose that, for some v,

Without loss of generality, suppose that x0 ∈ CCH({x ∈  : u(x) ≥ v}) but

∉ CCH({x ∈  : u′(x) ≥ v}). Temporarily denote CCH({x ∈  : u′(x) ≥

v}) by X′. Since x ∈ CCH({x ∈  : u(x) ≥ v}), we know that x0 ≥ ∑i α
ixi for

nonnegative weights αi that sum to 1 and vectors xi such that u(xi) ≥ v. One of
the xi is not a member of X′, since if they all were, so would be ∑i α

ixi (since X′

is convex) and then so would be x0 (since X′ is comprehensive). So, without
loss of generality, we can assume that the original x0 is one of the xi;
specifically, it satisfies u(x0) ≥ v but is not in the closed, comprehensive, and
convex set X′.

Since X′ is closed and convex, we can strictly separate x0 from X′; that is,
there exists a nonzero vector q ∈ Rk such that q · x0 < inf{q · x : x ∈ X′}.
Since X′ is comprehensive upwards, the usual argument shows that q must be
nonnegative. Now take any strictly positive vector, say e = (1, 1, …, 1) ∈ Rk,
and let  > 0be small enough so that 

Let  clearly p ∈  and p · x0 < inf{p · x : x ∈ X′}

(since p · x ≤ q · x for all x ∈ ). But this means that the expenditure

function for u, evaluated at p and v, or e(p, v), is less than or equal to p · x0,
since x0 ∈ {x ∈  : u(x) ≥ v}. And the expenditure function for u′,

evaluated at p and v, or e′(p, v) is min{p · x : x ∈ X′}, by the first part of the



proposition. Hence e(p, v) < e′(p, v) ; u and u′ have different expenditure
functions. 

We are almost ready for the two big questions posed at the start of this
section. In particular, we know that if we are given an expenditure function e
that is generated by some utility function u, we can’t count on recovering the
particular u from e: Other utility functions u′ share e.

We do know, however, that if e was generated by a continuous, quasi-
concave, and nondecreasing utility function u, then u is the unique continuous,
quasi-concave, and nondecreasing utility function that generates e. We know
this because, if u′ is any other continuous, quasi-concave, and nondecreasing
utility function, then u and u′ must disagree at some x0; that is, u(x0) ≠ u′(x0).
Without loss of generality, suppose u(x0) > u′(x0), and let v = u(x0). Then x0 ∈
{x ∈  : u(x) ≥ v} = CCH({x ∈  : u(x) ≥ v}), while x0 ∉ {x ∈  :

u′(x) ≥ v} = CCH({x ∈  : u′(x) ≥ v}), and hence by Corollary 10.12, they

have different expenditure functions.
To make a neat package of these results, it would be nice to know that for

any continuous utility function u, there exists some continuous, quasi-concave,
and nondecreasing utility function  that gives the same expenditure function
as does u. Then given an expenditure function e generated by some continuous
utility function u, we can hope to be able to recover, if not u itself, the
(necessarily unique) continuous, quasi-concave, and nondecreasing utility
function  that shares u’s expenditure function. (And, indeed, that hope will be
realized next section.) So that is our final result for this section:

Proposition 10.13.   Suppose the utility function u :  → R is continuous.

Define utility function  :  → R from u by

The function  is continuous, quasi-concave, and nondecreasing, and for all v
∈ R,



Therefore, for the original u,  is the unique continuous, quasi-concave, and
nondecreasing utility function that has the same expenditure function as u.
Moreover, if u is locally insatiable, so is .

The definition in display (10.1) may make your head hurt, so let me recast it
using the characterization of CCH sets developed in Proposition 10.8. The
function  defined by (10.1) is equivalently

Proof. As a first step, we will show that  is finite valued. Suppose instead

that, for some x0, (x0) = ∞. That is, for each integer n, x0 ∈ CCH({x ∈ 

: u(x) ≥ n}). This would mean that, for each n, x0 is greater than or equal to
some convex combination of points, each of which has u value greater than n.
By Carathéodory’s Theorem, we can assume that the number of points in each
of these convex combinations is no more than k + 1. That is, 

 where the αin are nonnegative and sum to 1

and the xin all satisfy u(xin) ≥ n. Looking along successive subsequences, we can
without loss of generality assume that limn→∞ αin = αi for each i. By the same
argument used in the proof of Proposition 10.9, we know that not all of the αi =
0 and, in fact,  Let I be the subset of {1, …, k +1} such

that αi > 0. The argument in the proof of Proposition 10.9 tells us that, since x0



≥ ∑i∈I αinxin, each of the sequences {xin; n = 1, …} for i ∈ I lies within a

compact set. So we can extract convergent subsequences. But letting i0 be one

index in I, if the limit along a subsequence of {xi0n} is some x*, continuity of u

and u(xi0n) ≥ n present a contradiction.
Next we show that if  is defined from u by (10.1), then (10.2) holds. Fix

some v, and suppose that x0 ∈ CCH({x ∈  : u(x) ≥ v}). When defining 

(x0) via (10.1), this implies that v is in the set over which the supremum is
taken and, therefore, (x0) ≥ v. Therefore, for the fixed v, the set on the left-hand
side of (10.2) is a subset of the set on the right-hand side.

Conversely, for fixed v, if x0 is in the set on the right-hand side of (10.2),
then (x0) ≥ v. Going back to (10.1), this means that for all n = 1, 2, …, there

is some v′ > v − 1/n such that x0 ∈ CCH({x′ ∈  : u(x′) ≥ v′}). That is, 

 for the usual scalars αin, i = 1, …, k + 1 and for

xin, i = 1, …, k + 1 such that u(xin) ≥ v−1/n. (We are using Carathéodory once
again, of course.) Enlisting once again the argument in Proposition 10.9, we can
assume that the αin converge in n to αi for i = 1, …, k + 1. Letting I be the
index set of i such that αi > 0, we know that ∑i∈I αi = 1 and that x0 ≥ ∑i∈I
αinxin, which puts a uniform bound on the xin for i ∈ I, so we can assume
further that the xin all converge in n to xi. By continuity, u(xi) ≥ v for i ∈ I, and
x0 ≥ ∑i∈I α

ixi, so x0 ∈ CCH({x ∈  : u(x) ≥ v}). Therefore, x0 is in the set

on the left-hand side of (10.2), and the two sets are the same.
It is worth noting that, as a by-product of the argument just given, we’ve

shown that the supremum in (10.1) is actually a maximum.
This means that the sets  (for different v) are

CCH sets and hence comprehensive and convex for each v, which implies that 
 is quasi-concave and nondecreasing (per Proposition 10.10).

To show that  is continuous, I’ll show separately that it is upper and then



lower semi-continuous. For upper semi-continuity, first note that the sets {x ∈ 
 : u(x) ≥ v} are closed, since u is continuous. By Proposition 10.9, this

implies that the sets  are all closed. And one

characterization of upper semi-continuity of a function is that its upper-level sets
are closed. Since that result isn’t given in Appendix 2, here it is: The definition
of upper semi-continuity given in Appendix 2 is that, if xn → x, then lim supn 

 Suppose to the

contrary that, for some sequence xn → x, lim supn 

Then letting  this would mean that for some v′ > v and for

infinitely many  or (for those n), 

 But looking along this

subsequence, xn → x, and we know that  is

a closed set, and hence  a

contradiction.
For lower semi-continuity, we need to show that if xn → x, lim infn 

 Suppose by way of contradiction that, looking along a

subsequence if necessary, we have a sequence xn → x with limn  exists

and is strictly less than (x). Let v = (x). We know that for some i = 1, …,
N, there are weights αi and vectors xi such that the weights are nonnegative and
sum to 1, the xi all satisfy u(xi) ≥ v, and x ≥ ∑i αixi. Consider, for β < 1, ∑i
αi(βxi). I assert that for all n sufficiently large, xn ≥ ∑i α

i(βxi). To see this, think
about the inequality coordinate by coordinate. If xl = 0, since 

 and since all the weights and coordinate values are

nonnegative, we know that each  must be 0, in which case  (which is

also nonnegative) is obviously ≥ the sum. And if xl > 0 then 
 implies 



a n d  having limit xl, will eventually be larger than 

Hence, for all sufficiently large n, it is true that xn ≥ ∑i α
i(βxi) (for fixed β <

1), and therefore (xn) ≥ mini {u(βxi)}. But u(xi) ≥ v for all i, and u is
continuous, so limβ→1 mini {u(βxi)} = mini{u(xi)} ≥ v, a contradiction.

The “ therefore” assertion following (10.2) follows from the argument given
informally before the statement of Proposition 10.13.

Finally, suppose u is locally insatiable (as well as continuous). Fix x0 and
let v0 = (x0). By (10.2), x0 ∈ CCH({x ∈  : u(x) ≥ v0}). Therefore, there

exist, for i = 1, …, N, weights αi and vectors xi such that x0 ≥ ∑i αixi, the

weights are nonnegative and sum to 1, and u(xi) ≥ v0 for all i. Take any  > 0.
By local insatiability of u, there exist  each within /k of xi, respectively,

such that  Letting  be the smallest of the

numbers  this implies that

or  And by the triangle inequality, since

x0 ≥ ∑i α
ixi and each  is within /k of xi, there is some  within  of x0

that is  therefore  This is local

insatiability. 

10.6.   Recovering Continuous Utility Functions from Expenditure
Functions

The first of our two climax questions was Given an expenditure function e
derived from a utility function u, (how) can you recover u? The previous



section shows that we cannot recover u per se. However:

Proposition 10.14.   Suppose e is the expenditure function derived from a
continuous utility function u. Let  be the expenditure-equivalent, continuous,
quasi-concave, and nondecreasing utility function derived from u via the
definition (10.1). Then for every v ∈ R,

And if we define

then  is identical to .

Comparisons with how we recovered a production-possibility set Z from the
profit function are obvious, although this goes a step further, since there we
recovered only a set; here we are recovering the upper-level sets defined from a
function.

Proof. Fix u, , and e. Showing that the sets on the right-hand side of (10.3)

are subsets of the sets on the left-hand side is trivial: Suppose x0 is an element
of  for some v. Since e is the expenditure function for u, itisthe expenditure

function for , and so p · x0 ≥ e(p, v) for all p ∈ ; that is, x0 is an

element of the set on the left-hand side of (10.3) for the fixed v.
We show the reverse set inclusions by arguing the contrapositive: Suppose

that for some fixed v, x0 is not in the set on the right-hand side of (10.3); that is,
(x0) < v. Let  the set X is

closed, convex, and comprehensive. Being closed and convex, we can strictly
separate it from x0: There exists some nonzero q ∈ Rk such that q · x0 < inf {q
· x : x ∈ X}. Since the set X is comprehensive, the usual argument shows that
q ≥ 0. Therefore, we can find  > 0 sufficiently small (but still strictly positive)



such that if p = q +  (1, 1, …, 1), then p · x0 < inf {q · x : x ∈ X} ≤ inf {p ·
x : x ∈ X}. But p is strictly positive, and inf {p · x : x ∈ X} = e(p, v), so this
says that p · x0 < e(p, v). Therefore, x0 is not in the set on the left-hand side of
(10.3).

Showing that if  is defined by (10.4), then  is , is now a matter of

massaging definitions. Take any x0. If (x0) = v0, then we know that p · x0 ≥

e(p, v0) for all strictly positive p by (10.3). So v0 is in the set over which the
maximum is taken in (10.4), and  Conversely, suppose that for some v′ > v0,
p · x0 ≥ e(p, v′) for all strictly positive p. Then applying (10.3) again tells us
that x0 is in the set of x such that (x) ≥ v′. This isn’t so, since v′ was chosen

to be greater than v0 = (x0). Therefore, the largest possible v over which we

are taking the maximum in (10.4) when defining (x0)is (x0), and (x0) = 

(x0). Note, by the way, that this shows that, in (10.4), it is appropriate to
write a maximum instead of a supremum. 

10.7.   Is an Alleged Expenditure Function Really an Expenditure
Function?

The second of our two big questions is, Given a function e that is alleged to be
the expenditure function for some continuous (or possibly continuous and
locally insatiable) utility function u, is it indeed? Is there some continuous
(and, perhaps, locally insatiable) utility function that generates e?

If the answer is yes, then we know that there is a continuous, (perhaps
locally insatiable,) quasi-concave, and nondecreasing function u for which the
answer is yes, namely the  that goes with u. And, in principle, we know how
to find  if it exists: Employ equations (10.3) and (10.4), and check whether
the  =  produced is continuous and, if desired, locally insatiable.

But running the “ machine” defined by (10.3) and (10.4) for a specific e is
certainly a nontrivial exercise. We’d like to know if there is a list of properties
for e that guarantees, once we run this machine, we wind up with a nice utility
function u.



We have accumulated a list of necessary conditions: First, e must have a
domain of definition that is the cross product of  and a half-closed (on the

bottom), half-open interval of real numbers. The bottom of this half-closed, half-
open interval should be the value of u(0) and, letting v denote this value, it
should be true that e(p, ) = 0 for all p. To avoid notational complications,
we’ll assume henceforth that  = 0, which amounts to scaling the original
utility function (if one exists) so that u(0) = 0.

Besides this, e should be jointly continuous in p and v. It should be
concave and homogeneous of degree 1 in p. It should be nondecreasing in p and,
if we want u to be locally insatiable, strictly increasing in v. It should be
unbounded in v for each p (where, again, we are using some insatiability
properties).

Are these necessary conditions enough? If a candidate expenditure function
has all these properties, is there a continuous and locally insatiable utility
function that underlies it? The following proposition gives us considerable hope
that the answer may be yes.

Proposition 10.15.   Suppose that e :  × [0, ) → [0, ∞) is continuous

in all its arguments; concave, homogeneous of degree 1, and nondecreasing in
p for each v; strictly increasing and unbounded in v for each p; and satisfies
e(p, 0) = 0 for all p. Define, for each v in its domain,

Then each Xv is closed, convex, and comprehensive. The Xv sets nest: if v′ < v,
then Xv ⊆ Xv′and, moreover, Xv/= Xv′. For every x ∈ , there is some v < 

 such that x∈ Xv. And for every p ∈  and every v, there exists an x(p,

v) ∈ Xv such that p·x(p, v) = e(p, v) and (by definition) for every x ∈ Xv, p·x ≥
e(p, v), so that the problem

minimize p · x, over x ∈ Xv



has a solution, and at that solution, p · x = e(p, v).

Proof. Parts of this are quite simple, while the rest is pretty straightforward,
following what we did in Chapter 9.

To begin with the simple parts, rewrite definition (10.5) as

That’s an intersection of half-spaces. Half-spaces are closed and convex, and
(arbitrary) intersections of closed and convex sets are closed and convex. Since
all the p are nonnegative (in fact, strictly positive), all the half-spaces are
comprehensive, and (arbitrary) intersections of comprehensive sets are
comprehensive. So each Xv is closed, convex, and comprehensive.

Since each e(p, v) is strictly increasing in v, it is apparent that the Xv sets
nest. (If v > v′, the half-spaces that are intersected to define Xv are all subsets of
the half-spaces that are intersected to define Xv′.) Note: This only shows that if v
> v′, then Xv ⊆ Xv′. We have “ weak” nesting. The “ moreover” part of the
statement is proved later.

Take any x0 ∈  and any p0 ∈ . Since e(p0, v) is unbounded in v

(fixing p0), there is some v such that e(p0, v) > p0 · x0, and so x0∈ Xv for that v.

Fix v0, and take any p0 ∈ . Since e(p, v0) is concave in p and p0 is in

the interior of the domain of e, a supergradient of p → e(p, v0)at p0 exists. Since
e is homogeneous of degree 1 in p, we know (Proposition A3.26) that this
supergradient is a linear function; that is, for some x0 ∈ Rk, p0 · x0 = e(p0, v0)
and p · x0 ≥ e(p, v0) for all other p ∈ .

Suppose x0 had some coordinate value less than 0. Take p that is N in that
coordinate value and 1 everywhere else; for N sufficiently large, p · x0 will be
less than 0. But e(p, v0) is nonnegative (in fact, is strictly positive unless v0 =



0), which would be a contradiction, so x0 ≥ 0. Setting x(p0, v0) = x0 completes
the proof of this part of the proposition.

Finally, we have the “ moreover” left to prove. Fix v′ and v with v < v. Take
any strictly positive price vector p. Then e(p, v′) < e(p, v). By the last
paragraph, we know there is x′ ∈ Xv′ such the p · x′ = e(p, v′). But this x′ is
then clearly not an element of Xv.

Definition (10.5) is, in essence, telling us how to find the no-worse-than-
utility-level-v sets for the alleged utility function that (we hope) will generate e.
It shows that these sets are closed, convex, and comprehensive. They nest, just
like they should. Every bundle x is limited in how much utility it provides.
And if we try to solve the expenditure-minimization problem with one of these
no-worse-than-utility-level-v sets, it gives us back the alleged expenditure
function e(p, v). If there is any (quasi-concave and nondecreasing) utility function
that gives us e, these would have to be the no-worse-than-utility-level-v sets for
that utility function, because (as we already know) each expenditure function e
uniquely defines these sets. In other words, if we go on from (10.5) and define

assuming of course that the max is warranted, then either u is our utility
function or there is no utility function that works.

So, to finish up and get an affirmative answer to our second big question
(where the sufficient conditions are the conditions in Proposition 10.15), we
only (!) need to show that the utility function u defined via (10.6) is continuous
and locally insatiable. Unhappily, we can’t take that last step.

To clear away some easy stuff, let’s establish that we can use a maximum in
(10.5) and harvest one piece of what we’d like to show.

Proposition 10.16.   Suppose e satisfies all the assumptions of Proposition
10.15 and so, in consequence, we define the sets Xv via (10.5). Then for each

x0, the set

{v ∈ R : x0 ∈ Xv}



contains its supremum, and it makes sense to write the max in (10.5).
Moreover, the function u that is then defined in (10.6) is upper semi-
continuous, quasi-concave, nondecreasing, and locally insatiable.

Proof. Fix x0, and suppose that the supremum of the set {v ∈ R : x0 ∈ Xv} is

v0. This implies there is a sequence {vn} approaching v0 from below such that,
for each vn, p · x0 ≥ e(p, vn) for all p ∈ . Continuity of e in the v

argument assures us that p · x0 ≥ e(p, v0) for all p ∈ , and v0 is indeed in

the set over which the supremum is being taken.
That being so, for every v, for u defined via (10.6), {x ∈  : u(x) ≥ v} =

Xv. We have already shown that each Xv closed, convex, and comprehensive, so
u is upper semi-continuous, quasi-concave, and nondecreasing.

And for local insatiability, I will show that, if e = (1, 1, …, 1) ∈ ,

then for any x0 ∈ , u(x0 + δ e) > u(x0) for all δ  > 0. Suppose this is not

true; that is, we find x0 and δ  such that u(x0 + δ e) = v0 ≤ u(x0). Since u is
nondecreasing, this implies that for every x such that x0 ≤ x ≤ x0 + δ e, u(x) = v0.

Let Z = ∪v>v0 Xv. Of course, for any x such that x ≤ x0 + δ e, u(x) ≤ v0, so x

 Z. Therefore, we can put an open ball around x0 that is disjoint from Z and,

therefore, we can strictly separate x0 from the closure of Z (which is convex,
because Z is convex). That is, for some p ∈ Rk, p · x0 < infx∈Z p · x. Since Z
is comprehensive upwards, p ≥ 0, and by the usual argument, we can perturb p
slightly so it is strictly positive, without affecting the strict separation from the
closure of Z. Fix this p.

Per Proposition 10.15, for every v, if we minimize p · x over x ∈ Xv, the

value of the solution is e(p, v). So consider this problem for v = v0 and for v =
v0 + ,  > 0. In the case v = v0, the answer is no greater than p · x0, since x0

∈ Xv. In the case v = v0 + , the answer can be no smaller than the infimum

over Z. But this then says that lim  →0 e(p, v0) = the infimum > e(p, v0),



contradicting the assumed continuity of e.

But for nice candidate expenditure functions, where “ nice” means e satisfies
all the assumptions of Proposition 10.15, the function u that is constructed by
(10.5) and (10.6) will fail to be lower semi-continuous. Figure 10.2 (taken from
Krishna and Sonnenschein 1990) indicates what can go wrong. The figure
depicts the indifference curves of a utility function that is not continuous but that
is strictly increasing and quasi-concave. The numbers on the indifference curves
indicate the utility levels for the curves. The key point is (x0, 0). A number of
indifference curves, all those with utility level between 2 and 4, meet at this
point. (You can assign (x0, 0) any utility level you wish between 2 and 4.) All
indifference curves approach the x-axis at slope approaching zero. To the left and
right of the two extra heavy indifference curves (levels 2 and 4, respectively), the
indifference curves are horizonal translates of the two (the level 4 curve to the
right and the level 2 curve to the left); for utility levels between the levels of the
two extra heavy curves, the transition is smooth.

Despite the fact that this utility function fails to be continuous at (x0, 0), we
can still solve the expenditure-minimization problem using it, for every utility
level and every strictly positive price p. The lack of continuity at (x0, 0) won’t
present a problem, because the indifference curves have slope 0 at that point;
therefore, at any strictly positive price, the solution will stay away. For this
reason, the expenditure function e(p, v) that is produced will be continuous in p
and v. And if you use this expenditure function to reconstruct the utility
function, you will get the function back, except that the process of reconstructing
the utility function will give (x0, 0) the utility value 4 (which it will have to do,
to keep the reconstructed utility function upper semi-continuous).



Fig. 10.2. Indifference curves for a counterexample. A utility function with
the sort of indifference curves depicted will generate a continuous
expenditure function, even though the utility function is not continuous.
The key is that the indifference curves hit the x-axis with a slope of 0. The
numbers by the indifference curves are the utility levels for each. The level
of utility at the point (x0, 0) can be anything you choose between 2 and 4,
but when the expenditure function is inverted using (10.5) and (10.6), (x0,
0) will be assigned the utility level 4.

So what do we do with this unhappy state of affairs? The literature gives (at
least) two answers.

We can give up on continuity. We’ve shown that a continuous expenditure
function produces upper semi-continuous utility. If you want a theory in which
everything fits together seamlessly, begin with upper semi-continuous utility,
which would mean going back and redoing a lot of this chapter (and Chapter 3).
In fact, you could go back even further, to Chapter 2: Debreu’s Theorem is our
excuse for assuming that the consumer’s preferences have a continuous utility
representation; this is ensured if her preferences are continuous. We can certainly
talk about preferences that are upper semi-continuous—those would be



preferences where the no-worse-than sets are all closed—and then the question
is, If preferences are upper semi-continuous, do they necessarily have an upper
semi-continuous utility representation?

If you do this—if you go back to reconstruct this entire theory assuming that
u is (only) upper semi-continuous, some nice things will happen, but there will
also be some snags. One nice thing will be that, in the CP, the existence of
solutions is still guaranteed: If u is (only) upper semi-continuous, maximizing u
over a compact set is guaranteed to have a solution. (We are minimizing in the
EMP, but what is being minimized is the bilinear function p · x, so that’s not a
problem. And we are minimizing over the set {x ∈  : u(x) ≥ v};if u is

upper semi-continuous, this set is closed.) However, go back to Proposition
10.2d, which says, if x solves the EMP at p and v, then u(x) = v. If u is only
upper semi-continuous, that is no longer true. More significantly, expenditure
functions will no longer be continuous in the v argument. They will be
continuous in p, because concavity in p still holds (why is this enough?). But
in v, we only get lower semi-continuity. In fact, this gives us a neat package:
Upper semi-continuous utility functions are “ dual” to expenditure functions that
are lower semi-continuous in v.

You are asked to take the first step in a general development of this theory in
Problem 10.4. But if you want to see the full-blown treatment, see Krishna and
Sonnenschein (1990).

The second way to proceed is to find further conditions on (candidate)
expenditure functions that are necessary and sufficient for continuous utility.
Jackson (1986a) provides the missing link.

Proposition 10.17.4 Let U be the class of utility functions u on Rk
+ that are

quasi-concave, continuous, nondecreasing, locally insatiable, and satisfy u(0)
= 0 and  Let E be the class of expenditure

functions e with domain Rk
++ × [0, ) → R+ that are continuous and

unbounded above in v, nondecreasing in p and strictly increasing in v, concave
and homogeneous of degree 1 in p, satisfy e(p, v) = 0 if and only if v = 0, and
satisfy



Then every utility function u ∈ U generates a unique expenditure function e ∈
E, and every expenditure function e ∈ E generates a unique utility function u
∈ U, the latter by the construction described in this section.

Condition (10.7) is just what we need (obviously so, since it is necessary and
sufficient). But it is hard to verify in practice: Jackson goes on to give a
condition on e sufficient to guarantee (10.6), if e is differentiable in v.

Proof. In view of earlier results and, in particular, Proposition 10.16, we need
to show (1) that if u is continuous (and all that other stuff), its expenditure
function satisfies property (10.7), and (2), if e satisfies (10.7) (and all that other
stuff), then its u (defined in (10.6)) is lower semi-continuous.

Taking these in order: Suppose u is continuous (and nondecreasing, quasi-
concave, etc.); let e denote the corresponding expenditure function. Fix some x0,
v, and, , such that p · x0 ≥ e(p, v + ) for all p ∈ . Then from

Proposition 10.14, u(x0) ≥ v + . Therefore, there exists δ  ∈ (0, 1) such that
u(δ x0) ≥ v + /2. Therefore, for all p ∈ , δ p · x0 = p · (δ x0) ≥ e(p, v + 

/2) > e(p, v). That takes care of the first part.
For lower semi-continuity of a constructed u, fix a point x0 and let u(x0) =

v0. Let {xn} be a sequence of points with limit x0. Since u(x0) = v0, for every 
> 0, if we let v = v0 − 2 , then p · x0 ≥ e(p, v + ) = e(p, v0 − ) for all p ∈ 

. So, by (10.7), there exists 0 < δ  < 1 such that δ p · x0 > e(p, v) for all p

∈ . Since xn → x0 and all the components of all the x are nonnegative,

we know that for sufficiently large N, xn ≥ δ x0 for all n > N. But then p · xn ≥ p



· (δ x0) = δ p · x0 ≥ e(p, v) for all p, and therefore, for all n > N, u(xn) ≥ v = v0 −
2. Since  is arbitrary here, lim infnu(xn) ≥ v0 = u(x0), which demonstrates
lower semi-continuity.

So what is the bottom line? If the criterion were mathematical elegance, my
vote would be for the Krishna and Sonnenschein approach, which provides a
nice duality between upper semi-continuous utility functions and lower semi-
continuous expenditure functions. But continuity of preferences is pretty
intuitive on economic grounds, or so it seems to me, so I vote for Jackson’s
necessary and sufficient condition. You are, of course, entitled to your own
opinion on the matter.

10.8.   Connecting the CP and the EMP
We are almost ready to get back to the consumer’s problem and Marshallian
demand, which will justify all the work we’ve done in this chapter. But there is
one further bit of preparation to do: We have to connect the consumer’s utility-
maximization problem with the consumer’s problem of minimizing
expenditure.

Proposition 10.18.   Suppose the consumer has locally insatiable and
continuous preferences. Then:

for every p ∈  and y ∈ , H(p, ν(p, y)) = D(p, y) and e(p, ν(p, y))

= y;and
for every p ∈  and v ∈ [u(0), ), D(p, e(p, v)) = H(p, v), and ν(p,

e(p, v)) = v.

When rendered in symbols, this looks complex. But it couldn’t be simpler. To
paraphrase, solutions to the CP are the same as solutions to the corresponding
version of the EMP.

If we were willing to substitute “ proof by picture” for a real proof, the
commentary surrounding the proof would go something like, The point where
the indifference curve and the iso-expense line just touch in panel a of Figure
10.1 (the solution to the CP) is the same as the point where the iso-expense line
and the indifference curve just touch in panel b of the same figure (the solution



to the EMP). As for a real proof:

Proof. Fix p and y, and let x* be any element of D(p, y), so that u(x*) = ν(p, y)
by definition. Let v* be shorthand for u(x*) = ν(p, y). Let h* be any element of
H(p, v*), so that e(p, v*) = p · h*:

1.   Since u(x*) = v*, x* is feasible for the EMP at (p, v*). Since h* is optimal
for the EMP, this implies y ≥ p · x* ≥ p · h*. Therefore, h* is feasible for the
CP at (p, y). Since u(h*) = v* by Proposition 10.2d, h* is optimal for the
CP. That is, h* ∈ D(p, y).

2.   By local insatiability, h* ∈ D(p, y) implies that p · h* = y ≥ p · x*. Since
h* is optimal for the EMP at (p, v*) and x* is feasible, this implies that x* is
optimal (as well) for the EMP. That is, x* ∈ H(p, v*).

3.   By definition, e(p, v*) = p · h*. The left-hand side is e(p, ν(p, y)), while
the right-hand side is y by steps 1 and 2. Therefore, y = e(p, ν(p, y)).

Going the other way, fix p and v ∈ [u(0), ). Let h* be any element of H(p, v),
so that e(p, v) = p · h*. Let y* be shorthand for e(p, v) = p · h*, and let x* be any
element of D(p, y*).

1.   Since p · h* = y* by definition, h* is feasible for the CP at (p, y*). Since x*

is optimal for the CP, this implies that u(x*) ≥ u(h*) = v (the last by
Proposition 10.2d). Therefore, x* is feasible for the EMP at (p, v). Since p ·
x* ≤ y* = p · h*, this implies that x* is optimal for the EMP. That is, x* ∈
H(p, v).

2.   By Proposition 10.2d, u(x*) = v. By the definition of y*, h* is feasible for
the CP at (p, y*), and since u(h*) ≥ v and x* is optimal for the CP, h* is
also optimal for the CP. That is, h* ∈ D(p, y*).

3.   Of course, u(h*) = v = u(x*) = ν(p, y*) = ν(p, e(p, v)).

To build your understanding of this result and its proof, a useful exercise is
to ask, What can be said (along these lines) if preferences are not locally



insatiable? See Problem 10.6.

Bibliographic Notes
Diewert (1982) provides a survey of duality theory applied to the consumer’s
problem, including a history of the development of these ideas. I repeat
references to Krishna and Sonnenschein (1990) and Jackson (1986a) for the “ last
word” on these results. Notwithstanding the dates of publication, my
impression is that Krishna and Sonnenschein was written first, and Jackson
(who did this work as part of his undergraduate senior thesis) wrote at least in
part inspired by Krishna and Sonnenschein.

Problems

 *10.1. Provide full details for the proof of Proposition 10.2.

10.2. Give counterexamples to the following two false propositions. If X is a
closed subset of Rk, then CCH(X) is closed. If X is a closed subset of , then

CH(X) is closed.

*10.3. In remarks following Proposition 10.11, I note that Assumption 10.1
—that all utility functions are continuous and globally insatiable—is not needed
for Proposition 10.10 or for the first half of 10.11. And in discussing the duality
between utility functions and expenditure functions, I asserted (quoting Krishna
and Sonnenschein 1990) that upper semi-continuous utility functions go with
lower semi-continuous expenditure functions. Suppose that we restrict attention
to utility functions u :  → R for which u(0) = 0 and 

 (The first part of this involves an

innocuous rescaling of utility, but the second part assumes that preferences are
globally insatiable.) For such utility functions u, define e :  × R+ → R by

e(p, v) = inf{p · x : x ∈  such that u(x) ≥ v}.

Show that if u :  → R is upper semi-continuous, then e is continuous in p



and lower semi-continuous in (p, v).

10.4. Continuing with the setup of Problem 10.3, what about the rest of the
early propositions of this chapter, Propositions 10.2, 10.3, and 10.4? To what
extent do the various pieces of those propositions require some form of
continuity (full, upper semi-, or lower semi-) or local insatiability?

10.5. In Jackson’s statement of his basic result, which I’ve paraphrased in
Proposition 10.17, his definition of the class of utility functions U does not
include nondecreasing or local insatiability, but instead includes the condition
that each u ∈ U is strictly increasing for strict increases in the argument (which
he calls “ increasing”). Prove that the difference is cosmetic; that is, if u : 

→ R is continuous, then u is nondecreasing and locally insatiable if and only if
u is strictly increasing for strict increases in its argument. (Hint: You may
remember something like this, if you did the problems for Chapter 2.)

 *10.6. Proposition 10.18 requires that the underlying utility function u is
continuous and locally insatiable. What can be proven along these lines if you
assume that u is not necessarily locally insatiable and is (only) upper semi-
continuous? What if you assume u is continuous but not necessarily locally
insatiable? What if u is locally insatiable but (only) upper semi-continuous?

10.7. Fix a consumer with utility function u defined on . Suppose we say

that good i is normal if for all prices p ∈  and income levels y and y′

with y > y′ ≥ 0, if x ∈ D(p, y) and x′ ∈ D(p, y′), then xi ≥ x′i. Suppose we
simultaneously say that good i is Hicks-normal if for all prices p and utility
levels v and v′ with v > v′ ≥ u(0), if h ∈ H(p, v) and h′ ∈ H(p, v′), then hi ≥
h′i. What can you say about the connections between normal goods and Hicks-
normal goods? Under what conditions, if any, are the two concepts equivalent?

 *10.8. In the text, I suggested that a more tangible version of the EMP would
be the problem

Minimize p · x, subject to u(x) ≥ u(x0) and x ≥ 0,



where the parameters of this problem are strictly positive prices p and some
reference consumption bundle x0 ∈ . Call this problem the MEMP(p, x0),

where the M abbreviates modified.

Similarly, for strictly positive prices p and a bundle x0 ∈ , consider the

following modified consumer’s problem:

Maximize u(x), subject to p · x ≤ p · x0 and x ≥ 0.

In words, maximize the utility of consumption, subject to the constraint that the
amount spent is no more than the cost of the bundle x0. Call this problem the
MCP(p, x0).

Assume that the consumer’s preferences are given by a continuous utility
function u. If x0 is a solution of the MEMP(p, x0), is it (necessarily) also a
solution of the MCP(p, x0)? What about the converse? If one or both of these is
false, can you give conditions under which the statement

x0 solves the MEMP(p, x0) if and only if x0 solves the MCP(p, x0)

is true?

10.9. Suppose we define e :  × Rk
+ by

e(p, x0) = inf {p · x : u(x) ≥ u(x0)}.

In the spirit of this chapter, develop a theory concerning this modified
expenditure function. To keep matters relatively simple, assume that u is
continuous, nondecreasing, quasi-concave, and locally insatiable.

 

1 In a similar manner, we could reformulate the CP as, “ At given prices p,
what is the best bundle you can purchase if your income is just sufficient to
purchase the reference bundle x0; that is, for y = p · x0?”



2 Cf. Proposition 9.24h; CCH(X) was used there, but was not set out in a
formal definition.

3 To foreshadow some later developments, what if u were only upper semi-
continuous?

4 If you consult Jackson (1986a), you’ll see that I’ve changed the statement of
his theorem somewhat. Some changes are cosmetic: He assumes  = ∞ . But
where I say that u is nondecreasing and locally insatiable, he says that u is
strictly increasing for strict increases in x (and continuous). On this point, see
Problem 10.5. Note that Jackson’s result also gives equivalent conditions on
indirect utility functions; we’ll discuss this in the next chapter.



Chapter Eleven



Classic Demand Theory

This chapter provides some return on the hard work of last chapter, describing
how, in principle, one could start with consumer demand—that is, the solution
to the CP for all prices and income levels—and recover the consumer’s
preferences. Along the way, we get several important results from the theory of
consumer demand: Roy’s Identity, the Slutsky Equation, and the Integrability
Theorem (although the Integrability Theorem is given informally only). And we
do for the indirect utility function the sorts of things we did for the expenditure
function last chapter.

11.1.   Roy’s Identity and the Slutsky Equation
Assume that we have a consumer with strictly convex, continuous, and locally
insatiable preferences. Continuity guarantees that the CP and the EMP have
solutions for strictly positive prices, and strict convexity guarantees that those
solutions are unique, so it makes sense to speak of the Marshallian and Hicksian
demand functions, (p, y) → d(p, y) and (p, v) → h(p, v), respectively.

We know from last chapter that uniqueness of the solution implies that the
expenditure function e(p, v) is differentiable in p, holding v fixed, and that

We assume, at least for the time being, that the indirect utility function (p, y) →
ν(p, y) is also differentiable (jointly in p and y), and that both the Marshallian
and Hicksian demand functions are differentiable, Marshallian demand in both
arguments and Hicksian demand in prices.

Consider the identity ν(p, e(p, v)) ≡ v. That is, the indirect utility at prices p
and the income level sufficient to get you utility level v at those prices is v.
Differentiate this identity with respect to pi:



Replace ∂e/∂pi with hi = di (for the corresponding arguments) and solve for di, to
get

Consider the identity dj(p, e(p, v)) = hj(p, v). Differentiate both sides with
respect to pi, to get

Replace ∂e/∂pi with hi = di, and you have

Intuition, step 1: Hicksian demand as compensated demand
Of course, we should at some point justify all the assumptions concerning
differentiability that we just made. But first, let’s look for the economic
intuition behind Roy’s Identity and the Slutsky Equation.

Intuitive explanations begin with the notion of compensated demand.
Imagine a consumer who faces prices p with income y and selects the bundle x.
If the price of some good, say good i, rises, we can think of two things having
happened to the consumer.

1.  The relative prices of the various commodities have changed. Relative to
the price of all the other goods, good i is more expensive.

2.  The consumer’s real income has declined; that is, her y units of income are
no longer sufficient to buy the bundle of goods she purchased before, as long
as xi > 0.



Suppose we want to isolate the effect of a shift in relative prices from the
real-income effect, in terms of her utility and/or the amounts of the various
goods that she consumes. A strategy for doing this is to compensate her for the
increase in pi, by increasing y so that her “ real income” is what it was before.
By how much should we increase y so that this is so? What does it mean to
restore her to her old real income? Economists give two answers:

1.  Slutsky compensation involves giving her enough income so that she can, if
she wishes, buy back her old optimal bundle x. That is, if p′i is the new
price of good i, replace y with y +(p′i – pi)xi. Another way to say the same

thing is to define Slutsky-compensated demand, starting from the bundle x0,
as the demand function

In words, Slutsky-compensated demand at the bundle x0 and prices p is
Marshallian demand at p and just enough income to buy x0, or p · x0. Note
that, at the new relative prices, the old optimal bundle, while affordable,
may no longer be optimal. To the extent it is not, the consumer can
increase her utility beyond what she had at the original prices and
corresponding optimal bundle; in symbols, if x0 = d(p0, y0), then u(s(p; x0))
≥ ν(p, y0), and a strict inequality is a real possibility.

2.  Since, in this sense, Slutsky compensation may over-compensate the
consumer, economists also look at Hicks compensation, which involves
giving the consumer just enough income so she can, if she optimizes,
exactly maintain her utility level. In symbols, if the consumer, facing prices
p0 with income y0 attains utility level ν(p0, y0), and if prices change to p,
then Hicks compensation gives the consumer the income level y that
enables her to remain at this utility level. This is y = e(p, ν(p0, y0)), and the
consumer’s choice of bundle is d(p, e(p, ν(p0, y0)) = h(p, ν(p0, y0)). In other
words, if we begin from p0 and y0, at which point the consumer achieves
utility level v0 = ν(p0, y0), Hicks-compensated demand is simply h(p, v0),
or Hicksian demand. Hicksian demand is a form of compensated demand.



Figure 11.1 shows all this in a picture.

Figure 11.1. Hicks and Slutsky compensation. The consumer begins at
the point marked A, with an optimal consumption bundle for given prices
and income. This consumer’s budget line is the solid line passing
through A. Suppose the price of good 2 rises. The budget line pivots to
become the line with long dashes. To compensate the consumer
sufficiently to put her back on her original utility level—Hicks
compensation—we have to push the new budget line up to the position of
the line with medium dashes, and the consumer chooses the Hicksian
demand point marked B. To compensate the consumer sufficiently to
allow her to buy her original optimal bundle—Slutsky compensation—we
have to push the budget line still further, to the line with the short dashes;



the consumer then chooses the bundle marked C. Note that C is preferred
to B and A, which are indifferent to one another.

The intuition for the Slutsky Equation and Roy’s Identity
Now we can give the intuition for the Slutsky Equation. We are thinking of a
consumer who chooses x = d(p, y) at prices p and income y. The price of good i
rises, changing relative prices and the consumer’s real income. By how much
does the consumer’s consumption of good j change? First, the change in
relative prices changes the consumer’s demand for good j. Since Hicksian
demand is compensated demand, it isolates this relative-price effect:

•   The relative-price part of ∂dj/∂pi is ∂hj/∂pi.

The real-income effect, on the other hand, depends on the rate at which a rise in
the price of good i decreases the consumer’s real income. If the consumer was
consuming di(p, y) units of good i, and if the price of good i increases by, say, a
penny, then the consumer is di(p, y) pennies poorer; to get back her old amount
of good i, she needs to economize by di(p, y) (in monetary units) somewhere
else. Therefore,

•   The real-income part of ∂dj/∂pi is –di(p, y) × ∂dj/∂y.

The total rate of change in the consumption of good j per unit change in the
price of good i is then the sum of these two pieces, which is precisely the
Slutsky Equation.

Before turning to Roy’s Identity, it may be worthwhile to think about the
same thing in terms of Slutsky-compensated demand, or s(p, x0) = d(p, p · x0).
Assuming that everything in sight is differentiable, the chain rule tells us that

Rearrange terms, and you get the Slutsky Equation, except that ∂hj/∂pi is



replaced by ∂sj/∂pi, at least if Slutsky-compensated demand is based at the
optimal consumption bundle at the prices and income at which you are taking
these derivatives. Hence, these two partial derivatives are identical; Slutsky- and
Hicks-compensated demand are “ identical” for infinitesimal shifts in price.

As for Roy’s Identity, the question is, What impact does an increase in the
price of good i have on the utility the consumer obtains? Again think in terms
of the change in pi as affecting relative prices and the consumer’s real income. If
Hicks compensation and Hicksian demand capture the relative-price effect, then
clearly the relative-price effect on utility is zero, by definition. But the
dimunition of the consumer’s real income has a first-order effect. If she had been
consuming xi units of good i and the price of good i goes up by a penny, her
real income is reduced by xi pennies. (Yes, you did just read this two paragraphs
ago.) Hence

which is just Roy’s Identity rearranged.

11.2.   Differentiability of Indirect Utility
From Chapter 10, we know that the expenditure function is differentiable if the
EMP has unique solutions (and vice versa). In this section, we prove that if the
CP has unique solutions and if u is continuously differentiable and locally
insatiable, then the indirect utility function is differentiable. Moreover, our proof
will identify the derivatives, providing a proof of Roy’s Identity under less
restrictive assumptions.

Proposition 11.1 (Differentiability of the indirect utility function and its
derivatives). Suppose u is locally insatiable and continuously differentiable. If
the CP has unique solutions in an open neighborhood of (p0, y0), y0 > 0, then
the indirect utility function ν is differentiable in (p, y) in that neighborhood.
Writing x0 for the solution to the CP at (p0, y0), the derivatives (at (p0, y0)) are



where j is any commodity index such that x0
j > 0, and

for the same j.

Corollary 11.2 (The value of the budget-constraint multiplier).  If u is
locally insatiable and continuously differentiable, and if the CP has unique
solutions in a neighborhood of some (p0, y0), then the Lagrange multiplier λ
for the budget constraint in the firstorder/complementary-slackness necessary
conditions for the solution to the CP at (p0, y0) is

Corollary 11.3 (Roy’s Identity).  If u is locally insatiable and continuously
differentiable, and if the CP has unique solutions in a neighborhood of some
(p0, y0), then Roy’s Identity holds:



Before proving the proposition, some comments are in order.

1.  The assumption that u is continuously differentiable in this proposition was
unnecessary in the proof of Proposition 10.6 (differentiability of the
expenditure function). In Proposition 10.6, we were concerned with
differentiability in p only; the shape of u matters because it determines the
shape of the set {x : u(x) ≥ v} for each fixed v, but continuity of u is all that
is needed. If we wanted to talk about differentiability of the expenditure
function in v, however, we would need to assume more about u. (See
Problem 11.2.)

2.  As long as u is locally insatiable, we know (from Proposition 10.18) that
the CP has a unique solution precisely where the EMP has a unique
solution. Hence, differentiability of ν is essentially equivalent to
differentiability of e. (I append essentially because we need continuous
differentiability of u for one but not the other. But assuming differentiability
of u is rarely a problem for economists. On the other hand, here we are
showing differentiability of ν in p and y jointly; Proposition 10.6 shows
differentiability of e in p only.)

3.  In Roy’s Identity, the possibility that the denominator (the partial
derivative of indirect utility in income) equals 0 is real. But the proposition
establishes that when this happens, the numerator is also zero, and in the
sense that 0/0 can be anything, Roy’s Identity follows immediately from
the proposition.

4.  Corollary 11.2 is a simple consequence of the proposition, once we recall
that for any good j that is consumed in strictly positive amount (at the
optimal solution to the CP), the first-order condition is that ∂u/∂xj = λpj.



5.  If we accept that the derivatives in the proposition exist, their values are
relatively intuitive. Begin with ∂ν/∂y. This is the rate of increase in utility
obtained per unit increase in the consumer’s income. So the question is, if
the consumer has $1 more income, how should she spend it? Obviously
(intuitively), this extra $1 should be spent on goods that give the biggest
bang for the buck. But we know that the goods consumed in positive
amounts at x0 have equal bangs for the buck, at least as great as the bangs
for the buck of the other goods. So the answer is clear: The marginal $1 can
be spent any way the consumer chooses, as long as it is spent on goods
that are already consumed in positive amounts. And if it is spent this way,
ν will increase by approximately this bang for the buck; that is to say, ∂ν/∂y
= MUi(x

0)/pi for any and every i such that  > 0. (This argument should

be vaguely familiar; it appears in Chapter 3.)

6.  A similar argument works for ∂ν/∂pi. If pi rises by one unit, to stay budget
feasible the consumer must cut back on her consumption. She obviously
can’t cut back on the consumption of goods whose current level is zero.
And to a first-order approximation, it doesn’t matter how she cuts back on
the other goods, as long as she does so to stay budget feasible. When pi
increases by one unit, her old bundle costs  more than she has, and she

must economize by spending  less on some package of goods.

Therefore, a one-unit rise in pi has the same marginal impact as an -unit

fall in income. This gives ∂ν/∂pi.

7.  As long as we are offering these intuitive explanations, we can offer one as
well for ∂e/∂pi = hi. Suppose the price of good i increases by one (small)
unit. If hi = 0 at the original prices, no change is called for; the change in pi
has no impact on her expenditure. But if hi > 0, perhaps she will wish to
consume less of good i and more of other goods. Since the bangs for the
buck of all other goods (at least, of those that are consumed in positive
amounts) are all equal, the cost of replacing any lost utility will, to the first
order, match the savings realized by consuming less of others. That is, to a
first-order approximation, she might as well stay at the bundle optimal at



the original prices. And then the impact of a one-unit increase in the price of
pi is to raise her expenditure by hi.

8.  The proposition does not cover the case of y0 = 0, because in that case no
commodity index j has  > 0. See Problem 11.2.

The Proof of Proposition 11.1
Warning: This proof is a grind. It is not complex, but since it has many steps,
it may seem so. Following all the details, I summarize its plotline, and you
may do better to read that summary before launching into the details. (If anyone
can suggest how to make it less of a grind, I would love to hear about it.)

Fix (p0, y0) in the open neighborhood in which the CP has unique
solutions; let x0 denote the solution to the CP there. Local insatiability implies
p0 · x0 = y0, and hence, since y0 > 0, that x0 ≠ 0. Pick any nonzero component
of x0; for expositional convenience we will assume it is the first; that is, x0

1 >
0. To save on space later, let u′ be the gradient function of u, and let u′i be its

ith coordinate; that is, u′i(x) = (∂u/∂xi)|x. And let b1 = u′1(x0)/p1; b is a
mnemonic for “ bang for the buck.” (If you’ve forgotten what this is, see page
61). Also, let ei ∈ R+

k be the bundle of one unit of commodity i; that is, ei
j =

1 if i = j and = 0 otherwise.
Now suppose {(pn,yn)}n = 1, 2, … is a sequence of price and income vectors

that has limit (p0, y0). We need to show that

where ν′(p0, y0) is the gradient of ν, as given in the statement of the proposition.
Eventually this sequence lies within the open neighborhood of (p0, y0) in

which solutions to the CP are unique; to simplify, we’ll assume this is true for
all n. (We only need to prove things about the tail of this sequence, so this



assumption is innocuous.) Let xn be the unique solution of the CP at (pn, yn).
The next step is, for each n, to adjust x0 so that it just exhausts the budget

yn at prices pn and to adjust each xn so that it just exhausts the budget y0 at
prices p0. These adjustments are done by varying the amounts of commodity 1
that are consumed; it is important here (to maintain feasibility) that x0

1 > 0,
that xn

1 > 0 for all sufficiently large n, and that the adjustments are small for
large n. First, for each n, let

Note that pn · zn = pn · x0 + yn – pn · x0 = yn. And let

Note that p0 · ζn = p0 · xn + y0 – p0 · xn = y0. Therefore, as long as ζn ≥ 0, it is
feasible at prices p0 and income y0, while if zn ≥ 0, then it is feasible at prices pn

and income yn. And, therefore (assuming zn ≥ 0 and ζn ≥ 0),

As a consequence of Proposition 3.3b (Berge’s Theorem for the CP), lim n

xn = x0. It is then obvious (since limn yn = y0, limn pn = p0, pn · xn = yn, and

p0 · x0 = y0) that for n far enough out in the sequence, zn ≥ 0, ζn ≥ 0, and limn

zn = limn ζn = x0. As before, we will assume that zn ≥ 0 and ζn ≥ 0 for all n;
this is still innocuous, and for the same reason.

Next we apply Taylor’s Theorem, to evaluate u(zn), and u(ζn), the first in
terms of its variation from u(x0) and the second in terms of its variation from



u(xn). Rather than using Taylor’s Theorem with a remainder term, we use the
intermediate-value version of Taylor’s Theorem, to get

and

Apply the two inequalities in (11.1) to the last two displays. From u(x0) ≥
u(ζn), we get

and from u(xn) ≥ u(zn), we get

These two inequalities can be rewritten as

We want to show that



We know that ν(pn, yn) = u(xn), and ν(p0, y0) = u(x0). So we can rewrite the
limit just displayed as

The third term in the numerator, –ν′ (p0, y0) · (pn – p0, yn – y0), is

which is –b1(yn – pn · x0), where (recall) b1 = u′1(x0)/p1. So, rewriting our
objective once again, we need to show that

We do this using the two inequalities in (11.2).
From the right-hand side of (11.2), we know that the limit infimum in

(11.3) is greater than or equal to

We can rewite this as



Because zn has limit x0,  has limit , and u is continuously differentiable,

the first term inside the square brackets converges to zero. And the second term
is bounded in n: Note that yn – pn · x0 = (pn – p0, yn – y0) · (–x0, 1) (you do the
algebra), so |yn – pn · x0|  ≤ | | (pn – p0, yn – y0)| |  | | (–x0, 1)| | , so the second term
i s bounded by | | (–x0, 1)| | . Therefore, the limit infimum of the sequence in
(11.3) is greater than or equal to zero.

Now we’ll show that the limit supremum is less than or equal to zero
(which establishes that the limit is zero, finishing the proof). We use the other
inequality from (11.2), to bound the limit supremum above by

Add and subtract b1(y0 – p0 · xn) to the numerator, to get

The limit supremum of a sum of two terms is less than or equal to the sum of
the limit suprema of two summands, so look separately at



The numerator in the second of these two terms can be rewritten

and so the second of the two terms is

which is bounded above in absolute value by

The first term (–b1) is constant, the second term (the ratio of the norms) is
bounded above by 1, and the third term vanishes as n goes to infinity. So this
part of the limit sup is bounded above by 0.

This leaves us with



This can be rewritten

The first term vanishes as n goes to infinity, since  converges to x0 and u is

continuously differentiable. And the second term is bounded: rewrite the
numerator as (pn – p0, yn – y0) · (xn, –1) and bound the inner product by the
product of the norms, noting that xn is converging to x0.

Whew! That was indeed a grind but, if you look for the big picture of the
proof and, in particular, compare with the proof of Proposition 9.22
(differentiability of the profit function), the basic idea of the proof is pretty
simple. Recall how the proof of Proposition 9.22 went: We were looking at a
sequence of prices pn with limit p0, and we pulled out the optimal production
plan zn for pn and the optimal production plan z0 for p0. Then we looked at two
inequalities:

In words, at the price vector pn, the production plan that maximizes profitat pn

is at least as profitable as the plan that is profit maxmizing at p0, and vice versa.
Those two inequalities, plus judicious use of Berge’s Theorem (if solutions are
unique, they define a continuous function), applied with brute force to the limit
that defines the derivative of π, gave the result.

We are doing, pretty much, the same thing here. The key step is getting the
corresponding two inequalities, which are the two inequalities in (11.2). Once



we have those two inequalities, we apply them to the limit that defines the
derivative of ν with sufficient brute force (a bit more than back in Chapter 9), and
out comes the result. Two things make the proof harder: First, the objective
function back in Chapter 9 is the bilinear form p · z. So evaluating the
differences p0 · z0 – p0 · zn and pn · zn – pn · z0 is straightforward. In this case,
we need to apply Taylor’s Theorem to evaluate those differences in a way that is
useful, which in turn is why we need the assumption that u is differentiable.
And back in Chapter 9, the feasible set doesn’t change as prices change. Here it
does, and so when we compare x0 with xn in deriving the two inequalities, we
first have to adjust x0 to fit the problem (pn, yn) and we have to adjust xn to fit
the problem (p0, x0). Notice, though, that we do all our adjusting through
adjustments in the consumption of good 1, under the hypothesis that, in x0, x0

1
> 0. That tells us (1) that when the adjustments are small, the adjusted values
will still be nonnegative. And (2) we know from back in Chapter 3 that small
adjustments in consumption levels to fit small changes in price or income are
all equivalent (to the first order) as long as we change the levels of goods with
the greatest bang for the buck, which are those goods that are consumed in
strictly positive amounts. The proof takes a lot of steps and manipulation of
symbols, but there is nothing especially deep in all those steps.

11.3.   Duality of Utility and Indirect Utility
The climax of Chapter 10 is Proposition 10.17, showing a duality between
expenditure functions that conform to a list of properties and the class of
continuous, locally insatiable, nondecreasing, and quasi-concave utility
functions. In this section, we match that result, for indirect utility functions.

Proposition 11.4. Suppose that u is a continuous and locally insatiable utility
function. Then ν, the indirect utility function generated from u, is continuous,
strictly increasing in y, nonincreasing in p and strictly decreasing for strict
increases in p if y > 0, homogeneous of degree 0 in (p, y), quasi-convex in (p,
y), and satisfies ν(p, y) = u(0) if and only if y = 0. Moreover, limy→∞ ν(p, y) =
supx∈R

k
+ u(x) for all p ∈ .



Proof. Proposition 3.3 established continuity and homogeneity of degree 0 in
(p, y). To show that ν is strictly increasing in y, fix (p0, y0), and let x0 be any
solution of the CP at (p0, y0). Of course, p0 · x0 = y0. For any y′ > y0, local
insatiability of u ensures that there exists x′ (close to x0) such that u(x′) > u(x0)
and p0 · x′ ≤ y′, and therefore ν(p0, y′) ≥ u(x′) > u(x0) = ν(p0, y0).

If y = 0, then it is obvious that ν(p, y) = u(0) for all p; the only bundle that
is affordable is 0. And then, if y > 0, we know from the previous paragraph that
ν(p, y) > ν(p, 0) = u(0).

To show that ν is nonincreasing in p, fix (p0, y0) and let p′ ≥ p0. Then {x ∈
 : p′ · x ≤ y0} ⊆ {x ∈  : p0 · x ≤ y0}. But ν(p′, y0) is the maximum of

u(x) over the first of these sets, and ν(p0, y0) is the maximum over the second
set. Maximizing over a larger set must produce a maximum at least as large:
ν(p0, y0) ≥ ν(p′, y0).

Now suppose, in the notation of the last paragraph, that y0 > 0 and p′ is a
strict increase over p0. Let D(p0, y0) denote all the solutions of the CP at (p0,
y0), and let x′ be any solution of the CP at (p′, y0). Of course, because of local
insatiability, p0 · x = y0 for all x ∈ D(p0, y0), and p′ · x′ = y0. Since we know
(now) that ν(p0, y0) > u(0), we know that every x ∈ D(p0, y0) is nonzero. This
implies, since p′ is a strict increase on p0, that p′ · x > p0 · x = y0 for every x ∈
D(p0, y0). Therefore, no x ∈ D(p0, y0) is feasible at (p′, y0), which implies that
x ∉ D(p0, y0). But p0 · x′ ≤ p′ · x′ = y0, so x′ is feasible at (p0, y0); since it is not
a solution of the CP at (p0, y0) but is feasible, it must provide less utility than
do members of D(p0, y0). That is, ν(p′, y0) = u(x′) < ν(p0, y0). (Can you
construct a proof using the homogeneity properties of ν?)

Since ν is strictly increasing in y, limy→∞ ν(p, y) exists and is the same as
supy∈Rk+ ν(p, y). Since the CP has a solution for every set of parameter values,

for any (p, y) there is some x such that ν(p, y) = u(x), and hence supy∈Rk+ ν(p,

y) ≤ supx∈R
k

+ u(x). To get the reverse inequality, suppose xn is a sequence of
bundles whose utilities approach supx∈Rk+ u(x) in n: For any price p, let yn = p



· xn, and we know that ν(p, yn) ≥ u(xn) (since xn is feasible); therefore supy∈Rk+
ν(p, y) ≥ u(xn); taking n to infinity does it.

Finally, there is quasi-convexity: Fix (p, y), (p′, y′), and α ∈ [0, 1], and let
(p″, y″) = α(p, y) + (1 – α)(p′, y′). Suppose x* is a solution of the CP at (p″, y″).

I assert that x* is either feasible for (p, y) or for (p′, y′). Nonnegativity of x* is
not a problem, so the only way x* could be infeasible for both (p, y) and (p′, y′)
is if p · x* > y′ and p′ · x* > y′. But then α(p · x*) + (1 – α)(p′ · x*) > αy +(1 –
α)y′, which is p″ · x* > y″, contradicting the assumption that x* is optimal, and
hence feasible, at (p″, y″).

But if x* is feasible for (p, y), then u(x*) ≤ ν(p, y) ≤ v. Similarly, if x* is
feasible for (p′, y′), u(x*) ≤ ν(p′, y′) ≤ v. One of these must hold, so u(x*) = ν(p″,
y″) ≤ max{ν(p, y), ν(p′, y′)}; hence ν is quasi-convex.

Recall that for a set X ⊆ Rk
+, CCH(X) is the comprehensive convex hull of

X.

Proposition 11.5. Suppose that u and u′ are two continuous utility functions
defined on Rk

+. Let ν denote the indirect utility function defined from u, and let
ν′ be the indirect utility function defined from u′. Then ν ≡ ν′ if and only if, for
all v ∈ R, CCH({x ∈  : u(x) ≥ v}) = CCH({x ∈  : u′(x) ≥ v}.

Corollary 11.6.  If ν is an indirect utility function derived from a continuous
utility function, then it is the indirect utility function for a continuous,
nondecreasing, and quasi-concave utility function, namely the function û
derived from u via defining equation (10.1). And if ν is derived from a utility
function that is moreover locally insatiable, then the corresponding û is also
locally insatiable.

Proof. Suppose that u and u′ are continuous utility functions such that, for all v,
CCH({x ∈  : u(x) ≥ v}) = CCH({x ∈  : u′(x) ≥ v}). Fix a price vector

p and income level y, and let  be a solution to the CP for u at (p, y). Letting v



= u( ), it is obvious that  ∈ CCH({x ∈  : u(x) ≥ v}) and, therefore, 

∈ CCH({x ∈  : u (x) ≥ v}). That is, , for some

vectors x1, …,xn such that u(xi) ≥ v for i = 1, …, n and nonnegative scalars α1,
…, αn summing to one. I assert that p · xi ≤ y for at least one of the i’s; were
this not so, then 

, and  would not be feasible for (p, y), a contradiction. But for that xi such that

p · xi ≤ y, xi is feasible, so ν′(p, y) ≥ u′(xi) ≥ v0. By a symmetric argument, ν(p,
y) ≥ ν′(p, y), so they are equal for all p and y.

Suppose, conversely, that u and u′ are continous such that, for some v,
CCH({x ∈  : u(x) ≥ v}) ≠ CCH({x ∈  : u′(x) ≥ v}. Without loss of

generality, suppose x0 is in CCH({x ∈  : u(x) ≥ v}) but is not a member of

CCH({x ∈  : u (x) ≥ v}). By the usual argument, we can strictly separate

x0 from the closed and convex set CCH({x ∈  : u′(x) ≥ v}); that is, for

some q ∈ Rk, q · x0 < inf {q · x : x ∈ CCH({x ∈  : u′(x) ≥ v})}. Since

CCH({x ∈  : u′(x) ≥ v}) is comprehensive upwards, q ≥ 0, and we can

perturb q slightly so that it is strictly positive and still have the inequality. Let
p be the strictly positive perturbation of q; that is, p is strictly positive and
satisfies p · x0 < inf {p · x : x ∈ CCH({x ∈  : u′(x) ≥ v})}. Now let y = p

· x0. For the CP with parameters p and y, x0 is feasible. Since x0 ∈ CCH({x ∈ 
 : u(x) ≥ v}), by the argument from the previous paragraph we know that

there is some xi such that u(xi) ≥ v and xi is feasible at p and y. Therefore, ν(p, y)
≥ u(xi) ≥ v. On the other hand, for every x′ such that u′(x′) ≥ v, we know x′ ∈
CCH({x ∈  : u′(x) ≥ v}) and, therefore, p · x′ > y, so x′ is not feasible for

(p, y). Therefore, ν′(p, y) < v. The indirect utility functions are different.
The corollary is obvious given developments from last chapter.



The next step in the progression is to describe how to invert an indirect
utility function, to recover “ the” utility function that generated it. Based on the
results just given and results from Chapter 10, we recover the original utility
function if that function is nondecreasing and quasi-concave (and otherwise we
recover “ its” CCH-equivalent utility function).

Proposition 11.7 . Suppose that ν is an indirect utility function for a
continuous, nondecreasing, and quasi-concave utility function u. Then, for all
x,

Proof. Fix x0 ∈ Rk
+. Since x0 is feasible for the CP at the parameter values p

and y = p · x0, ν(p, p · x0) ≥ u(x0) for all p. This implies that v0 = u(x0) is
among the values in the set on the right-hand side of (11.4). Therefore, the
right-hand side of (11.4) is at least as large as u(x0).

Now take any v′ > u(x0). We know that x0 ∉ {x ∈  : u(x) ≥ v′} and that

{x ∈  : u(x) ≥ v′} is closed, convex, and comprehensive. Hence, by the

usual argument, we can produce a strictly positive p0 such that p0 · x0 < inf {p0

· x : u(x) ≥ v′}. Therefore, if we look at the CP with the parameter values p0 and
y = p0 · x0, we know that no x such that u(x) ≥ v′ is feasible, and ν(p0, p0 · x0) <
v′. Since ν is defined as a supremum, we must be careful with this argument:
The CP has a solution—denote it x*—at (p0, p0 · x0), and ν(p0, p0 · x0) = u(x*).
And, moreover, x* ∉ {x ∈  : u(x) ≥ v′}, since no point in {x ∈  : u(x)

≥ v′} is feasible for the CP at (p0, p0 · x0). Therefore ν(p0, p0 · x0) = u(x*) < v′.
This shows that for every v′ > u(x0), v ∉ {v ∈ R : ν(p, p · x0) ≥ v for all p ∈

}, and therefore the “ maximum” (which you should regard as a supremum

until we prove that it is attained) on the right-hand side of (11.4) is no larger
than u(x0).

And, since we showed in the first paragraph of the proof that v0 = u(x0) is in
the set on the right-hand side, we have established both the equality in (11.4)



and that a maximum is appropriate.

The final question is: When is a candidate indirect utility function ν actually
an indirect utility function? That is, when does a continuous (and, perhaps,
locally insatiable) utility function exist, which generates the candidate function
ν? For the sake of notational convenience, assume that ν(p, 0) ≡ 0 and limy→∞
ν(p, y) = ∞  for all p; this amounts to assuming that, if there is a utility function
that generated ν, it has u(0) = 0 and supx∈  u(x) = ∞ . Then:

Proposition 11.8.  Suppose that ν : ×R+ → R+ is continuous, strictly

increasing in its last argument, nonincreasing in its “p” argument and strictly
decreasing for strict increases in the “p” argument when its last argument
(the “y” argument) is strictly positive, quasi-convex, homogeneous of degree 0,
satisfies ν(p, 0) ≡ 0, and limy→∞ ν(p, y) = ∞ for all p. For v0 ∈ R+, define

Then Xv0 is closed, comprehensive, and convex. Also define, for x ∈ ,

Then u is upper semi-continuous, quasi-concave, and nondecreasing. And if we
define ν′(p, y) = max {u(x) : x ∈ , p · x ≤ y}, then ν′ ≡ ν.

That is, we get everything except lower semi-continuity (hence, continuity) of
the function u constructed from ν. (As part of the proof, we show that the two
maxima embedded in the statement of the proposition are correct; that is, they
are suprema that are attained.)

Proof. Rewrite the definition of Xv0 as 
. Each set in the



intersection is comprehensive upwards because ν is strictly increasing in its last
argument, so the intersection is comprehensive upwards. Each set in the
intersection is closed because ν is continuous, so the intersection is closed.

Each set in the intersection is convex: Fix p and take any pair of bundles x′
and x″ such that both x′ and x″ are in {x ∈  : ν(p, p · x) ≥ v0}. W.l.o.g.,

suppose that p · x′ ≥ p · x″. Then for any scalar α ∈ [0, 1], p · (αx + (1 – α)x″)
≥ p · x″, and since ν is strictly increasing in its last argument ν(p, p · (αx′ + (1 –
α)x″)) ≥ ν(p, p · x″) ≥ v0. Hence αx′ + (1 – α)x ∈ {x ∈  : ν(p, p · x) ≥ v0}.

And since each set in the intersection is convex, the intersection is convex.
This, then, establishes that each Xv0 is closed, comprehensive, and convex.

Fix x0. Since ν(p, p · x0) is finite valued for every p, it is obvious that x0 ∉
Xv for some (finite and large) v. It is also clear from (11.5) that, if x0 ∈ Xv, then

x0 ∈ Xv′ for all v′ ≤ v. Suppose {vn} is an increasing sequence of real numbers

such that x0 ∈ Xvn for each n; we know that the sequence is bounded above, so

it has a limit, which we denote by v0. Since ν(p, p · x0) ≥ vn for every p, of
course ν(p, p · x0) ≥ v0 for every p. But then x0 ∈ Xv0. This immediately
implies that the max in (11.6) is appropriate. Moreover, u(x) ≥ v if and only if x
∈ Xv, so that the sets Xv are the upper-level sets of u. Since the Xv sets are
closed, comprehensive, and convex, u is upper semi-continuous, nondecreasing,
and quasi-concave.

Fix p0 and y0 and consider the problem of maximizing u(x) subject to p0 · x
≤ y0.

The set {x ∈  : p0 · x ≤ y0} is compact, and upper semi-continuous

functions attain their maxima on compact sets, so there is some x* ∈  such

that p0 · x* ≤ y0 and u(x*) ≥ u(x) for all other x ∈  that satisfy p0 · x ≤ y0.

Let v* = u(x*) = ν′(p0, y0). We must show that v* = ν(p0, y0).
Showing an inequality in one direction is easy: Since x* ∈ Xv* = {x ∈ 

 : ν(p, p · x) ≥ v* for all p ∈ }, this is true in particular for p0. That



is, ν(p0, p0 · x*) ≥ v*. Since p0 · x* ≤ y0 and ν is strictly increasing in its second
argument, ν(p0, y0) ≥ v*.

To show that ν(p0, y0) ≤ v* takes a bit of an excursion. Recall that y → ν(p,
y) is strictly increasing and continuous (and the range is [0, ∞)), so for each v ∈
[0, ∞) and p, there is a unique y ∈ [0, ∞) such that ν(p, y) = v. Denote this y
by e(p, v). The use of notation identical to that of the expenditure function is no
coincidence—this is indeed the corresponding expenditure function—but we
don’t need to bother verifying this fact. Some facts about this function e are:

•   For fixed p, it is the inverse function of y → ν(p, y). Since y → ν(p, y) is
continuous and strictly increasing, so is v → e(p, v).

•   The function is nonnegative valued: e(p, v) ≥ 0 for all p and v. Moreover,
e(p, 0) = 0 (since ν(p, 0) = 0). And since y → ν(p, y) increases to ∞ , so does
v → e(p, v).

•   For fixed v, the function p → e(p, v) is homogeneous of degree 1: e(λp, v)
must satisfy ν(λp, e(λp, v)) = v. But since ν is homogenous of degree 0 in
both arguments, and ν(p, e(p, v)) = v, we know that ν(λp, λe(p, v)) = v.
Therefore, the unique value y that satisfies ν(λp, y) = v is e(λp, v) = y = λe(p,
v).

•   For fixed v, the function p → e(p, v) is concave: Fix v, and take any pair of
price vectors p1 and p2 and scalar α ∈ [0, 1]. Let y1 = e(p1, v) and y2 =
e(p2, v), so that ν(p1, y1) = ν(p2, y2) = v. Because ν is quasi-convex, ν(αp1 +
(1 – α)p2, αy1 +(1 – α)y2) ≤ v. Therefore, since ν is strictly increasing in its
final argument, e(αp1 +(1 – α)p2, v) ≥ αy1 +(1 – α)y2, which is concavity of e
in p.

•   We have the identities (for each p) e(p, ν(p, y)) = y and ν(p, e(p, v)) = v.

Now go back to our fixed p0 and y0, and let v0 = ν(p0, y0). Let x be a
supergradient of the concave and homogeneous-of-degree-1 function p → e(p, v0)
at p = p0. That is,



(We are using the homogeneity-of-degree-1 property of e in p to conclude that
the supergradient is linear, of course.) We know that x′ is nonnegative: If x′ had
a negative component, we could find a strictly positive price p such that p · x′ <
0, contradicting the fact that e(p, v0) ≥ 0 for all p (and v0).

The equation p0 · x′ = e(p0, v0) = y0 tells us that x′ is feasible for the CP
with parameters p0 and y0, and therefore ν′(p0, y0) ≥ u(x′). The inequality p · x′ ≥
e(p, v0) tells us that for all p, v0 = ν(p, e(p, v0)) ≤ ν(p, p · x′), which implies that
x′ ∈ Xv0, or u(x) ≥ v0 = ν(p0, y0). Putting this together, v* = u(x*) = ν′(p0, y0) ≥

u(x′) ≥ v0 = ν(p0, y0). This finishes the proof.

Just as in Chapter 10, we nearly get everything we might want, but we can’t
show that, for a general candidate indirect utility function ν that is continuous,
t h e u constructed via (11.5) and (11.6) is lower semi-continuous. The
counterexample we described in Chapter 10 is a counterexample here as well and
for the same reason: The point at which u fails to be lower semi-continuous is
never a solution to either the CP or the EMP for strictly positive prices, so it
doesn’t cause the expenditure function or the indirect utility function to be
discontinous.

And, just as in the case of Chapter 10, there are two ways to repair matters.
You can give up on continuity of utility functions, settling for upper semi-
continuity. This allows indirect utility functions to be upper semi-continous,
just as (last chapter) it gave expenditure functions that can be lower semi-
continuous in v. For the details of this approach, see Krishna and Sonnenschein
(1990).

Or we can add a further regularity condition on our indirect utility functions:

Proposition 11.9.  Suppose ν is an indirect utility function generated by a
utility function u that satisfies all the conditions of Proposition 11.4. Then ν
satisfies



Conversely, if ν is a candidate indirect utility function satisfying all the
conditions of Proposition 11.8 and (11.7), then u defined from ν via (11.5)
and (11.6) is continuous.

Condition (11.7) is due to Jackson (1986a). You should have no problem
proving this proposition on your own, if you follow the model of the proof of
Proposition 10.17; you are asked to do this in Problem 11.4. Please see
Problem 11.5, as well.

11.4.   Differentiability of Marshallian Demand
Conditions that guarantee differentiability of the two value functions (the indirect
utility and expenditure functions) are relatively straightforward; uniqueness of
the solution (essentially) yields differentiability of the value function. Moreover,
differentiability of indirect utility is what we need for Roy’s Identity. But to
derive the Slutsky Equation, we need to know that the Marshallian and
Hicksian demand functions are differentiable. We can provide conditions
sufficient to guarantee this, but they are significantly less attractive. I cover the
differentiability of Marshallian demand in this section, leaving Hicksian demand
to you.

If we are to have any hope of showing that Marshallian demand is
differentiable, it first must be a function, and a continuous function at that.
Therefore, to begin this conversation, we must assume that the CP has a unique
solution, at least in some open domain of parameter values. (Of course,
continuity of the corresponding Marshallian demand function follows from the
application of Berge’s Theorem.) So throughout this section, we maintain the
assumption that the CP has a unique solution throughout some neighborhood of
a specified point (p0, y0).

A motivating example
To motivate what comes next, consider the following simple example. Suppose
that k = 2 and



Because u is strictly concave, we know that the CP will have a unique solution
for all p and y. Fix p1 = p2 = 1, and consider solutions to the CP as a function
of y. If x1 and x2 are both strictly positive at the solution (for given y), the first-
order conditions tell us that

Clearly, this will be impossible unless x1 ≥ 9, which (in turn) requires y ≥ 9.
From this observation the solution is clear:

Evidently, we do not get differentiability (in y, at least) for values where the set
of binding nonnegativity constraints changes. If you fix y = 9 and p1 = 1 (say),
and then parametrically vary p2, you will see that the same is true for
differentiability in prices.

The utility function u in this example is continuously differentiable of all
orders. It is bounded below and its derivatives are bounded on . All in all,

this is a very well-behaved utility function. Hence we conclude that looking for
differentiability over changes in the set of nonzero consumption levels may be a
problem.



The result for the CP
With this as prelude, we can state a positive result.

Proposition 11.10 (Differentiability of Marshallian demand). Suppose that

a.  u is locally insatiable and twice continuously differentiable;

b.  the CP has a unique solution d(p, y) for all (p, y) in an open
neighborhood of some fixed (p0, y0); and

c.  in an open neighborhood of (p0, y0), the nonzero components of d(p, y) do
not change.

Let n be the number of nonzero components of d(p0, y0), and let j1, …, jn be
their indices. Use the notation

and let H be the (n + 1) × (n + 1) matrix

Suppose that

d.  H is nonsingular when evaluated at d(p0, y0).



Then d(p, y) is continuously differentiable over some open neighborhood of (p0,
y0).

The use of H in the statement of this result is slightly unfortunate, because it
might be confused with the H in Hicksian. This H is for Hessian; more
precisely, H is the bordered Hessian of the (twice-continuously differentiable)
function u (restricted to the nonzero arguments that pertain around d(p0, y0)).1

Before launching into the proof, commentary on the four assumptions is in
order.

•   The assumption that u is twice continuously differentiable is, for most
economists, fairly innocuous. It is also without any serious axiomatic basis.

•   Uniqueness of the solution to the CP is far from innocuous, but we know
that it follows if we assume that u is strictly quasi-concave. And there is no
hope for this sort of result without this assumption (at least, for goods that
are consumed; it is okay to have some goods that have no impact on utility
and, therefore, are never consumed).

•   The need for an assumption on nonchanging nonzero components of demand
is shown by the simple example. We’ll comment more on this assumption
after the proof.

•   Condition c in the proposition implies, of course, that y0 > 0.

•   Assumption d probably seems uninterpretable. Advanced books on this
topic show that this assumption is “ very likely” to hold at almost any point
you pick, if u represents strictly convex preferences. But this doesn’t change
its inherent ugliness.

Proof. The proof uses the Implicit-Function Theorem; see Appendix 7.
Fix the point (p0, y0). Let x0 denote d(p0, y0) and let λ0 be the Lagrange

multiplier at the solution to the CP at (p0, y0).
As in the statement of the proposition, suppose that x0 has n nonzero

components. For typographical ease, renumber components so that these n are
the first n components.

Recalling that um = λ0pm for m = 1, …, n, nonsingularity of the matrix H



implies that λ0 > 0; otherwise the first row and the first column of H would
both be identically zero.

Define the function

The domain of definition of F is Rn
++ × R++ × R++ × Rn

++, and the range is

Rn+1. By construction and the preceding paragraph, we know that (p0, y0, λ0,
x0) is in the domain of definition of F (if we restrict p0 and x0 to their first n
components). By the first-order conditions, we know that

Now we apply the Implicit-Function Theorem to define implicitly functions 

(p, y) and (p, y) that satisfy

in a neighborhood of (p0, y0, λ0, x0). The Implicit-Function Theorem will apply
if the (n + 1) × (n + 1) matrix of partial derivatives of F in the eliminated
variables, evaluated at (p0, y0, λ0, x0), is nonsingular. The derivative of F in λ
is the vector



while the derivative of F in xm is

hence we are asking whether

is nonsingular. Nonsingularity of a matrix is unaffected by multiplying any row
and/or any column by a nonzero scalar, so multiply the first row by –λ and the
first column by λ; from the first-order conditions, this gives us the matrix

evaluated at x0. (To see that this is H, recall that we renumbered our commodity
indices.) But our final assumption is precisely that this matrix is nonsingular.
That is, our final assumption was crafted so that at this step, we can invoke the
Implicit-Function Theorem.



Therefore, we know that for an open neighborhood N1 of (p0, y0) and an

open neighborhood N2 of (λ0, x0), there are unique solutions in N2 of the
implicit equation

and that the functions (p, y) and (p, y) so created are continuously

differentiable over N1. If necessary, shrink N1 so that for all (p, y) ∈ N1, (p, y)

has the same nonzero components as x0.
The last step is to note that (p, y) is Marshallian demand (and (p, y)

gives the budget-constraint multiplier as a function of (p, y)): We know that d(p,
y) and λ(p, y) (the true budget-constraint multiplier function) are continuous in
(p, y) (the former by Proposition 3.3 and the latter by Proposition 11.1 and
Corollary 11.2); hence for some open neighborhood N′1 of (p0, y0), they must
lie within N2. The first-order conditions are necessary for solutions to the CP,
and (since all this is in a region where the indices of commodities that are
consumed in positive amounts are unchanging), the first-order conditions are
just F (p, y, λ (p, y), d(p, y)) = 0. Since (p, y) and (p, y) are the unique

solutions of this equation within N2, it must be that (p, y) = λ(p, y) and (p,

y) = d(p, y), at least for (p, y) ∈ N1 ∩N′1. But then the continuous
differentiability of (p, y) tells us that d(p, y) is continuously differentiable on
N1 ∩ N′1.

How bad is it (from a practical standpoint) that we lose differentiability at
points where nonnegativity constraints go inactive? A line of argument that says
this isn’t (practically) a terrible problem asserts that when we go to apply
demand theory empirically, we will have to aggregate over goods to such an
extent that expenditure on each aggregate commodity is strictly positive. That
is, if we try to fit the consumption behavior of a consumer, we won’t deal with
her demand for bus service, air transport to New York, air transport to Los



Angeles, and so on. Instead, we will create a composite commodity—
transportation services—and try to fit her expenditure behavior at this aggregate
level. The point is, while the individual consumer may spend (at some prices
and income levels) zero on bus services, almost no one will spend nothing on
transportation services. If we aggregate consumption commodities at a high
enough level, the argument goes, we can safely assume that we will never see
consumption on the boundary of .

Differentiability of Hicksian demand
What about differentiability of Hicksian demand? Similar techniques work quite
nicely. We assume that the EMP has a unique solution and that the binding
constraints (the index set of the goods consumed in strictly positive amount)
don’t change over some neighborhood. We use the combined first-order,
complementary-slackness conditions for the EMP to determine implicitly the
Hicksian demand function, and then invoke the Implicit-Function Theorem.
With this rather substantial hint, I leave the details to those of you fanatical
enough to pursue it.

11.5.   Integrability
The discussion two paragraphs ago, about applying demand theory empirically,
probably struck you as coming out of left field. What is the relevance to this
discussion of empirical applications of this theory? To answer this question,
recall first why we are at all concerned with differentiability of the Marshallian
demand function: We need it to derive the Slutsky Equation. (Given
differentiability of Marshallian demand and Hicksian demand, our derivation of
the Slutsky Equation is perfectly rigorous.) But why do we care about the
Slutsky Equation?
 

•   The Slutsky Equation, as we’ve already seen, gives us an intuitive
decomposition of ∂d/∂pi into relative-price and real-income pieces.

•   As we shall see later in this section, economic notions of things like
substitute and complementary goods are informed by the equation.

•   The Slutsky Equation is central to the question of integrability.



And, to link two paragraphs ago to this section, the question of integrability has
its roots in empirical applications of demand theory. In applied (econometric)
work, it is often useful to have parametric functional specifications for a
consumer’s demand function. We can write down nice closed-form
parametrizations for the utility function u, and then solve the CP to derive
Marshallian demand. But for most analytically tractable specifications of u, the
Marshallian demand function that results is a mess. It is often more convenient
to specify a parametric form for Marshallian demand directly, being sure that this
parametrization is analytically tractable. But then, to be sure that one’s
parametrization plays by the rules of microeconomic theory, one would want to
know whether there is some (parameterized) utility function that gives the
parametric family of Marshallian demand that is being used.

Integrability provides the answer. Given a specification of an alleged demand
function—in the form of a function χ(p, y) (possibly with some free parameters to
be estimated)—integrability gives sufficient conditions for χ(p, y) to be d(p, y)
for some well-behaved utility function u. To develop those conditions (and see
to what extent they are necessary as well as sufficient), we begin with some
definitions.

Definition 11.11.

a.  If f : Rk → R is twice continuously differentiable, the k × k matrix of its
second partial derivatives—that is, the k × k matrix whose ij th element is
∂2f/∂zi ∂zj—is called the Hessian matrix of f.

b.  A k × k matrix M is negative semi-definite if xMx ≤ 0 for all x ∈ Rk.

Mathematical facts: Suppose f is a twice-continuously-differentiable function
from (some open domain in) Rk to R.

a.  The Hessian matrix of f is symmetric.

b.  The function f is concave if and only if its Hessian matrix is negative
semi-definite (evaluated at all points in the domain).

I do not attempt to prove fact b, but you should note that fact a simply states
that ∂2f/∂zi∂zj = ∂2f/∂zj∂zi.



Proposition 11.12.  Suppose, for a consumer with continuous and locally
insatiable utility function u, e is the consumer’s expenditure function and ν the
indirect utility function. Suppose that for some open neighborhood of
parameters, the solutions to the CP and the EMP are unique, and the
corresponding Marshallian demand function d and Hicksian demand function h
are both continuously differentiable. Then the k × k matrix whose ij th term is

is symmetric and negative semi-definite.

Proof. Since h is the gradient of e, and h is assumed to be continuously
differentiable, e is twice continuously differentiable. We know that e is concave
in prices, so its Hessian matrix must be symmetric and negative semi-definite.
But as h gives the gradient of e, the ij th term in the Hessian matrix of e is just
∂hj/∂pi, and the Slutsky Equation tells us that this is identical to term in (11.8)

Because of its importance to demand theory, the k×k matrix whose ij th
element is given by (11.8) has a name: It is called the Slutsky Matrix.

Suppose someone hands you a differentiable function χ :  × R+ → Rk
+

and asserts that this function is Marshallian demand for some consumer with
locally insatiable preferences. We now have a number of tests that this function
must pass:

a.  For each p and y, p · χ(p, y) must equal y. Henceforth, we refer to this
condition (that the consumer spends her entire income) as Walras’ Law.

b.  The function χ must be homogeneous of degree 0.

c.  The Slutsky Matrix (with χ in place of d) must be symmetric and negative
semi-definite.

The Integrability Theorem says that, with some technical conditions on the
function χ, these conditions are sufficient as well. That is, if χ satisfies a, b, and



c, and some technical conditions, it is the Marshallian demand function
corresponding to a locally insatiable utility maximizer, whose preferences
(moreover) are nondecreasing and convex.

I’m not going to try to prove this result, or even give an exact statement of
it, because to do justice to it would require too much background on the theory
of differential equations. Instead, I describe how integrability works, and then
recommend further readings if you want to see the details.

Suppose χ(p, y) is indeed a Marshallian demand function. We know then
that u(χ(p, y)) = ν(p, y). Fix some price p0 and income level y0, and for all prices
p, define

In words, μ gives the amount of money needed at prices p to get the level of
utility obtained at p0 and y0. This is called (by Hurwicz and Uzawa, in the
classic paper on integrability) the income compensation function. Now fix p at,
say, , and think of varying p0 and y0. In particular, define a function η(p0, y0)

by

Because e is strictly increasing in its second argument,

Hence if x0 = χ(p0, y0) and x1 = χ(p1, y1), we know that

In other words, if we define, for x in the range of χ,



we know that U is a representation of the consumer’s preferences (on the range of
χ).

But how do we find η(p, y)? Go back to the equation μ(p; p0, y0) = e(p,
ν(p0, y0)). Take the partial derivative of this in pi:

The first and last terms in this progression (for i = 1, …,k simultaneously)
constitute a total differential equation for the function μ(·; p0, y0), if you have the
function χ. (Note that μ(p0; p0, y0) = e(p0, ν(p0, y0)) = y0, which gives an initial
condition for each p0 and y0.) Assuming you can solve (that is, integrate) this
differential equation, you can construct the family of functions μ(·; p0, y0). Invert
these functions as above to construct η, and you have a utility function.

If this seems magical, think first about the differential equation

The function μ tells you the amount of money needed to keep the consumer at
the utility level ν(p0, y0), at prices p. The left-hand side of the differential
equation asks: How much (more) money is needed, at the price vector p, if the
price of good i increases by one unit? And the right-hand side says: It is the
amount of money that is needed so that the consumer can continue to buy the
bundle that she would buy at p, with enough money to get utility level ν(p0,
y0). If she is buying none of good i, she needs no more money. If she is buying
a positive amount of good i, then buying back her bundle is, to a first-order
approximation, the optimal thing for her to do. This is just like the intuition
we gave for the Slutsky Equation at the start of the chapter.



The other part of the argument is the realization that, if we fix the first
argument in μ, it gives a utility function for the consumer. But that’s not really
magical either: If one bundle is chosen at p0, y0 and another at p1, y1, and if at
prices  it takes more money to get the utility that the first bundle provides

than to get the utility that the second bundle provides, then (of course) the first
bundle has greater utility.

Of course, almost all of the heavy lifting remains to be done. Do the
differential equations have a solution? Does the solution for different initial
conditions behave nicely? Given the function η, does it really provide us with a
utility function that gives back the demand functions χ? Assuming that we want
utility functions that are locally insatiable and continuous, does the η that is
constructed satisfy these conditions? And this only suggests how η can be
defined for x in the range of χ. We want a (continuous and locally insatiable)
utility function for all of . How is η extended? If you are interested in

details, I recommend both Border (2004) and Jackson (1986b).

11.6.   Complements and Substitutes
The symmetry of the Slutsky Matrix bears some scrutiny. Putting this in terms
of Hicksian demand, we know that

So the income-compensated demand for good i is increasing in pj if and only if
the income-compensated demand for good j is increasing in pi, and the
magnitudes of the derivatives of each are identical.

The fact that the partial derivatives are identical and not just similarly
signed is quite amazing. Why is it that whenever a $0.01 rise in the price of
good i means a fall in (compensated) demand for j of, say, 4.3 units, then a
$0.01 rise in the price of good j means a fall in (compensated) demand for i by
approximately 4.3 units?2 While I am unable to give a good intuitive
explanation, at least the similar sign characteristic makes intuitive sense. If a



rise in the price of good i causes demand for good j to rise, then in some sense j
is substituting for i (the demand for which is reduced because of the rise in
price). But then if j substitutes for i, i must substitute for j. And conversely, if i
complements j, so a rise in the price of j lowers demand for i, the same effect
must hold with i and j reversed.

Note that all this concerns Hicksian demand. For Marshallian demand,
things are a bit more complex because there are income effects to worry about;
we can’t say that ∂di/∂pj = ∂dj/∂pi, or even that they necessarily have the same
sign.

In informal economics, the term substitutes is used to describe pairs of
goods where an increase in the price of one good causes an increase in the
demand of the second, and complements is used when an increase in the price of
one good causes a decrease in the demand of the other. If we attempt to formalize
this in terms of the signs of ∂dj/∂pi, we run into the unhappy possibility that
∂dj/∂pi < 0 and, at the same time, ∂di/∂pj > 0. The symmetry of the Hicksian
demand derivatives precludes this unhappy possibility for Hicksian demand. So
it has become common in more formal treatments of substitutes and
complements to base the definition on the sign of ∂hj/∂pi = ∂hi/∂pj. But you
should be careful when you encounter these terms in the literature, as different
authors will use them somewhat differently.

11.7.   Integrability and Revealed Preference
The question of integrability is, Does an alleged system of demand functions
(for a single consumer), χ :  × R+ → Rk

+, arise from utility maximization

for some (suitably regular) utility function? Up to some regularity conditions,
the answer supplied by the Integrability Theorem is, Assuming differentiability,
it does so if and only if χ is homogeneous of degree 0, satisfies Walras’ Law (p ·
χ(p, y) = y), and has a symmetric and negative semi-definite Slutsky Matrix.

Back in Chapter 4, Afriat’s Theorem addressed a seemingly similar
question, Does a finite collection of demand data (from a single consumer), {(xi,
pi, yi) ; i = 1, …, n}, where xi is demand at pi and yi, arise from utility
maximization according to a locally insatiable utility function? The answer
given there was, It does if and only if there are no revealed preference cycles



within the finite set of data, where at least one of the revealed preferences in the
cycle is revealed strict preference.

To have a seamless theory, it would be nice to connect these two very
different approaches to the same basic question. And in one direction, at least,
the connection is very easy:

Corollary 11.13. For an alleged system of demand functions χ :  × R+

→ Rk
+ to be generated by a utility-maximizing consumer with locally

insatiable, continuous utility, it is necessary that, for every finite collection of
price-income pairs {(pi, yi); i = 1 …, I}, the corresponding demands {χ(pi, yi)}
together with those prices and income levels satisfy GARP.

I label this a corollary, because it follows immediately from Afriat’s Theorem
and, for that matter, from the easy half of Afriat’s Theorem.

But then one wonders: Suppose χ satisfies GARP for every finite collection
of price-income pairs and the corresponding levels of demand. Is this sufficient
to know that there is some underlying continuous and locally insatiable utility
function that generates these demands? Please note: this is more of theoretical
than practical interest, because checking that there are no violations of GARP for
every finite collection of price-income pairs and the corresponding demands is
utterly impractical. Compare this task with checking (presumably, algebraically)
that χ is homogeneous of degree 0, satisfies Walras’ Law, and has a negative
semi-definite and symmetric Slutsky Matrix; the latter is something one could
contemplate doing, given an algebraic specification of χ. But even if impractical,
the question is of theoretical interest, since it unifies the two approaches.

Indeed, this is close to a fundamental—perhaps the fundamental—question
in the historical development of the theory of the consumer. Why “ close to”?
GARP is based on the underlying maintained hypothesis that preferences must
be locally insatiable. The historical developments referred to rely instead on an
underlying maintained hypothesis that preferences give a unique solution to the
CP for each p and y. Hence some constructions from Chapter 4 are modified:

If x is demanded at prices p with income y, say that x is directly
revealed as strictly preferred to x′, written x d x′, if p · x′ ≤ y and x′
≠ x.



The (alleged) demand function χ satisfies the Weak Axiom of
Revealed Preference (WARP) if p · χ(p′, y′) ≤ y and χ(p′, y′) ≠ χ(p, y)
implies p′ · χ(p, y) > y′. (Restating this: if p · χ(p′, y′) ≤ y, then χ(p′, y′)
is affordable when prices are p and y. If, in addition χ(p, y) ≠ χ(p′, y′),
then χ(p′, y′) is not chosen at p and y, and so must be strictly worse
than χ(p, y) or, χ(p, y) d χ(p′, y′), and so χ(p, y) must not be affordable
at p′ and y′, or p′ · χ(p, y) > y′. Or we can restate this as, if χ(p, y) d

χ(p′, y′), then it cannot be that χ(p′, y′) d χ(p, y).)

The (alleged) demand function χ satisfies the Strong Axiom of
Revealed Preference (SARP) if for every finite collection of price-
income pairs {(pi, yi); i = 1, …, I}, such that χ(pi+1, yi+1) d χ(pi, yi)
for i = 1,…, I – 1, it is not true that χ(p1, y1) d χ(pI, yI).
(Obviously, WARP is a special case of SARP.)

The questions to be answered are: How do WARP and SARP connect with the
existence of a utility-maximizing consumer (with preferences that generate
unique solutions to the CP)? How do they connection with the conditions in
the Integrability Theorem?

At the risk (indeed, I fear, the certainty) of angering colleagues who are
scandalized by its omission, I will not run these questions all the way down to
definitive answers; the best results require some mathematical methods that
outbid what I expect of readers of this book. But it is worthwhile to mention
some of the easier bits of the theory:

•   Walras’ Law is not implied by SARP: Imagine strictly convex preferences
with a global satiation point x*; for any p and y such that p · x* < y,
demand will be x* and Walras’ Law will fail. But if preferences are strictly
convex, solutions to the CP are unique for all p and y, and (obviously)
SARP holds. We can fix this by weakening the definition of d to read: If
x is demanded at p and y and either p · x′ ≤ y and x′ ≠ x or p · x′ < y, then x 

d x′. Or we can simply add Walras’ Law as a basic assumption about the
demand function χ.

•   If for some λ > 0, p, and y, we find that χ(p, y) ≠ χ(λp, λy)—that is, if χ fails



to be homogeneous of degree 0—then SARP is violated: Since p · χ(p, y) ≤
y, λp · χ(p, y) ≤ λy, so under the hypothesis that χ(p, y) ≠ χ(λp, λy), χ(λp, λy)

d χ(p, y). By a similar argument, χ(p, y) d χ(λp, λy). This gives a 
cycle.

•   If differentiable χ satisfies Walras’ Law and is homogeneous of degree 0,
then satisfaction of WARP implies that the Slutsky Matrix for x is negative
semi-definite (at least, away from any boundaries). The argument, which I’ll
give a bit informally, has two steps. Throughout, we assume that χ satisfies
Walras’ Law, is homogeneous of degree 0 and differentiable, and satisfies
WARP.
First, fix any p and y, and let x = χ(p, y). Take any other price vector p′, and
let y′ = p′ · x and x′ = χ(p′ · y′). Then

with a strict inequality at the end if x ≠ x′. The first step is algebra, the
second uses Walras’ Law, the third uses the definition of y′, and the final
equality is just the cancellation of identical terms. As for y ≤ p · x′ with a
strict inequality if x ≠ x′, that is WARP: x′ is demanded at p′ and y′ while x
is affordable there (by construction), so x d x. But then x′, if it is not x,
cannot be affordable at p and y.
Now again fix p and y, and let x = χ(p, y). Make a small change in prices, to
p′ = p + dp, and let y′ = p · x = (p + dp) · x = y + dp · x. Let x′ = χ(p + dp,
y + dy). We know from the first step that dp · dx ≤ 0, where dx = x′ – x.
But, using Taylor’s Theorem,



Hence 0 ≥ dp·dx = dp·S·dp, where S is the Slutsky Matrix for χ. Since dp
could have been taken in any direction, this shows that S is negative semi-
definite.

That is the extent of the low-lying fruit on this topic. For the sake of
completeness, let me give (but not prove) one result that connects SARP and
the existence of a utility-maximizing consumer: Suppose that every bundle x ∈ 

 is demanded for some price-income pair; that is, {x ∈  : x = χ(p, y)

for some p and y} = . Suppose that χ satisfies Walras’ Law and SARP.

Then χ represents the utility-maximizing choices of a consumer, for some utility
function. This result is the corollary given by Richter (1966, p.641). For
readers whose training in set theory is strong, I strongly recommend this article.

Bibliographic Notes
Roy’s Identity is (first?) reported in Roy (1947). The earliest appearance of the
Slutsky Equation that I have personally seen is in Samuelson’s classic
Foundations of Economic Analysis (1947); Samuelson in turn attributes this to
Slutsky (1915).3

As was the case last chapter, the material concerning the connections
between utility functions and indirect utility functions comes from Krishna and
Sonnenschein (1990) and Jackson (1986a).

The classic reference on integrability is Hurwicz and Uzawa (1971). I repeat
my recommendations of Border (2004) and Jackson (1986b) for further
discussion and detailed proofs.



I mentioned Richter (1966) as a good reference for chasing down revealed-
preference approaches to the question Is this alleged demand function really a
demand function (does it arise from a utility-maximizing consumer)?, as well
as for related questions. The two classic references on the topic are Samuelson
(1947) and Houthakker (1950).

Problems

 *11.1. Suppose that k = 3 and U(x1, x2, x3) = ln(x1)+3ln(x2) + ln(x3 + 10).
Suppose that p1 = 1, p2 = 2, and p3 = 3. At these prices, what is Marshallian
demand as a function of y alone? What is the multiplier as a function of y?
Verify mechanically Corollary 11.2 for these prices. (That is, compute ν, take its
derivative in y, and compare with your earlier answer.)

 11.2. Proposition 11.1 (differentiability of the indirect utility function) leaves
a few holes. Perhaps the most important is that we didn’t give a result for
differentiability of ν at (p0, y0) such that y0 = 0. Please supply such a result
(assume the CP has unique solutions in a relatively open neighborhood of (p0,
y0), where y0 = 0). Then, show by example that, if u is not differentiable, ν may
not be differentiable in either p or y. (Hint: Work with k = 1.) Finally, we
proved last chapter that the expenditure function is differentiable in p, for fixed v.
Can you provide a result about differentiability in (p, v) jointly?

 11.3. Suppose that ν is continuously differentiable in p and y, and that ∂ν/∂y
> 0 everywhere. (Assume that u is locally insatiable.) Prove directly that this
implies that the expenditure function is continuously differentiable in p, using
the Implicit-Function Theorem.

 *11.4. Prove Proposition 11.9.

 11.5. You may think that Propositions 11.4 and 11.9 establish a one-to-one
connection between a class of utility functions and a corresponding class of
indirect utility functions, in the spirit of Proposition 10.17. But this is not true.
I have omitted one or more important pieces of a full proof. (The propositions as
stated are correct; I haven’t lied to you. But the propositions miss one or more



pieces of the puzzle. I did this intentionally so that, with this problem, I could
force you to dig deeply into what the propositions say.) One thing that doesn’t
quite line up concerns the range of utility functions. But that is no more than a
minor annoyance, easily repaired. Something else is missing. What is it? And
can you fill in the missing piece of proof?

 *11.6. Give and prove a result concerning differentiability of Hicksian
demand. To do this, you must first explore the solution of the EMP using
calculus, so there is a lot to do here.

 11.7. A particular consumer has Marshallian demand for two commodities
given as follows

This is valid for all price and income levels that are strictly positive. This
consumer assures me, by the way, that at prices (p1, p2) and income y, his
Marshallian demand is strictly better for him than anything else he can afford.

Does this consumer conform to the model of the consumer we have created?
That is, is there some set of preferences, given by a utility function, such that
maximization of that utility subject to the budget constraint gives rise to this
demand function?

If the answer to the first part of the question is yes, how much about the
consumer’s utility function and/or preferences can you tell me?

 

1 The Hessian matrix of u (restricted to its nonzero components) is not H,
but the n × n submatrix in the lower righthand part of H. See Definition 11.11
next section. The adjective bordered refers to the first row and column of H.



2 “ Approximately” is inserted here because this is a discrete change in price.
The derivatives are precisely equal.

3 If any reader can improve/correct this attempt at attribution, I’d be grateful.



Chapter Twelve



Producer and Consumer Surplus

Most courses in microeconomics at some point engage in policy evaluation:
What happens if the government taxes or subsidizes the sale of some good?
What happens if a price ceiling or a price floor is established? What if imports
into a particular domestic market are capped at some level?

The discussion of “ what happens?” can begin and end with an analysis of
changes in prices and quantities. But when it comes to evaluation, one typically
seeks dollar-denominated measures of the impact such policies have on firms
inside the industry and on consumers of the specific product. The concepts of
producer and consumer surplus appear at this point; the former is advanced as a
dollar-denominated measure of the impact the policy has on producers; the latter
is asserted to be a dollar-denominated measure of its impact on consumers.
These concepts are defined graphically, by pictures such as Figures 12.1a and b.
In this chapter, we explore the foundations of these two concepts.

Figure 12.1. Producer and consumer surplus. Intermediate-level textbooks
in microeconomics often have the pictures shown here, accompanied by



text such as “ The shaded region in panel a is producer surplus, a dollar-
denominated measure of the value producers obtain from this market. The
shaded region in panel b is consumer surplus, a dollar-denominated
measure of the value obtained by consumers.” The objective of this
chapter is to make these notions as precise as we can.

12.1.   Producer Surplus
Producer surplus has a relatively simple story, although one with a hidden trap.
The story concerns the market for a particular good supplied by a number F of
firms. We assume that the firms are all competitive, engaged in profit
maximization in the sense and style of Chapter 9; Zf will denote the production-
possibility set of firm f. We let p ∈  be the vector of all prices, and we

will suppose that coordinate indices have been chosen so that i = 1 is the index
of the good that interests us.

Throughout this discussion, the following assumption is maintained.

Assumption 12.1. For each firm f, Zf is closed, nonempty, and satisfies the
recession-cone property of Chapter 9.

Upward-sloping supply
The first step is to construct a supply “ curve” for this good. Fixing the prices of
all other goods at (·, p2, p3, …,pk), we ask how much output will the firms in
the industry produce as a function of the price p1 of the one output good. Let Zf

*(p1) be the set of optimal netput vectors for firm f if the price of good 1 is p1
and the price of all other goods is given by (·, p2, p3, …,pk). (I should indicate
the dependence of Zf*(p1) on those fixed other prices, but do not do so to keep
the notation tidy. All prices except for p1 are firmly fixed throughout the
discussion of this section, unless and until I say otherwise.) And let Z* denote
the “ full-industry optimal-netput set,” or



T he individual-firm-f supply correspondence, , is the

projection along the first coordinate of Zf* as p1 varies—that is, z1 ∈ 

(p1) if there is some z ∈ Zf*(p1) whose first coordinate is z1—with the industry-
wide supply correspondence, p1 ⇒ Z*

1(p1) defined similarly.
In undergraduate-level textbooks on microeconomics, one finds supply

functions, not supply correspondences. And the supply functions are always
upward sloping. We’ll keep the generality of correspondences: At some levels of
p1, individual firms (and hence the industry) may have several levels of output
that are each part of (distinct) profit-maximizing netput vectors. But Corollary
9.13 ensures that supply, at both the individual-firm and the industry levels, is
“ upward sloping.”

Proposition 12.2. Suppose that  and 

 for firm f, then 

.

Proof. The first part of this proposition simply restates Corollary 9.13: For a
competitive, profit-maximizing firm, a rise in the price of good i with no change
in any other price never leads to a “ fall” in the level of good i. The scare quotes
are there for the case where good i is an input: Then the corollary tells us that
the profit-maxizing level of good i does not decrease, which is to say becomes
no more negative, which is to say that the amount of the input used, measured
as a positive quantity, does not increase. But in the current context, we’re
speaking of an output, and in that context the scare quotes are unnecessary: If the
price of output good i rises, the level of output of good i (in any profit-
maximizing plans for the two price vectors) does not fall.

The second part of the proposition follows very easily. Suppose 
 and . Then 

, where each , and 



 where each  Then,

because  for each f by the first part of the proposition (by Corollary

9.13), the same is true of the respective sums.

It may be gilding the lily, but I want to reinforce the message of Proposition
12.2 with a picture. This picture shows what can (and cannot) happen in either 

. Please recall that the variable p1, the price of the

good in question, is on the vertical axis, so you may want to tilt your head to
the side as you look at this.

Figure 12.2. The geometry of supply. Panel a shows a supply
correspondence and panel b the “ northeast” frontier of the corresponding
production-possibility set. Supply increases continuously if the frontier of
Z is strictly concave, as in the regions marked by 1. Supply is is
multivalued and “ filled in” where the frontier of Z is flat; see the regions



marked by 2. Where there are kinks in the frontier of Z, supply can be
constant for a range of prices, and supply can by multivalued and discrete
where the frontier “ caves in”; points 3 and 4 mark kinks in the frontier of
Z, while the region between them is a “ cave in” or nonconvexity in Z.
(For you to know that there is a kink at 3, you must convexify Z by
drawing the line segment from 3 to 4 and see that the kink remains in the
frontier of the convex hull.) Finally, panel c shows what cannot happen—
there cannot be prices 1 > 1 where the largest supply of output at 1

exceeds the smallest supply of output at 1.

The legend of Figure 12.2 explains what is going on, but to reiterate: Panels
a and b depict four possible shapes for a supply correspondence and the
corresponding shapes of the underlying production-possibility set Z.1 Where Z
is strictly convex along its frontier, supply is singleton valued and rising; see
the areas labeled 1 in the two panels. Where Z is flat, supply is multivalued
and, moreover, all supply levels over an interval are in the supply
correspondence; see the segments marked 2. Supply is constant over a range of
prices where the set Z is kinked; see the point 3 on Z (in panel b) and the
corresponding flat region 3 of supply in panel a. (Because the independent
variable in panel a is price, “ flat” means vertical. Also, the kink at point 3 in
panel b is really only a kink in this sense if it remains a kink when we look at
the convex hull of Z. In the figure, this happens.) Finally, the supply
correspondence at the price for good 1 that spans the nonconvexity of Z between
points 3 and 4 is multivalued, consisting of the two endpoints of the interval
(only). In general, this happens whenever there are nonconvexities in the frontier
of Z, even without the kinks.

We see, therefore, a fairly rich set of possibilities for supply correpondences.
But what we can never see is the picture in panel c. The proposition tells us
that while supply can be multivalued, the supply offered at two different prices 

1 and 1 can overlap at one level at most; if 1 > 1, then the largest

supply at 1 can at most equal the smallest supply at 1; no other overlap is

possible. And, moreover, if this happens, that common value is the only
possible supply level at prices between 1 and 1.



Supply and the profit function
Recall Proposition 9.22. The profit function πf for firm f is differentiable at the
price vector p0 if and only if the firm’s profit-maximization problem has a
unique solution at p0, in which case that unique solution is the gradient
(derivative) of πf. In this chapter, our concern is not with the full function πf,
because we are fixing all prices except for the price of the output good, indexed
by i = 1. In this context, we have the following result:

Proposition 12.3. Fix prices for all goods except the first at levels p2, p3,
…,pk and, for a given firm f, consider the function

This function (of one variable) is differentiable at the price level  if 

(p1) is singleton at p0
1, in which case the derivative is the unique z1 ∈ 

( ).

We are only giving a one-directional implication (uniqueness of the output level
of the firm implies differentiability in the price of the output) because, for our
purposes, that is all we need. But if you want to be fastidious, you might want
to answer the question, If πf is differentiable in p1 at the level , does this

imply that  ( ) is singleton? (Answer: Yes. So the task for the

fastidious is to give the argument that shows this.)

Proof. The proof essentially mimics the proof provided for Proposition 9.22.
Suppose  ( ) is singleton, with z1 its single member. We must show

that



for every sequence of strictly positive prices for good 1, { }, that has limit 

 and such that  ≠  for all n. We show this by the usual argument

that, along every such sequence { }, we have zero as a limit of the displayed

fraction along some subsequence.
Fix a sequence { } (with  ≠  for all n). Use pn as shorthand for (

, p2, …, pk) (including for n = 0). Let zn be any point selected out of

Zf*(pn). Since limn→∞ pn = p0 and the recession-cone property holds, we know
that the zn live in a compact set; looking along a subsequence, we can assume
that limn→∞ zn exists and equals some z0. Of course, by Berge’s Theorem, z0

∈ Zf*(p0), and so  = z1.

Because zn is a profit maximizer for pn and z0 is a profit maximizer for p0,

Therefore,

But since all prices in each pn are the same as the prices in p0 except for the
first, the first and last terms in this string of inequalities simplify, and we get

Subtract (  – )  = (  – )z1 from each term and then divide by |



 – |  to get

The first term goes to zero as n goes to infinity, because ( – )/|  – 

|  is bounded by 1, while limn(  – ) = 0 by construction. Therefore, the

second term has limit zero as well.

So, given the supply correspondence of a firm, what does its profit function
(as a function of the output price alone, fixing all other prices) look like? The
profit function is convex (we didn’t need Proposition 12.3 to know that), and it
is differentiable at any price where the supply correspondence of the firm is
singleton. Since the supply correspondence is nondecreasing (in the strong sense
of Proposition 12.2), the points of nondifferentiability of πf are at most countable
in number. (Wherever the supply correspondence is more than singleton, supply
must span an interval of strictly positive length. The interiors of these intervals
cannot overlap, and each contains a rational value. But there are only countably
many rationals.) And except for those (at most) countable number of prices, the
(single) level of supply at any price is the derivative of the profit function. The
Fundamental Theorem of Calculus tells us the following:

Corollary 12.4. Fix a firm f and prices for all goods except the first at levels
p2, …,pk. For any two prices for the first good, p′1 and p″1,

where  (p1) is the supply of good 1 by firm f for prices p1 such that the



supply correspondence is singleton, and where it doesn’t matter what you take
for the integrand at prices where supply isn’t singleton, because there are at
most a countable number of those.

Because π can be nondifferentiable at countably many points (which could, in
principle, be dense in any interval), this is not the plain-vanilla Fundamental
Theorem of Calculus. But it is still true. The function π is convex; hence is it
absolutely continuous. And absolutely continuous functions are the integrals of
their (existing-almost-everywhere) derivatives. For details, see Royden (1968).2

Producer surplus
And except for some warnings to be supplied momentarily, that’s all there is to
producer surplus. Let me abuse notation and write (p1) for the “ industry

supply function” of our good. The scare quotes around industry supply function
are there because, at some prices, one or more firms might be willing to supply
multiple quantities; at those prices, (p1) is not well defined. But there are at

most a countable number of such prices (finitely many firms, and a countable
number of such prices for each firm), and I’ll worry about them in a bit.
Producer surplus, per most textbooks, is the area “under” the industry supply
curve, where the scare quotes around under signify that economists typically
graph supply with the independent variable price on the vertical axis, so under
here really means, to the left of. The starting and ending points for this “ area
under the curve” also aren’t so clear, but when it comes to application,
economists are primarily concerned with changes in producer surplus. So let me
give the following as a formal definition:

Definition 12.5. Fixing all prices except for the price p1 of some specific good,
the supply “function” of which is given by (p1), the change in producer

surplus when the price of the good shifts from  to  is



The superscripts n and o are mnemonics for new and old. Of course, in this
integral, if price  exceeds that of , you should understand this integral as

being the negative of the integral with the upper limit being the higher price.
What about values of p1 for which (p1) is not well defined? Since there are at

most a countable number of such values, they don’t affect the integral. And we
have:

Corollary 12.6. The change in producer surplus is the sum of the changes in
the profits of the firms that supply this good, resulting from the change in
prices.

Proof. Let f = 1, …, F ennumerate the firms that make up this industry, so that 
 is the unique

supply by firm f at price p1, for all points p1 where  is singleton. (We

don’t worry about  at prices where one or more firms have nonsingleton 

, as they don’t affect the value of the integral.) Therefore, the change in

producer surplus when price changes from  to  is

and by Corollary 12.4, the terms being summed on the right-hand side are just
the changes in the profits of the firms, firm by firm.



Warning
The warning I’ve been threatening to give can now be given. In many
applications of the concept of producer surplus, the “ industry supply curve” is
estimated empirically. You must be careful about this. Imagine an industry
filled with small, price-taking firms. In particular, imagine that one of the inputs
to the production process used by the firms in this industry is supplied by
another industry, and the supply of that input is upward sloping. To be clear,
no one firm in this industry buys enough of this input to affect its price
materially, and so all firms in the industry have competitive conjectures about
its price: They believe that they can buy as much as they want at whatever is
the prevailing price, and they choose their production plans to be profit
maximizing, based on that belief. But on an industry basis, this industry buys
enough of this factor of production so that if the level of output in this industry
changes, demand for the factor input will increase enough to drive up its price.

To compute the change in producer surplus, you are supposed to compute
the area “ under” the supply curve from the old to the new price of the output
good. But in the situation I’ve described, there are two candidates for the
industry supply curves. One, which might be called the empirical supply curve,
takes into account the fact that, as the level of industry output rises, the price of
the factor rises. The second, which can be called the notional supply curve, is
just the sum of supplies by the individual firms, under the assumption that the
price of this factor of production isn’t going to change. It isn’t hard to construct
simple models of this situation where (as you might expect), the empirical
supply curve responds less robustly to changes in the price of the output good
than does the notional supply curve. They will certainly give different values for
the change in producer surplus, as output prices change. If you go to the data, it
is the empirical supply curve you will see. But in terms of the theory of
producer surplus, if we are trying to measure the change in profits of firms in the
industry as the result of changes in the price of the output good, it is the
notional supply curve that gives the right answer. The key to producer surplus
is Proposition 9.22 and its variants given here. This says “ all other prices
fixed.” That’s not what you get when you look at the empirical supply curve.

12.2.   Consumer Surplus
While the story of producer surplus is nice, neat, and (relatively) simple,



consumer surplus is trickier. In both cases, we are looking for a dollar-
denominated measure of how firms supplying the good and consumers buying
the good are affected by changes in the price of the good. For the profit-
maximizing firms of this book, it is natural to measure this impact by the
changes in their profit levels, which is what producer surplus does. But the
welfare of consumers is measured in the first instance in utility. Unless there is a
natural transformation from utility to dollars (which would happen, say, if
utility were quasi-linear in money-left-over), it isn’t clear how to proceed. That
makes consumer surplus harder to pin down.

The compensating and equivalent variations
I will restrict attention in this discussion to the welfare impact on consumers of
a change in the price they face for a given good, assuming they can (after the
change in price) rearrange their consumption however they want, subject to their
budget constraint, and assuming that the prices of all other goods stay the same.
As with producer surplus, the good in question will be assumed to have index
1, its price will be denoted p1, and the prices of all other goods will be fixed at
p2, …, pk. In parallel to Assumption 12.1, for the remainder of this section, I
make the following assumption about all consumers.

Assumption 12.7. Every consumer has continuous and locally insatiable
utility.

The question then is, What is the impact on a given consumer, whose
income level is y, if the price of good 1 changes from  to ? In utility

terms, we can talk about the consumer’s levels of indirect utility ν( , p2, …,

pk, y) and ν( , p2, …, pk, y). Let me denote the first utility level by vo and

the second by vn. To measure the impact in dollars instead of utility, two
measures of dollar compensation are employed.

Definition 12.8. The equivalent variation is the amount of money EV that
must be added to y so that the consumer is indifferent between having y at the
new price  and y + EV at the old price . The compensating variation



is the amount of money CV that must be subtracted from y so that the
consumer is indifferent between having y at the old price  and y – CV at

the new price .3

Let me rephrase the definitions in terms of indirect utility. The equivalent
variation EV is such that the consumer is equally well off with the new price
and y, or with the old price and y + EV. In symbols,

And the compensating variation CV is such that the consumer is equally well
off with the new price and y – CV, or with y and the old price, which is

The signs of CV and EV are designed to be positive when the change in
price makes the consumer better off and negative when she is worse off. To see
this, consider separately the cases  >  and  < .

•   If  < , then the consumer is presumably better off because the price

of a consumption good has declined. (She is no worse off, certainly.) In this
case, both the equivalent and compensating variations are positive: We
know that ν( , p2, …, pk, y) ≥ ν( , p2, …, pk, y), so to increase the

right-hand side up to the level of the left-hand side, we must add a positive
amount to y on the right-hand side. And to get the left-hand side to decline
to the level of the right-hand side, we must subtract a positive amount from
y on the left-hand side. Going back to the definitions of EV and CV, this
makes both positive (or, at least, nonnegative) numbers.

•   On the other hand, if  > , the change in prices makes the consumer

somewhat worse off (or, at least, no better off). That is, ν( , p2, …, pk, y)

≤ ν( , p2, …, pk, y). To lower the right-hand side down to the level of the

left-hand side, we must add a nonpositive amount to y on the right-hand



side; to raise the left-hand side up to the level of the right-hand side, we
must subtract a nonpositive amount from y on the left-hand side. That is,
both variation measures are nonpositive.

In terms of our discussion of consumer surplus, the most useful equations
that characterize the quantities EV and CV involve the expenditure function. I’ll
give these characterizations in the form of a proposition.

Proposition 12.9. If vo is the level of utility obtained by the consumer at the
old prices, and vn is the level of utility she obtains at the new prices, both with
income y, then

Proof. To save space, I abbreviate ( , p2, …, pk) by po and ( , p2, …, pk)

by pn.
Then e(pn, vn) = e(po, vo) = y, because vn is the utility obtained at pn with

income y, and vo is the utility obtained at po with that income. Furthermore,
e(po, vn) is the amount of income it takes to obtain vn at the old prices. EV is
defined to be the quantity such that, with income y + EV, the consumer can
reach at the old prices the new level of utility, so

And e(pn, vo) is the amount of money needed to attain utility vo at the old
prices, which is also y – CV, or

Hicksian demand, the expenditure function, EV, and CV



Having tied EV and CV to the expenditure function, the next step is to bring
Hick-sian demand into the mix. This step parallels Propositions 12.2 and 12.3
and Corollary 12.4; we collect the analogous results in a single proposition.

Proposition 12.10. Fix all prices except for price of good 1 at levels p2, p3,
…,pk, and, for a given consumer, fix a utility level v in the range of her utility
function. Let H1(p1) denote Hicksian demand for good 1 as a function of p1,
with p2 through pk and v fixed.

a.  If p′1 > p″1, h′1 ∈ H1(p′1), and h″1 ∈ H1(p″1), then h′1 ≤ h″1. In words,
Hicksian demand for a good is “downward sloping” in its own price.

b.  H1(p1) is singleton for all but (at most) a countable number of prices p1.

c.  If H1( ) is a singleton set, then p1 → e(p1, p2, …, pk, v) is

differentiable in p1 at , and its derivative in p1 is the single element h1

of H1( ).

d.  For two prices for good 1, p′1 and p″1,

where h1(p1) denotes the single element of H1(p1) for all values p1 at which
H1(p1) is singleton, and is defined arbitrarily (say, as some value in H1(p1)) at
the countable number of prices where it is not singleton.

I will leave all parts of this for you to prove. You can virtually copy the
arguments from Section 12.1. (For part a, there is no parallel result in Chapter
10 to Corollary 9.13, so you must prove it from first principles.)

Combining Propositions 12.9 and 12.10d gives us the following corollary.



Corollary 12.11.  Fix some consumer and a single good that the consumer
demands. For convenience, label the good with index 1. Suppose that the
consumer, at prices po = ( , p2, …, pk) and income y, has indirect utility v0

= ν(p0, y). Suppose that the price of good 1 changes to , while the other

prices all stay at their old levels; write pn = ( , p2, …, pk), and let vn =

ν(pn,y). Then if EV is the equivalent variation for this change in prices (at the
income level y), for this consumer, and  CV is the compensating variation, we
have

where h1 denotes Hicksian demand for good 1, which is single valued for all
but (at most) a countable number of values of p1.

Consumer surplus for one consumer, EV, and CV
This corollary is enticingly close to what we are after, if we agree that CV and
EV are reasonable measures of the dollar-denominated change in the consumer’s
welfare, caused by the change in price of the good, and if, in constructing
consumer surplus, we are allowed to use Hicksian demand functions rather than
Marshallian demand functions.

Of course, since h(·, vo) will, in general, be different from h(·, vn), the
corollary tells us something that you probably already realized: In general, the
compensating and equivalent variations will be different. But if the change in the
price of good 1 is small enough so that vo and vn are near to one another, and if
(in consequence) h(·, vo) and h(·, vn) are close to one another (when evaluated at



the same price arguments), then CV will be close to EV, and the consumer-
surplus integral, evaluated using Hicksian demand instead of Marshallian
demand, has a clear and pertinent interpretation.

And, to the extent that Marshallian demand for good 1, which I’ll write in
shorthand as d1(p1), is approximately the same as Hicksian demand, then EV
and CV are both approximately the same as the integral that conventionally
defines “ the change in consumer surplus” resulting from a change in the price of
good 1.

The previous paragraph should set off a number of alarm bells:

•   For one thing, Marshallian demand for good 1 is a function of the price of
good 1, and also the prices of all other goods and income. So when I say
that I write Marshallian demand for good 1 as d1(p1), it is implicit (and
now explicit) that I mean the function p1 → d1((p1, p2, …, pk) , y), with
those other arguments held fixed.

•   And I (as yet) have no right to talk about a Marshallian demand function.
Marshallian demand can be multivalued. Of course, the same is true of
Hicksian demand. But what saves me in the case of Hicksian demand is that
I know that if I vary p1 over some interval  to , where the other

prices and the target utility level are fixed, Hicksian demand is multivalued
at no more than a countable number of points. (If this statement confuses
you, go back and reread the previous proposition.) I know this because the
expenditure function is concave in price, and Hicksian demand provides
supergradients of the expenditure function. No similar result holds for
Marshallian demand. In fact, one can provide examples in which Marshallian
demand for a good consists of an interval of values as the price of that good
varies, for every price of the good in an interval of values. (See Problem
12.4.)

•   This unhappy possibility (Marshallian demand is multivalued for every
price between  and , fixing all other prices and income) presents a

formidable challenge for how we will formalize the conventional definition of
the change in consumer surplus for this price change. The conventional
definition involves the integral under (to the left of) the demand function for



the good; what do we do when there is an interval of possible values to pick
for the level of demand, for every price of the good?

•   What does Marshallian demand is approximately the same as Hicksian
demand mean? On the one hand, as long as the underlying preferences are
locally insatiable (an assumption we maintain throughout), Proposition
10.18 seems to say that Marshallian demand is exactly the same as Hicksian
demand. On the other hand, the arguments of Marshallian demand and
Hicksian demand are different: Both are functions of the vector of prices, but
Marshallian demand has income y as an argument, while Hicksian demand
is a function of a target level of utility.

We can clear up at least the last of these possible confusions/complications:
Supposing for the moment that Marshallian demand is a function, and writing it
a bit less compactly as d1((p1, p2, …, pk), y), the conventional definition of the
change in consumer surplus is

Corollary 12.11 tells us that EV and CV are, respectively, similar integrals, but
with respective integrands h1((p1, p2, …, pk), vn) and h1((p1, p2, …, pk) , v0).
Proposition 10.18 establishes that

but at arguments p1 other than , they aren’t the same; instead what is true is

that

so that when p1 reaches the upper limit of the integral , d1 is the same as h1

with target level of utility vo. In the integral that conventionally defines



consumer surplus, (12.2), the integrand is the same as the integrand in (12.1a)
(which gives EV) at the lower limit of the integral, but the integrands
(presumably) move apart as we move toward the upper limit of the integral.
And the integrands in (12.1b) (which gives CV) and (12.2) are the same at the
upper limit of the integral, but are otherwise different. The hope is that the
divergence in integrands is not too large, so the integrals are approximately the
same; indeed, to the extent that we don’t have a particular reason to choose EV
or CV as the appropriate measure of compensation, we’d like their integrands to
be close together, so that if EV and CV are not the same, at least they are close
to one another.

The obvious (and more difficult) thing to do at this point is to try to
construct measures of how far apart the three integrands are from one another,
based on underlying properties of the consumer’s preferences. This line of attack
is undertaken, for instance, in Willig (1976). We’ll settle here for something
much easier: Since we know that the integrand in (12.2) agrees with the
integrand in (12.1a) on one endpoint of the integral and with the integrand in
(12.1b) on the other end, we’ll develop conditions under which, at all
intermediate values, the integrand in (12.2) lies between the other two.

Before doing so, we must first confront the problem of multivalued
Marshallian demand. In fact, confront is the wrong word; we simply assume the
problem away:

Assumption 12.12. For all values of prices, incomes, and target utility levels
that are relevant (that appear in any of our integrals), Marshallian demand
for good 1 (hence Hicksian demand for good 1) is single valued.

An excuse for this assumption is that, in every application of consumer surplus
of which I am aware, demand is single valued. Be that as it may, the
assumption permits the next definition, which is key to the line of attack we
will follow.

Let d1 denote the (single-valued) Marshallian demand for good 1, and h1 the
corresponding Hicksian demand. Prices for all goods except good 1 are fixed
throughout, so I suppress those arguments in d1 and h1. But I will want to vary
the price of good 1, the consumer’s income y, and the target utility level v, so I
write things such as d1(p1, y) and h1(p1, v).



Definition 12.13. For a region of prices, income levels, and utility levels:
Good 1 is normal over the region if d1(p1, y) is nondecreasing in y over that
region, and it is inferior if d1(p1, y) is nonincreasing in y (in both cases, for
all values of p1 in the region). Good 1 is Hicks-normal over the region if
h1(p1, v) is nondecreasing in v, and it is Hicks-inferior if h1(p1, v) is
nonincreasing in v (again, for all p1).

I am not being very precise with the qualifying phrase “ over the region,” but the
idea is that, when we need these concepts, we won’t need them to hold
universally (for all prices, income levels, and utility levels), but only for prices,
incomes, and utility levels in certain ranges. Indeed, the way this definition is
rendered makes it impossible for a good to be inferior globally unless it is never
consumed, since (obviously) d1(p1, 0) = h1(p1, u(0)) = 0.

Note that, according to this definition, if demand for a good is constant in y
(or v), at least for some range of prices, income levels, and utility levels, then
the good is said to be both normal and inferior (over those ranges). The more
common expression in economese (the informal language of economists) is that
demand for this good exhibits no income effects.

Lemma 12.14. Good 1 is normal over a region of prices and incomes if and
only if it is Hicks-normal over the corresponding region of prices and utility
levels, and it is inferior if and only if it is Hicks-inferior.

Proof.4 Suppose y > y′. Fixing prices at p, let v = ν(p, y) and v′ = ν(p, y′). By
local insatiability, v > v. And then d1(p1, y) ≥ [resp., ≤] d1(p1, y) if and only
h1(p1, v) ≥ [resp., ≤] h1(p1, v′). So if good 1 is normal, it is Hicks-normal; and
if it is inferior, it is Hicks-inferior. For the converse half, repeat the argument,
noting that if v > v′ and we let y = e(p, v) and y′ = e(p, v′), then since e is
strictly increasing in v, y > y′.

Proposition 12.15. Write ΔCS for the value of the integral defined in (12.2);
that is, ΔCS is the change in consumer surplus, conventionally defined. Then if
good 1 is (Hicks-) normal for prices of good 1 from  to  and target



utility levels vo to vn, EV ≥ ΔCS ≥ CV. And if good 1 is (Hicks-) inferior over
this range of prices and target utility levels, then EV ≤ ΔCS ≤ CV.

Proof. The proof is almost obvious at this point (and can be rendered in a
picture, Figure 12.3.) Suppose the good is normal and that  > . This

implies that vo ≤ vn. Moreover, for every value of p1 between  and , the

corresponding indirect utility at income level y satisfies v0 ≤ ν((p1, p2, …, pk),
y) ≤ vn. Therefore, since good 1 is normal,

The integrand in (12.1a) is greater than or equal to the integrand in (12.2),
which is greater than or equal to the integrand in (12.1b), and so the integrals
inherit those inequalities.

On the other hand, if  <  and good 1 is normal, these inequalities

all flip, but also the integral’s upper limit is less than its lower limit, which
again reverses the sign, so the integrals keep this ordering. (Figure 12.3 is
drawn to cover this case.) And the cases where the good is inferior reverse the
inequalities.

It is worth observing that, for normal goods, Marshallian demand is steeper
(has a more negative slope) than Hicksian demand, assuming that these demand
functions are all differentiable, so that we can speak of slope at all. But if we
were willing to assume that the functions were differentiable, we’d get the
picture of Figure 12.3 via the Slutsky equation, adapted to this context:



Figure 12.3. Consumer surplus and the equivalent and compensating
variations. If the price of the good rises, the consumer’s utility falls. For a
normal good, this means the corresponding Hicksian demand functions, at
the original price, at the new price, and at prices between the two, are
arranged as shown. And so, in particular, Marshallian demand lies above
new-utility Hicksian demand and below old-utility Hicksian demand.
Hence the change in consumer surplus, the integral to the left of
Marshallian demand, is greater (negative) than the intergral to the left of
new-utility Hicksian demand, which is the change in expenditure at the
new utility level, which is EV, and it is less negative than the integral to
the left of old-utility Hicksian demand, which is the change of expenditure
at the old utility level, which is CV.

We know that Hicksian demand is downward sloping, and if demand for the
good is normal, the income effect term is a minus sign in front of a positive
quantity, so the slope of Marshallian demand in own-price is even more
negative than that of Hicksian demand.

The derivation we’ve supplied is more general than this Slutsky-equation-



based argument, because we didn’t make assumptions about the differentiability
of our demand functions. I remind you, however, that we did need to assume
that Marshallian demand (in the correspondence sense) is singleton valued (and,
therefore, so is Hicksian demand). Can we do without this? We know that
Hicksian demand is multivalued (for a given utility level) at no more than a
countable number of prices, so the integrals that produce EV and CV are
perfectly well defined, even if Hicksian demand is not singleton valued. You
might hope for something like: As long as a Marshallian demand function is
selected from the Marshallian demand correspondence, however it is selected,
the change in consumer surplus defined from the selected demand function lies
between CV and EV.  To do this, though, we need to know that the selected
demand function lies between the two Hicksian demand functions (for the old
and new utility levels). And while the number of prices at which Hicksian
demand can be multivalued for a given utility level is countable, the number of
income levels for which it can be multivalued, fixing prices, can be a good deal
larger. Depending on how you define a normal good (or an inferior good) for
multivalued demand correpondences, results can be obtained. But those
definitions become crucial. (And I leave you to it, if you are interested.)

Consumer surplus for multiple consumers
Our final task is to move from one consumer to an entire marketplace of
consumers. But this is easy. Market demand is just the sum of demands coming
from individual consumers. The change in consumer surplus is the integral
“ under” the market demand function, so if you interchange the summation and
integration, you find that the change in aggregate (market) consumer surplus is
just the sum of changes in individual-consumer consumer surplus. And each of
those is a compromise between the two measures of appropriate dollar
compensation, EV and CV, for the individual consumer.

Bibliographic Notes
The concept of consumer surplus is attributed in the literature to Dupuit (1844).
Alfred Marshall developed and popularized (at least, among economists) the use
of this concept; it use has been the subject of controversy ever since, with such
luminaries as John Hicks promoting its use and Paul Samuelson decrying it.
The strongest case for its use would seem to arise in situations where a tight



(and small) bound can be put on the difference between the compensating and
equivalent variations; see, for instance, Willig (1976) for such a bound.
Producer surplus, being the change in profit, is relatively free of this sort of
controversy.

But the general idea that one can sum in dollar-denominated terms the
impact of a policy on individual firms and consumers and make on that basis
social welfare judgments is controversial on a completely different plane and
takes us back to Chapter 8 and the foundations of welfare economics and social
choice. Arrow’s (1963) chapter on the compensation principle is (once again)
recommended.

Problems

 *12.1. Proposition 12.3 says that if  ( ) is the singleton set { }

(fixing all other prices), then πf viewed as a function of p1 is differentiable at 

, and that derivative is . Prove the converse: If πf, viewed as a function of p1,

is differentiable in p1 at , then (a)  ( ) is singleton, and (b) the sole

element of  ( ) is that derivative.

 12.2. Supply the details of the proof of Proposition 12.10.

 12.3. The developments of producer and consumer surplus in this chapter
concerned supply coming from profit-maximizing firms and demand coming
from utility-maximizing consumers. But in some cases, supply comes from
consumers who sell out of their initial endowment of the good, and demand
comes from firms that use the good as a factor input to their own production
process. How do we interpret “ producer surplus,” when some or all of the
supply comes from consumers (and when, in consequence, it would make more
sense to speak of “ seller surplus”)? How about “ buyer surplus,” if purchasers of
the good include both consumers and firms?

 *12.4. Provide an example of a consumer with continuous and locally



insatiable preferences where, fixing the prices of all goods but 1 and fixing
income at some particular value, (Marshallian) demand is an interval of values
for all prices in an interval of prices. (This is most easily done with an
indifference curve diagram, with k [the number of commodities] = 2.)

 12.5. Make precise the following statement: If there are no income effects in
demand for the good over the relevant range of prices, etc., which is to say
that Hicksian demand for the good is constant in the target level of utility, then
the change in consumer surplus = EV = CV.

 

1 Panel a could be the supply correspondence of a single firm—that is, a
Zf*1—and it could be the industry or aggregate supply correspondence, denoted
Z*

1. But once we introduce panel b and the production-possibility set Z, we
seem to be speaking of a single firm. This isn’t really so; for a given set of
firms, we can speak of their aggregate production-possibility set. But we won’t
meet this concept until next chapter, when we discuss aggregation in more
detail.

2 I have the second edition of Royden, in which these results appear in
Chapter 5, sections 4 and 5.

3 EV and CV are often defined more generally, for any pair of price vectors.
But we will use them only for pairs of price vectors in which only one price
changes.

4 You were asked to prove this, more or less, in Problem 10.7.



Chapter Thirteen



Aggregating Firms and Consumers

With the exception of Chapter 8, concerning social choice, this book has so far
been concerned with the choices of a single consumer or firm. In many places
those choices have been in contexts where, presumably, other consumers and/or
firms are around. Indeed, we’ve been particularly concerned with choices made
in market settings in which other buyers and sellers, and even many other
buyers and sellers, are found. But, with the exception of Chapter 8 and a bit last
chapter, we haven’t seriously considered the interaction of diverse consumers
and firms.

That changes next chapter, when we take up issues of general equilibrium.
In the models we will study, there will be (finite numbers of) consumers and
firms, interacting through price-mediated markets. To prepare for this, in this
chapter we address the question, What characterizes the (economic) aggregate
behavior of collections of consumers and collections of firms? Answers to this
question could be interesting on at least three grounds:

•   It can be convenient to formulate specific stylized models at the aggregate-
of-consumers and/or aggregate-of-firms level, rather than putting into the
models hosts of consumers and firms. Readers with some exposure to so-
called representative-agent (or -consumer, or -investor) models in the
stochastic-general-equilibrium branches of macroeconomics and macro-
finance will know about this; it is very convenient to suppose that
equilibrium prices are determined by the first-order conditions of a single
consumer’s optimization, where that consumer (in equilibrium) must be
consuming the social endowment.

•   Part of our interest in results such as the Integrability Theorem has been
rationalized on econometric grounds: To fit (say) a collection of demand
data, it might be convenient to begin with a parametric set of demand
functions, rather than with utility functions. But we then want to know that
the demand functions we write down do, in fact, correspond to utility
maximization according to some utility function. The Integrability Theorem
provides the insurance sought: If the demand functions satisfy certain
conditions, some utility function generates them.
Those results concern demand by a single consumer. The rise of the internet



and other electronic data-collecting devices increasingly provides the
empirical economist with data on the behavior of single consumers, but still
much of the data we see arrive in aggregate form. So on just the grounds that
we had for wanting to know whether alleged Marshallian demand functions
are legitimate, we want to know, When are alleged aggregate demand
functions the aggregates of demand by a collection of legitimate (meaning,
utility-maximizing) consumers? And, in the context of data on firm
behavior, when are alleged aggregate netput functions the aggregates of
netput decisions by profit-maximizing firms?

•   Aggregation or, more precisely, averaging, can (asymptotically) produce
desirable properties in aggregate supply and demand that may be
unreasonable to assume for the supply and demand correspondences by
single consumers and firms. If the production-possibility set Z of a firm is
not convex, the firm’s profit-maximizing netput correspondence can be
nonconvex valued. If a consumer’s preferences are not convex, her
Marshallian demand correspondence can be nonconvex valued. As will be
seen next chapter, such things are problematic in general equilibrium
analysis or, put more positively, convexity in supply and demand is a
useful assumption to make. Can aggregation “ smooth over” this sort of
difficulty? If so, how?

Please note, when thinking in terms of a single market, it is natural to think
about the buying and selling sides separately, which means thinking about
aggregate supply and aggregate demand. This is so even if some of the demand
comes from firms purchasing inputs and/or if some of the supply comes from
consumers selling from their endowment of goods. But the issues introduced in
this chapter are, at least at the start, better thought of in terms of the aggregate
behavior of (profit-maximizing) firms and the aggregate behavior of (utility-
maximizing) consumers. Hence the terminology set forth in this chapter’s title
sets our agenda; we first aggregate the netput decisions of firms, then the
demand and net demand decisions of consumers. And then we discuss the sense
in which aggregation can “ smooth out” the supply and demands of individual
firms and consumers.

The Minkowski sum of a finite collection of sets



Thoughout this chapter, we have finite lists of nonempty subsets of Rk, such as
X1, …,Xn, and we want to form the set that consists of all sums of selections
from these sets, one element selected from each set. That is, we construct

This “ sum of the sets” is called the Minkowski sum of the sets X1 through Xn;
in what follows, when it is clear from the context that the Xi are sets, we will
write  for this Minkowski sum. (When one or more of the sets in

the list is empty, the standard convention is that the Minkowski sum of the list
is similarly empty.)

13.1.   Aggregating Firms
The firm half of the story is nearly trivial, as long as one assumption is met.
The following proposition tells the whole story.

Proposition 13.1. Suppose that, for f = 1, …, F, firm f has nonempty
production-possibility set Zf ⊆ Rk. For p ∈ , let πf(p) be the profit

function of f evaluated at p and Zf*(p) be the profit-maximizing netput choices
of firm f; that is,

Define:

the aggregate production-possibility set 

for each p ∈ , the aggregate profit function 

; and



for each p ∈ , the aggregate optimal-netput set
1

Then for each p ∈ ,

Restating all this in words, we define: the aggregate production-possibility set
is the Minkowski sum of the production-possibility sets of the individual firms;
the aggregate optimal-netput set at the price vector p is the Minkowski sum of
the optimal netput sets for the firms at that price vector; and the aggregate
profit function, evaluated at p, is the sum of the profits of the individual firms at
p. The proposition then says: The set of aggregate optimal netputs at the price
vector p—the Minkowski sum of the optimal decisions firm by firm—is
precisely the set of optimal netputs at p by a firm created by merging the
production-possibility sets of the individual firms. And aggregate profit—the
sum of the profits of the individual firms—is precisely the profit of this merged
mega-firm. The firms in aggregate behave as if they were a single (price-taking)
mega-firm.

Proof. Fix p ∈ .

Since each Zf is nonempty (by assumption), fix for each f some 
. Let . Clearly, 

and, since 

Suppose that supz∈Z p · z is finite. Let zn ∈ Z be within 1/n of the
supremum; that is, p · zn+ 1/n ≥ p · z for all z ∈ Z. Since zn ∈ Z, there are 

 ∈ Zf, f = 1, …, F, such that . I assert that p ·  +

1/n ≥ p · z for all z ∈ Zf, for all f; suppose to the contrary that for some f′ , p · 



′  + 1/n < p · zf′  for some zf′ ∈ Zf′ . Then 

, and 

, a contradiction.

T herefore, p ·  + 1/n ≥ πf(p) for all f, and hence 

. Hence, supz∈Z p · z + F / n ≥ π(p), and since n is arbitrary here, supz∈Z p · z
≥ π(p).

Of course, if supz∈Z p · z = ∞ , then it is ≥ π(p).
To get the reverse inequality, suppose that π(p) is finite. (If it is infinite, we

have the reverse inequality automatically.) Since we know that each πf (p) is > –
∞, π(p) < ∞  implies that each πf (p) < ∞ . For a given n, let  now be some

element of Zf that is 1/n within optimal; that is p ·  +1/n ≥ p · z for all z ∈

Zf. Let , which is in Z. I assert that, for all z ∈ Z, p · z ≤

p · zn + F/n. To see this, suppose z ∈ Z and write z as the sum of elements of
the Zf, one for each . By assumption, p ·  +1/n ≥ p · zf

for each f, and summing on f gives the desired inequality.
Therefore, p · zn + F/n ≥ supz∈Z p · z. But p ·  ≤ πf (p) for each f, and 

let n go to infinity, and you have the desired (reverse) inequality. This implies
that π(p) = supz∈Z p · z.

Suppose z* ∈ Z attains the supremum in supz∈Z p · z. Write z* as the sum
of elements, one from each Zf, or . Of

c o u r s e , p · zf * ≤ πf (p), so 



, and since we know the first and last terms are equal, we must have equality
everywhere. Moreover, we must have p · zf * = πf (p) for each f; if we had a strict
inequality for any f, there is no way to make it up (to get the equality of the
sum) for some other firm. Therefore, zf * ∈ Zf *(p) for each p, which means that
z* ∈ Z*(p).

Conversely, suppose that z* ∈ Z*(p), so that  where

each zf * ∈ Zf *(p). Then p · zf * = πf (p) for each f, and therefore 

where the last equality follows from what was shown previously. That is, z* ∈
Z*(p) implies that z* achieves the supremum. That gives us the full
proposition.2

That is a lot of proof for something that is (at worst) just the other side of
obvious, but if you take it a step at a time, there is nothing hard happening.

And the result is worth the tedious hassle. We have simple necessary and
sufficient conditions for an alleged profit function to be the profit function for
some production-possibility set, given to us in Propositions 9.3 and 9.14: the
function must be homogeneous of degree 1 and convex. Given a finite set of
such functions, their sum is homogeneous of degree 1 and convex, so the
aggregate profit function (obtained by summing individual profit functions) has
all the properties of a single-firm profit function. In fact, we don’t even need to
know that the two necessary-and-sufficient conditions survive addition, since
Proposition 13.1 tells us that the sum of the individual-firm profit functions is
the profit function of a firm formed by summing the individual-firm production-
possibility sets. And, moreover, the sum of their optimal-netput
correspondences is the aggregate optimal-netput correspondence for this mega-
firm. Aggregating the netput decisions of profit-maximizing firms gives us an
aggregate that has precisely the properties we’ve derived for the individual firms.

Now recall the first sentence of this section: The firm half of the story is
nearly trivial, as long as one assumption is met. Since we didn’t add any



assumptions, you may wonder what is that assumption. (We did assume that
each firm in the collection of firms had a nonempty production-possibility set,
but that’s not it.) The implicit assumption is that no firm, by its netput
decision, affects the production possibilities of the other firms. To use
terminology that we’ll develop more fully in Chapter 15, no firm generates an
externality for any other firm.

Recall from last chapter the one caveat we inserted into the simple story of
producer surplus: While every firm in an industry may be small enough so that
it takes the prices it faces as given, when an entire industry shifts its production
level, that may cause the price of some factor of production to change. Therefore,
the “ empirical” supply curve for an industry—what we see in the data—may not
be the same as the sum of the individual-firm supply curves, which are based on
the price-taking assumption. In a sense, that is a form of externality exerted by
firms in the industry on each other—collectively, the firms change the prices of
factor inputs that each faces. The caveat in this chapter is a bit different, because
in the story here, we’re talking about aggregating optimal netput choices as a
function of the whole price vector. But it is still possible, not through prices but
by other means, that one firm’s production possibilities are influenced by the
choices made by other firms. If, for instance, two of the firms are located along a
river, and if both use the river water both as an input and as a means for
disposing of unwanted by-products from their production, then the firm
upstream, by disposing of its unwanted by-products, may make it impossible
(or more costly) for the downstream firm to use river water in its production
process. (This is a very standard example of a production externality.) The point
is, Proposition 13.1 and the wonderful result it provides concerning the
aggregation of firms’ netput decisions and profit functions, implicitly rules all
such things out.

13.2.   Aggregating Consumers
When it comes to aggregating consumers, the story is much less nice. We
begin with a commodity space  and a list of consumers, indexed h = 1,

…,H.3 Consumer h is characterized by preferences h, defined on , and a

level of income yh. We’ll always assume that h is continuous, so it has a



continuous representation uh. We’ll also always assume that h is locally
insatiable.

For consumer h, we let (p, yh) ⇒ Dh(p, yh) denote the Marshallian demand
correspondence, where the innovation in notation is the superscript h on D.
Aggregate consumer demand (at p and (yh)h=1,…,H) is the Minkowski sum 

 and the ideal situation is for this sum to be D(p, y),

which is Marshallian demand at prices p and aggregate consumer income or
wealth , for some representative consumer with preferences

or a utility function that somehow aggregates the preferences/utility functions of
the H individual consumers.

Clearly, this is a lot to hope for. But there are very special cases in which,
remarkably, it works.

Proposition 13.2 (Antonelli 1886). Suppose that each consumer h has the
same utility function u and, moreover, that utility function represents convex
and homothetic preferences.4 Let D(p, y) denote Marshallian demand
according to this (one) utility function at p and y. Then for any income
distribution (yh)h=1,…,H and price vector p,

Note that, in the statement of the proposition, we can omit a superscript h on D
because all the consumers, by assumption, have the same preferences.

Proof. If any yh = 0, then D(p, yh) must be {0}, and D(p, yh) does not
contribute to the sum of individual demands. For this reason, we can eliminate
all h such that yh = 0 from consideration (unless they all equal zero, in which
case the result is trivial). Or, in other words, we can assume without loss of
generality that yh > 0 for each h. Let  and let αh = yh/y. That



is, αh is h’s share of the total income.
We now show that the left-hand side of the display is a subset of the right-

hand side. Choose dh ∈ D(p, yh) for each h; we know that dh is weakly
preferred by h to any bundle x such that p · x ≤ yh, so by homotheticity of
preferences, dh/αh is weakly preferred to any bundle x/αh where p · x ≤ yh, which
by a simple change of variables is any bundle x′  such that p · x′ ≤ yh/αh = y.
That is, for each h, dh/αh ∈ D(p, y). This is true for each h, and so by
convexity of preferences,

is weakly preferred to any x such that p · x ≤ y, which is what we need to
conclude that 

Conversely, suppose d ∈ D(p, y). Then an easy argument, similar to the
one in the previous paragraph, shows that αhd ∈ D(p, yh) for each h. But then 

 is in the Minkowski sum . This

gives set inclusion of the right-hand side in the left-hand side, and we’re done.

Identical homothetic (and convex) preferences is a special case, but it is not
hard to see why such a special case is (nearly) required. (Concerning the
convexity assumption, see Problem 13.1.) To keep the discussion simple,
suppose we are looking at an open domain of prices and income levels over
which (1) each consumer’s demand is single valued and differentiable and
satisfies Walras’ Law and (2) aggregate demand for each good is independent of
how aggregate income is divided among the consumers, as long as the division
keeps us in this region. Write dh(p, yh) for the demand by consumer h at p and
yh. Since demand for each good i is independent of how we split the total
income y over the consumers (at least, locally), then the change in demand for
good i by consumer h if we increment her income by a small amount δ  has to
be just offset by the amount the demand for good i changes if we decrease the



income of some other consumer h by δ . (We do assume that there are at least
two consumers.) Since we are assuming differentiability, Taylor’s Theorem tells
us that this means that

at least inside the open set of prices and income levels for which aggregate
demand is independent of the distribution of income. But if this is true when h
has income yh and h has income yh, then it must also be true when we keep the
income of h at yh but move h’s income to some other level inside the region.
That is, if yh and h are two income levels for h inside this region, then the

partial derivative of dh
i in y at yh must equal the partial derivative in y at h (for

fixed p), since both must equal the right-hand side of the display above. But
this means that, inside this region, demand for each good i by each consumer h
must be affine in y, where the slope and intercept terms can depend on p. And
the slope for h must also be the slope for every other h (given p). That is,
within this region,

where (so that Walras’ Law continues to hold) we need that p · bi(p) = 1. If this
is to hold at all levels of p and y, then since (p, yh) must approach zero as yh

approaches zero, we would need to have (p) = 0, and while that isn’t quite

enough to know that preferences are homothetic, it is only because there could
be regions in the consumption space that are never demanded, and hence for
which preferences are not constrained by this aggregation property.

Suppose that, over some open set of prices and income levels smaller than
all possible prices and income levels, each consumer’s demand takes the form of
(13.1), for some functions  and bi. Obviously, aggregate demand is



independent of the distribution of income, at least for prices and distributions of
income within this region. Of course, this doesn’t prove that aggregate demand
is “ as if” it came from a single utility-maximizing consumer; I won’t attempt to
prove that here. But it is easy to show (and you are asked to do so in Problem
13.2) that if each consumer’s demand function satisfies the conditions of
integrability and the demand functions take the form (13.1) over some open
region, then aggregate demand satisfies the conditions of integrability over that
region. Assuming that local satisfaction of the conditions of integrability is
sufficient to be “ as if” a single utility-maximizing consumer was behind the
demand function for this region of prices and aggregate income (and this is the
part we do not show), this tells us that (13.1) is both necessary and sufficient for
aggregation of demand to work independently of the distribution of income,
even locally.

And, as a local condition, (13.1) is less restrictive than identical homothetic
preferences: For instance, suppose every consumer had preferences that are quasi-
linear in, say, the k th good, that is, taking the form, uh(x)= vh(x1, …, xk–1) + xk
for some functions vh :  → R that (to keep matters simple) are strictly

concave. One can show (see Problem 3.9) that for prices p such that the relative
prices pi/pj are all uniformly bounded, if each consumer has enough income, her
demand for the first k – 1 goods doesn’t change in yh (fixing p). That is, as long
as the consumer has enough income, we have the displayed form, where bi(p) =
0 for i < k and bk(p)=1/pk. So, locally, we have the required property.

Fixed shares of aggregate income
It is, clearly, a lot to ask that aggregate demand depends only on prices and
aggregate income and not on how that income is divided among the consumers.
So we might set our sights a bit lower. One way to do this is to specify that
aggregate income is allocated to the consumers in fixed proportions.
Specifically, we fix positive constants  that sum to one, and for

aggregate demand, we look at



Does this aggregate demand correspondence behave like the demand
correspondence of a utility-maximizing consumer?

In general, the answer is no. Here is a simple example: Suppose that H = k
=2 (two consumers, and two goods). The income shares are α1 = α2 =0.5. At
the price vector (1, 2) with total income 40 (so each consumer has 20),
consumer 1 demands (7, 6.5) and consumer 2 demands (6, 7), making aggregate
demand (13, 13.5). At the price vector (2, 1), also with total income 40,
consumer 1 demands (7, 6) and consumer 2 demands (6.5, 7), making aggregate
demand (13.5, 13). Per Afriat’s Theorem (Proposition 4.3), the data given here
are consistent with both consumer 1 and 2 being utility maximizers. But
aggregate demand is problematic: At the price vector (1, 2), the bundle chosen
is (13, 13.5), which costs 40 (as it should, according to Walras’ Law). But the
bundle (13.5, 13) costs only 39.5 at these prices. Apparently, if our supposed
aggregate consumer is a utility maximizer with locally insatiable preferences,
(13, 13.5) is strictly better than (13.5, 13). But, looking at the price vector (2,
1), (13, 13.5) costs 39.5 while the chosen bundle (13.5, 13) costs 40. So we
have a strict preference cycle (with a maintained hypothesis of local
insatiability).

On the other hand, here is a positive result.5

Proposition 13.3 (Eisenberg; Chipman and Moore). Suppose that each
consumer has continuous and homothetic preferences h, and that for each h
there is some bundle x such that x h 0, while for all x ∈ , x h 0. Let

uh be a utility function that represents h and is homogeneous of degree 1
and continuous.6 Fix weights {αh} that are nonnegative and sum to one, and
define a function U :  → R by



Then if, for a fixed price vector p, dh ∈ Dh(p, αhy), the aggregate demand 
 is among the Marshallian demands for a consumer with utility

function U, facing prices p with income y.7

This shows that, if we fix income shares, we get aggregation of demand in all
its glory (it is as if aggregate demand came from a single, utility-maximizing
consumer, whose preferences turn out to be homothetic) if each consumer has
homothetic preferences, although (because income shares have been fixed) they
don’t need to be identical homothetic preferences.

The proof of this proposition is not particularly difficult, but it is rather
tedious. You are asked to provide it in Problem 13.4, which provides a step-by-
step roadmap; the proof is given in the Student’s Guide , if you want to see it
worked through.

The consumer’s problem with endowments rather than income
A different way to fix the distribution of income is to reformulate the problem in
the manner of general equilibrium theory. We don’t get to general equilibrium
until next chapter but, anticipating a bit, suppose that consumer h’s income
derives entirely from the market value of an endowment eh ∈  of goods

with which she begins.8 With endowment eh and facing prices p, the consumer
has p · eh to spend on consumption, and she solves the problem

(You may recall this variant on the consumer’s problem from Problem 10.8 and
then from Chapter 11, where it was connected to so-called Slutsky-compensated
demand.) This problem will be abbreviated CP-E, for the consumer’s problem
with endowments, rather than income. The CP-E is only a minor variation on



the CP, and many of the results we obtained for the CP extend easily to the CP-
E:

Proposition 13.4. Consider the CP-E, where uh is a continuous utility
function on , p ∈ , and eh ∈ . Let Dh(p, eh) denote the set of

solutions to this problem, depending on the parameters p and eh, and let νh(p,
eh) equal the value of the objective function (that is, νh(p, eh) is the supremum
of uh(x) for x within the constraint set).

a.  A solution exists for each p and eh; that is, Dh(p, eh) is nonempty.
Therefore, νh(p, eh) is finite for every p and eh.

b.  If uh is quasi-concave, Dh(p, eh) is convex, and if uh is strictly quasi-
concave, Dh (p, eh) is singleton.

c.  The correspondence (p, eh) ⇒ Dh(p, eh) is upper semi-continuous and
locally bounded, and the function (p, eh) → νh(p, eh) is continuous.

d.  Dh(λp, eh) = Dh(p, eh) and νh(λp, eh) = νh(p, eh) for all λ > 0.

e.  If u is locally insatiable, then p · x = p · eh for all x ∈ Dh(p, eh).

Note that we’re recycling the notation D for Marshallian demand (but now with
endowment-driven wealth) and ν for indirect utility; I hope this isn’t confusing.
Some other fairly obvious immediate-corollaries-to or simple-extensions-of
results could be given; for instance, ν is quasi-convex in p, nonincreasing in p,
nondecreasing in eh (and strictly increasing in eh if u is locally insatiable), and
so forth. But the results listed in Proposition 13.4 are what we’ll need.

Individual and aggregate excess demand
Now we introduce a bit of terminology and a change of variables. The vector x
in the CP-E is consumer h’s final consumption bundle. We use the symbol ζ to
mean x – eh, calling ζ the consumer’s net trade or excess demand. Excess
demands can have positive and negative components; they are elements of Rk

(not ), although as long as we insist on consumption bundles being

nonnegative (and we will continue to insist on this), we know that excess



demands for consumer h must satisfy the inequality ζ ≥ –eh. When ζi > 0, h
consumes all of her endowment of good i and ζ more in addition; when ζi < 0,
she sells –ζ out of her endowment, retaining eh

i + ζi to consume.

Definition 13.5.

a.  For a given consumer h (specified by her utility function uh or preferences
h, define

calling (p, eh) ⇒ h(p, eh) t h e excess-demand correspondence of
consumer h. If consumer h has strictly convex preferences, so that Dh(p, eh)
is singleton for all p and eh, welet ζh(p, eh) denote the single member of 

h(p, eh) and call (p, eh) → ζh(p, eh) t he excess-demand function for
consumer h.

b.  For a finite collection of consumers h = 1, …, H, each specified by her
utility function or preferences, and for a fixed vector of endowments
(eh)h=1,…,H, define

We call p ⇒ (p) the aggregate excess-demand correspondence for this
collection of consumers and their (fixed) endowments. When every
consumer has strictly convex preferences, we define



calling p → ζ(p) the aggregate excess-demand function for this collection
of consumers and endowments.

Obviously, each individual excess-demand correspondence (p, eh) ⇒ h(p, eh)
inherits a bunch of properties from Proposition 13.4; I leave it to you (in
Problem 13.5) to provide them and to prove the following:

Proposition 13.6. Fix a collection of consumers indexed by h = 1, …, H,
specified by their preferences h. Assume that these preferences are
continuous and locally insatiable, represented by continuous utility functions
uh. And fix endowment vectors eh ∈  for each consumer. Then the

aggregate excess-demand correspondence p ⇒ (p) (for strictly positive p) is
upper semi-continuous, locally bounded, homogeneous of degree 0 in the sense
that (p)= (λp) for all λ > 0, and satisfies: If ζ ∈ (p), then p · ζ = 0.
Moreover, if each h is convex, then (p) is convex for every p.

We return to general excess-demand correspondences next section. For the
remainder of this section, we assume that each h is strictly convex, so we can
speak of individual and aggregate excess-demand functions. We continue to fix
each consumer’s endowment and focus on the excess-demand functions p →
ζh(p), with dependence on eh suppressed, and on the aggregate excess-demand
function p → ζ(p), with dependence on the vector of endowments (eh)h=1,…,H
suppressed.

Corollary 13.7. For a collection of consumers h = 1, …, H with fixed
endowments (eh)h=1,…,H and strictly convex, continuous, and locally insatiable
preferences ( h)h=1,…,H, the individual excess-demand functions p → ζh(p) are
each continuous in p, homogeneous of degree 0 in p, and satisfy Walras’ Law



for individual excess demand: p · ζh(p) = 0 for all p.
Moreover the aggregate excess-demand function p → ζ(p) is continuous,

homogeneous of degree 0, and satisfies Walras’ Law for aggregate excess
demand: p · ζ(p) = 0 for all p.

This is a corollary to Proposition 13.6 for aggregate excess demand and to the
unstated translation of Proposition 13.4 to individual excess-demand
correspondences, once you recall that an upper semi-continuous correspondence
that is singleton valued and locally bounded describes a continuous function.

The Sonnenschein-Mantel-Debreu Theorem
Individual excess-demand functions necessarily satisfy more than the three
properties given in the first half of Corollary 13.7. For instance, the logic of
revealed preference can be applied: We can never have (for some consumer h)
two prices p and p′  such that p · ζh(p′) < 0 and p′ · ζh(p) < 0. For if p · ζh(p′) <
0, then ζh(p′) is a net trade that is strictly affordable for h at prices p. Local
insatiability implies that eh + ζh(p) h eh + ζh(p′). But the reverse inequality,
p′ · ζh(p) < 0, would symmetrically imply that eh + ζh(p′) h eh + ζh(p), and
the two together are impossible.

If aggregate excess demand ζ could be rationalized as the individual excess-
demand function for some utility-maximizing aggregate consumer, it would,
likewise, need to obey this and other strictures of revealed preference. But
aggregate excess demand is not so restricted, in general. The Sonnenschein-
Mantel-Debreu Theorem says that, more or less, the only restrictions on an
aggregate excess-demand function are those given by the second half of the
corollary.

Proposition 13.8 (The Sonnenschein-Mantel-Debreu [S-M-D] Theorem). If
ζ :  → Rk is continuous and homogeneous of degree 0 and satisfies

Walras’ Law, then for any >  0 there exist k consumers with continuous,
strictly convex, and nondecreasing preferences and endowments such that ζ is
the aggregate excess-demand function for those k consumers, for all p such that
pi | |p| |  ≥ for all i.



The “ more or less” in the sentence preceding the proposition is because the
proposition only works for prices p that are strictly bounded away from the
boundary (although can be chosen as small as you wish, as long as it is strictly
positive). This version of the result is due to Debreu (1974). Sonnenschein
(1973) provided the first result along these lines, but only for a set of aggregate
excess-demand functions that is dense within the set of all continuous and
homogeneous functions satisfying Walras’ Law. Mantel (1974) then extended
the result to any continuously differentiable excess-demand function, using 2k
consumers; Debreu (1974) gave the result stated above, dropping Mantel’s
restriction to continuously differentiable functions and providing a proof with
only k consumers needed.

A number of proofs of this result (some with added assumptions) have been
given, but none of them are particularly simple, and I will not provide one here.
(See Problem 13.6 for the relatively easy start of Debreu’s proof.) Perhaps the
most direct proof adds the assumption that ζ has uniformly bounded second-
order partial derivatives on the domain of prices {p ∈  : pi ≥  for some 

 > 0.} Then it is possible to construct ζ as the aggregate demand of k
consumers, each of whom has homothetic preferences. This version of the result
is due to Mantel (1979); Shafer and Sonnenschein (1982) sketch a proof (which
they attribute to Richter).

Bottom line: In this context of aggregate excess-demand functions, we (more
or less) can do no better than continuity, homogeneity, and Walras’ Law.

13.3.   Convexification through Aggregation
A quick summary of this chapter so far: Aggregating the supply-and-demand
decisions of firms is simple: Absent externalities, the aggregate decisions of a
collection of competitive (price-taking) firms looks the same as the decisions of
a single competitive mega-firm. But aggregating the (excess-) demand decisions
of consumers is not so simple: Except under very restrictive assumptions,
aggregate consumer behavior is not the same as the behavior of some utility-
maximizing aggregate or representative consumer.

This neutral-to-bleak report card on aggregation is incomplete, however.
Aggregation of supply and demand can sometimes have beneficial consequences,
at least from the perspective of economic theory. In particular, aggregation can



eliminate or, at least, reduce nonconvexities.
Results along these lines take two forms: limiting and “ in the limit.” This

section provides you with details about one result of the first variety, and then
informally discusses the second.9

Nonconvexities shrink: The Shapley-Folkman-Starr Theorem
Imagine an economy in which consumers have nonconvex preferences and/or
firms have nonconvex production-possibility sets. Figure 13.1a shows
indifference curves for preferences that are nonconvex; panel b shows a
nonconvex production-possibility set. In either case, the demand correspondence
(or excess-demand correspondence) of the consumer and the optimal netput
correspondence of the firm will not be convex valued; for prices in a ratio of one
to one in the figure, the consumer’s demand correspondence (and excess-demand
correspondence) and the firm’s netput correspondence will consist of two
points.10 You will not learn why this is problematic until next chapter, but if
you are willing to trust me on this for the time being, the theory to be
developed next chapter “ wants” aggregate supply and demand correspondences
to be convex valued. So, when we get to next chapter, we’ll be assuming that
firms have convex production-possibility sets and consumers have convex
preferences.

But now imagine that we have lots of consumers whose indifference curves
look like Figure 13.1a and/or lots of firms whose production possibility sets
look like Figure 13.1b. To be very concrete, imagine we have 100 consumers
with the indifference curve shown, so that, at the prices (1, 1) and the “ right”
level of income or endowment, the set of Marshallian demands for each
consumer consists of two distinct points, {xA, xB}. At the problematic prices (1,
1) and the right income distribution, aggregate demand then has 101 points:
100xA, if all 100 consumers choose xA; 99xA + xB, if 99 choose xA and one
chooses xB; 98xA + 2xB; and so forth. Is this better? If we measure demand on a
per capita basis, it may be, at least insofar as convexity is desirable. Because on
a per capita basis, demand at these prices is {xA, 0.99xA +.01xB, 0.98xA +
0.02xB,…, 0.01xA + 0.99xB, xB}. This isn’t a convex set. But, at least
intuitively, it is in the way of becoming closer to convex; the nonconvexity is



being filled in.

Figure 13.1. Nonconvexities in demand and netput. Panel a shows the
indifference curve of a consumer with nonconvex preferences; panel b, a
nonconvex production-possibility set of firm. At the right ratio of prices
(for this figure, the ratio is one to one), the consumer’s Marshallian
demand will be nonconvex, as will the firm’s optimal set of netput
vectors.

Is this sort of “ getting closer to convex on a per capita basis” useful? Since
we won’t know until next chapter why convexity is desirable, this is obviously
a question we cannot address formally. But let me appeal to your intuition: The
reason convexity is desirable, roughly, is that it is important to knowing that,
at some set of prices, supply equals demand (or, as we’ll phrase it next chapter,
markets clear). Without convexity, you can’t guarantee that this will happen.
But “ almost convexity on a per capita basis” ensures that, at some prices,
supply nearly equals demand or markets nearly clear, both measured per capita.
And, it can be argued, that’s an economically desirable state of affairs.11



For now, I’ll assume this intuition convinces you that “ getting close to
convex on a per capita basis” is desirable. But does aggregation give convexity-
in-the-limit in general, or is it merely an artifact of the very special example two
paragraphs ago? It is general, as long as (1) the number of items in the aggregate
—that is, sets in the Minkowski sum—(in the current context, sets of excess
demands or netputs) goes to infinity, and (2) there is a uniform bound on how
nonconvex is each of the sets. We begin the formal development with a
definition.

Definition 13.9. The inner radius of a subset X of Rk is the smallest scalar r
such that every point x* in the convex hull of X is a convex combination of
points from X that are no more than r distant (in the usual Euclidean metric)
from x*.

If X is bounded, its inner radius is necessarily finite. If X is convex, its inner
radius is zero. In a sense, the inner radius of a set is a measure of how far from
being convex is the set.

For any set X ⊆ Rk, write CH(X) for the convex hull of X.

Proposition 13.10 (Shapley-Folkman-Starr). If X1, …, Xn are all nonempty
subsets of Rk, and if , then:

a.  

b.  Every point in CH(X) can be written as  where xi ∈ CH(Xi)

(this is just restating part a, so far) and, moreover, no more than k of the
xi in the sum need to be taken from their respective CH(Xi); at least n – k
can come from the original (nonconvex) Xi. (This is only meaningful if n >
k, of course.)

c.  The inner radius of X is less than or equal to the sum of the k largest
inner radii of the sets Xi.

The proof will be given shortly, but first I’ll show how this can be employed.



Corollary 13.11. Suppose X1, X2, … is a sequence of nonempty subsets of Rk

for some k. For n = 1, 2, …, let , the nth Minkowski

partial sum, and let Zn = {z ∈ Rk : z = (1/n)s for some s ∈ Sn}. If the inner
radii of the sets Xi are uniformly bounded by B, then the inner radius of Sn is
bounded above by kB (a bound that is uniform in n), and the inner radius of
Zn is bounded above by kB/n.

This is an obvious corollary to the proposition, once you recognize that if the
inner radius of a set X is r, then the inner radius of (1/n)X = {z : z = (1/n)x, x ∈
X} is r/n.

Apply this as follows: Suppose we have a collection of H consumers,
participating in a pure-exchange economy with commodity space Rk, each of
whom has (in the spirit of Proposition 13.6) fixed endowments eh and a
continuous and locally insatiable utility function that is not necessarily convex.
Suppose there is a uniform upper bound on the consumers’ endowments. Fix a
strictly positive price vector p. The ratio of relative prices combined with the
upper bound on endowments gives us an upper bound on how much of any
good any consumer can afford: The bound on her endowment provides a bound
on her wealth (if we normalize prices), and even if her endowment is entirely in
the most expensive good, and she uses all of this endowment to buy the least
expensive good, there is an upper bound on how much of that good she can
purchase. Suppose B is that bound. Then B is also an upper bound, probably a
very gross upper bound, on the inner radius of each h(p).

Now consider . The proposition and

corollary tell us that this set has inner radius of kB or less. And the inner radius
of the set of per capita (aggregate) net trades is kB/H or less. As H goes to
infinity, the sets of per capita net trades at the prices p are getting closer and
closer to convex, at least in the sense that the inner radii of these sets approach
zero.

Of course, this depends on the endowments being uniformly bounded; if, as
we add more consumers, we add increasingly fantastically wealthy consumers
(in the sense that one or more has a fantastically large endowment), problems
can arise. And, to get a bound on the individual’s net trade or demand, we need



to bound the ratio of the highest priced good to the lowest.
Similar things can be done for per firm aggregate netputs, although the

bound we are able to put on the inner radius of a single consumer’s demand or
excess demand, based on endowment size and relative prices, will be
unavailable; one generally needs to assume a bound on the nonconvexities in an
individual firm’s production possibilities.

Proof of Proposition 13.10. First we prove part a. In one direction, it is easy: If
 where the

s c a l a r s αl are nonnegative and sum to 1, and each 

But then

and each term  is clearly in its respective CH(Xi), so that the

final term is an element of ∑i CH(Xi). Hence CH(X) ⊆ ∑i CH(Xi).
The converse direction is a bit more difficult. We prove a more general

result in linear algebra:

Suppose that

where the scalars  are all strictly positive and satisfy 

 for some β > 0, for



for some integer J, nonnegative scalars γj such that ∑j γj = β, and vectors ,

where each of the  is an .

We need this result for the special case β = 1; for β = 1 then (assuming each 

∈ Xi) the first displayed double sum represents an arbitrary point in ∑i CH(Xi),
while the second represents a point in CH(∑i Xi). The proof for general β is by
induction on the number of . Note that this number can never be smaller

than n (since we require that at least one  > 0 for each i) and in the case that

N1+…+Nn = n, then Ni = 1 for each i, and we have the desired form
automatically.

Assume, then, that the result is true for all N1 + … + Nn ≤ M, for M ≥ n,
and take a case in which N1 + … + Nn = M + 1. Some  is smallest among

all these scalars (if there is a tie for smallest, pick any one). Renumber if
necessary so that this is true for i = 1 and l = 1. Write

The first summation of the three on the right-hand side is (  + … + 

), while the second and third summations are (no more than) M terms that
satisfy the induction hypothesis, but with β –  instead of β. Applying the

induction hypothesis to the second and third summations taken together says
that they can be written in the form



where ∑j γj = β – ; substituting this form for the second two summations

completes the induction step, the proof of the general lemma, and hence the
proof.

Part b is proved by a clever argument due to Zhou (1993), which employs
another general result from linear algebra:

If  where z and the zj all come from Rl and the scalars

αj are all nonnegative, then z can be written in this form where no more than
of the coefficients αj are nonzero.

We essentially give the argument in the proof of Carathéodory’s Theorem
(Proposition A3.5) i n Appendix 3, but to repeat it here: Suppose 

, where n ≥ l + 1. Suppose we have expressed z in this

manner with as few nonzero αj’s as possible, and suppose that number is m ≥ l
+ 1. Renumber so that the nonzero αj and corresponding xj are listed as 1
through m. Since the vectors zj for j = 1, …, m lie in Rl and there are more than
l of them, they are linearly dependent, and we can write 

for some coefficients βj, not all zero. Moreover, it is without loss of generality to
assume that at least one of the coefficients βj is strictly positive; if they are all
either 0 or less than zero, simply reverse their signs. Therefore, 

, and as we increase γ from zero,

eventually one (or, simultaneously, more than one) of the coefficients αj – γβj
hits zero. Stopping with the smallest γ > 0 so that this is true (so that αj – γβj ≥
0 for all j and = 0 for one or more), we have reduced by one the number of
nonzero coefficients needed, contradicting the supposed minimality of m.



Now suppose x ∈ CH(X) is written as  for xi ∈ CH(Xi). Write

each xi as  where each xij ∈ Xi and the nonnegative βij

satisfy  (This is all taking place in Rk, recall, and I’ve

used Carathéodory’s Theorem in expressing xi as a convex combination of k + 1

vectors from Xi.) Create the following vectors in Rk+n:

We have

Apply the general result from linear algebra. We have written z as a nonnegative
combination of the zij vectors, so we can assume that this can be done with no
more than k + n nonzero coefficients. That is, we can express

with no more than k + n of the γij being nonzero. To get equality in the last n



coordinates (all those 1s and 0s), we must have ∑j γij = 1 for each i. For each i,
this means at least one γij must be nonzero. This leaves us with no more than k
of the i’s for which there can be two or more nonzero γij, which proves part b.

Take any point x ∈ CH(X) and write it as  where xi ∈ CH(Xi)

for all i and xi ∈ Xi for all but (at most) k of the i’s. Renumbering as necessary,
we can assume that xi ∈ Xi for all i > k (if n ≤ k, there are no i for which this
needs to be true), and so

where xi ∈ CH(Xi) for i ≤ k and xi ∈ Xi for i > k. Let R1 through Rn be the
inner radii of X1 through Xk, respectively. Then for each i = 1, …, k, xi can be
written as a convex combination of points from Xi that are no more than Ri
distant from xi. (That’s the definition of the inner radius.) That is,

where ∑l  = 1 for each i, the αil are all nonnegative,  ∈ Xi for all i and l,

Ni = 1 (and  = 1 and  = xi) for i > k, and | |xi – || ≤ Ri for i ≤ k and all

l. Now the argument we used for the second half of part a tells us that we can
write x as



where each  is one of the  and the scalars γj are nonnegative and sum to

one. Of course, for i > k,  = xi. So x is now a convex combination of the 

 Once we uniformly bound the distance between 

, we know that this upper bound is a

bound on the inner radius of ∑i Xi.
By the triangle inequality

And in the sum on the right-hand side, the i th summand is less or equal to Ri
for i = 1, …,k and is 0 for i > k. This gives part c.

Nonatomic spaces of agents and Aumann’s Lemma
(This subsection will require the reader to have at least a nodding acquaintance
with the mathematics of measure and integration. It is just a discussion, so a
nodding acquaintance is all that is needed. But please skip it, if this isn’t you.)

The Shapley-Folkman-Starr Theorem doesn’t provide a lot of intuition as to
why aggregation convexifies on a per capita basis, as the number of firms or
consumers goes to infinity, so let me try to provide some. Imagine that you
have an infinite sequence of sets X1, X2, … as in Corollary 13.11, and just as in
the corollary, you are interested in the degree of nonconvexity of the per capita
Minkowski partial sums, for n large relative to k. If there is a particular
nonconvexity in some of the Xn sets, but this nonconvexity doesn’t happen too



often (think, only finitely often, although it can be more than this), then it will
shrink away in the per capita sets as n → ∞ . And if it recurs frequently enough,
then by judicious choosing on either side of the nonconvexity, you will
(asymptotically) be able to get any convex combination you want. If you want,
say, a 2/3, 1/3 combination, then 2/3 of the time you pick points on one side of
the nonconvexity and 1/3 on the other. The point is, the very condition that
says “ this nonconvexity won’t disappear of its own accord as n goes to
infinity,” namely that it reappears in a lot of the Xn, means that you will have
lots of opportunities to balance your selection on one side or the other.

Obviously, this is very rough intuition, especially if the balancing act
involves multiple dimensions and the nonconvexity is different for different
consumers. But this idea points us in the direction of a very powerful variation
on the aggregation-convexifies theory. I’ll describe this in terms of consumers
and their sets of net trades, but if you follow this description, it will be clear
how it generalizes.

The price-taking assumption is based on the intuition that each consumer is
small relative to the economy and has no impact on prices. Suppose that, rather
than having a finite number of consumers, we imagine that there are uncountably
many of them: For some measure space (T, T ), each t ∈ T is a “ type” of
consumer, described by the type’s preferences t and endowment et. The
weight or proportion of consumers whose type t is drawn from some
(measurable) subset A ∈ T is given by the measure μ(A), where μ is a
(nonnegative) measure on the space (T, T ), such that μ(T′) = 1 (100% of the
agents are of a type drawn from the set T).

For each type T, suppose that at some fixed price vector p (the commodity
space will remain Rk for some finite k) the set of optimal net trades is given by
Z(p; t). Assumptions are made so that the correspondence t ⇒ (p; t) is well
behaved; think in terms of t being represented by a parameterized function u(x; t)
that is (say) jointly continuous in x and t, and t → et is continuous. (What
would Berge’s Theorem then tell you about t ⇒ (p; t) for some fixed p?)

What is per capita aggregate demand? With finitely many agents, it is the
Minkowski sum, summing over agents (and, to make it per capita, divided by
the number of agents); the corresponding concept to a sum is an integral, and so
Aumann defines the integral over t of the sets (p; t) as:



If, for instance, we assume there is a uniform bound on the et, then there will be
a uniform bound on elements of the set (p; t) (if prices p are strictly positive),
so “ well-enough behaved” can be taken to be “ measurable.” This so-called
Aumann integral of the correspondence, the parallel concept to the Minkowski
sum of a finite collection of sets, is the set of all integrals of measurable
selections from the correspondence. The punch line to all this setup is

Suppose that μ is a nonatomic measure (that is, the weight or measure
of every singleton set {t} is 0). If t ⇒ (p, t) is “well-behaved,”12

the set ∫T (p; t)μ(dt) is convex, regardless of the convexity of the sets
(p; t).

Or, for nonatomic measures, meaning no single type t has positive weight per
capita, aggregation convexifies. Not “ convexifies in the limit” or “ gets you
closer and closer to convexity,” but “ convexifies, period.”13

The intuition is, more or less, the intuition given earlier in the subsection:
If μ is nonatomic, then we can chop up T into as many pieces of any size
(measured by μ) needed to balance out individual nonconvexities that occur with
positive μ-measure. (Nonconvexities that appear in (p; t) for a set of μ-
measure 0 obviously are irrelevant to the integral.) Of course, this is just
intuition: This result, sometimes called Aumann’s Lemma or Aumann’s
Theorem, is a deep result in mathematics. But owing to it, and for other
reasons, it provides the economic theorist who can handle the math a very
felicitous environment for doing economic theory and, in particular, general
equilibrium theory. The mathematics is at too high a level to be tackled in this
book, but (especially after consuming the next two chapters), the reader who is
prepared to handle this level of math should look in the literature for economies
with a continuum of agents (that is, consumers and/or firms). The seminal
references are provided below.

Bibliographic Notes



As stated at the start of the chapter, aggregation is very important on a number
of grounds: in empirical studies, data are apt to come in aggregated form; it is
often vastly simplifying to be able to assume that an economy consists of a
representative consumer and/or a representative firm; and to the extent that
aggregation helps justify assumptions like convexity or continuity, it justifies a
lot of theory. For these reasons, there is a very substantial literature on the
topic, and one that goes back a long way: The first aggregation result for
consumers comes from Antonelli (1886). This chapter has only scratched the
surface and, at that, the theoretical end of the surface.

For aggregation of consumers, I have relied very heavily on on Shafer and
Sonnenschein (1982), who provide some historical notes. The three seminal
papers for the S-M-D Theorem are Sonnenschein (1973), Mantel (1974), and
Debreu (1974). It is probably worth noting that there are other senses in which
one might talk about aggregation of consumers besides the adding up of their
demands or market demands; see Mas-Colell, Whinston, and Green (1995,
Section 4D).

What I call the Shapley-Folkman-Starr Theorem first appears in the
economic literature in Starr (1969). Starr credits Shapley and Folkman as the
originators of part b and a weaker version of part c; he himself provides the
definition of inner radius and sharpens the original Shapley-Folkman Theorem
to get part c.

The seminal papers on models with a continuum of agents are Aumann
(1964, 1965, 1966).

Problems

 *13.1. In the statement of Proposition 13.2, it is assumed that the preferences
of the various consumers are identical, homothetic, and convex. What happens if
we assume that they are (only) identical and homothetic?

 13.2. The chapter argues (informally) that if every consumer’s demand dh

takes the form (p, yh)= (p) + bi(p)yh over some open region of prices and

income levels, then over that region, aggregate demand is independent of the
distribution of aggregate income and resembles the demand by a single
consumer.



(a) One part of the informal argument is that, assuming each individual demand
function satisfies the conditions of integrability, so does aggregate demand.
Show that this is so.

(b) Suppose that each consumer’s indirect utility function νh takes the form νh(p,
yh)= αh(p)+ β(p)yh over an open domain of prices and income levels. Making all
the differentiability assumptions you care to, show that this implies that demand
functions take the form indicated. (Use Roy’s identity.) (This is called Gorman
form indirect utility.)

 13.3. (This is purely a finger-exercise problem): Verify that the individual-
consumer demand information given in the example on the bottom of page 313
is consistent with utility maximization by each consumer.

 *13.4. Your task in this problem is to prove Proposition 13.3. If you follow
the steps given here, it should not prove too hard.

(a) Consider the problem

where the scalars βh are all strictly positive, the αh are nonnegative and sum to
one, and y ≥ 0. (Warning: The superscript h’s are all counters, so αh means the
ht h α, not α raised to the power h. But the superscript αh denotes raising the
quantity inside the parentheses to the power of the h th α, αh. Prove that the
unique optimal solution is yh = αhy.)

(b) Now fix a price vector p and consider the problem of consumer h, max uh(x)
subject to p · x ≤ 1. Let the solution be h, and let uh( h) = βh. (If there are
multiple solutions, choose any one.) Describe the solution to max uh(x) subject
to p · x ≤ y in terms of h and the value of the solution in terms of βh.



(c) Let x0 be the solution of max U(x), subject to p · x ≤ y, and let ( h)h=1,…,H
be the solution of

Let h = h. How does U(x0) caompare with

(d) Let  = ∑h αhy h. How does U(x0) compare with U( ), and how does U(
) compare with

(e) Compare the two quantities (13.2) and (13.3) using part a, then finish the
proof of the proposition.

 *13.5. Write out a corollary to Proposition 13.4 that transforms each piece
into a corresponding statement about consumer h’s excess demand and excess-
demand correspondence. Then prove Proposition 13.6.

 13.6. While we will not supply a full proof of the S-M-D Theorem, here is a
piece of Debreu’s (1974) proof: Let Q denote the set of all prices p ∈  such

that | |p| |  = 1, and for  > 0, let Q  be the set {q ∈ Q : qi ≥  for all i = 1,
…, k}. Suppose ζ : Q  → Rk is a continuous function that satisfies Walras’
Law, or p · ζ(p) = 0 for all p ∈ Q . Since Q  is compact, we can produce
continuous functions α : Q  → R++ such that ζ(p)+ α(p)p ≥ 0 for all p ∈ Q .



Indeed, we can take α to be a constant function, as long as the constant α >
max{–ζi(p)/pi : p ∈ Q , i = 1, …,k}.

Debreu’s proof involves finding k utility-maximizing agents whose excess
demand functions ζh sum to ζ (on Q ). (We use homogeneity to extend to all
price vectors p such that p/| |p| |  ∈ Q .) So fix ζ(·) and α(·) as in the previous
paragraph, and for h = 1, …, k, define

where eh = (0, 0, …, 0, 1, 0, …, 0), with the 1 in coordinate position h.
(Remember, h here runs from 1 to k; there is one consumer for each of the k
commodities. Indeed, if you examine ζh(p), you’ll see that is it, by
construction, a positive scalar [depending on p] times a vector that is positive in
coordinate position h and negative in all other coordinate positions. So
consumer h sells all commodities except for h out of her endowment, and
purchases positive amounts of commodity h to consume in addition to her
endowment.)

(a) Prove that ∑h ζh(p)= ζ(p) for all p ∈ Q .

(b) Prove that p · ζh(p) = 0 for h =1, …, k and for all p ∈ Q .

(c) Prove that each ζh(p) satisfies the weak axiom of revealed preference: If p′ ·
ζh(p) ≤ 0, then p · ζh(p′) > 0.

The “ only” thing left to do is to prove that each ζh is the excess-demand
function for some utility-maximizing consumer (specified by her preferences and
endowment), for prices p ∈ Q . Of course, the scare quotes around the word
only are sarcastic; this task is quite difficult. See Debreu (1974) or Geanakoplos
(1984) for details.

 *13.7. What is inner radius of the set {1, 2, 3, 4} in R1? What is the inner
radius of the set {(z1, z2): z1, z2 = 1, 2, 3, or 4} in R2?



 

1 Hence, if one or more of the Zf *(p) is empty, Z*(p) is defined to be empty.
2 It is implicit here that there is no maximizer of p · z for z ∈ Z if and only if

one or more of the Zf *(p) is empty, so that Z*(p), which is defined as the
Minkowski sum of the Zf *(p), is empty. But if you do not see how this is
implied by what has been shown, you might prove this implicit “ if and only if”
directly.

3 We continue the use of h = 1, …, H to enumerate consumers, or
households, for the remainder of this volume. Compare with Chapter 8, where
we used h ∈ H instead.

4 If you need a refresher on homothetic preferences, see Definition 2.17 on
page 44.

5 Shafer and Sonnenschein (1982) attribute this result to Eisenberg (1961) and
the form in which it is given here to Chipman and Moore (1979).

6 See Proposition 2.19.
7 If 0 h x for some x, then in any homogeneous uh we would have uh(x) <

0, and U is not well defined. We can finesse this difficulty by restricting the xh

in the definition of U to be those that satisfy uh(xh) ≥ 0, and in this sense the
assumption that x h 0 for all x is not needed. (Nonetheless, it seems
innocuous, and I add it to simplify matters.) But we certainly need that x h 0
for some x, as if this is not true, then the definition of U, even if modified to
avoid negative values of u h, leads to U being the constant function 0.

8 Next chapter, she will also own shares in firms in the economy, and some
of her income will derive from her share of the profits the firms make. But for
current purposes, we’ll keep it simple; in the language of next chapter, we’re
looking here at a pure-trade economy, rather than an economy with production.

9 Aggregation can have other beneficial consequences besides convexification.
For instance, under the right conditions, even if individual demand or excess
demand is multivalued (that is, if h(p) is not singleton for some p′),
aggregate (excess) demand, measured on a per capita basis for large numbers of



consumers, can be nearly a function in the sense that the radius of the set of
aggregate per capita (excess) demand at every price shrinks to zero. To show
this, one must show that, for each consumer, the prices where h(p) is not
singleton are rare and then argue that, as the number of consumers grows,
consumers will exhibit enough variation in their characteristics so that, at each
price p, the number of consumers having nonsingleton (excess) demand at p will
be small. I won’t supply details about this strand of the literature.

10 For the consumer, the level of income or endowment has to be “ right” for
this to happen.

11 If you want to see the argument made more formally, finish Chapter 14 and
then consult the seminal paper on this topic, Starr (1969).

12 A sufficient condition is that there is an integrable function  : T → Rk

such that ζ ∈ (p; t) implies that  ≥ ζ(t).
13 In this description, I’ve identified each t ∈ T as a type of consumer, with

the notion that there may be more than one consumer of type t. But by
assuming that μ is nonatomic, I’ve assumed that the weight of type- t
consumers is infinitesimal relative to the whole population. Note, in this regard,
that in the definition of the Aumann integral, one ζ(p; t) is selected from (p;
t) for each t; if there are multiple consumers of type t, they are all treated the
same in the selection.

A different interpretation is that each t ∈ T is an individual consumer,
specified by her preferences and endowment. Then in the Aumann integral, we
are allowing ζ(p; t) to be selected from (p; t) on a consumer-by-consumer
basis (up to measurability constraints); we could allow distinct types to have
positive weight, because we are allowing different copies of the same type to be
treated differently in the Aumann integral. But in this interpretation, it probably
makes most sense to assume each t ∈ T has equal weight, which means
something like: T = [0, 1] and μ is Lebesgue measure on T.



Chapter Fourteen



General Equilibrium

In this chapter and the next two, we move with a vengeance beyond the
behavior of a single consumer or a single firm, and beyond all the producers or
consumers within the market for a single good, as we study the behavior of an
entire economy, with multiple consumers and firms and with markets for all
commodities simultaneously. But we stick to the assumption that consumers
and firms are all price takers, basing their consumption and production decisions
on the hypothesis that they can buy and sell as much as they would like at the
going prices.

The topic is general equilibrium, and in many ways it is the climax of
microeconomics, if you are willing to limit attention to price-taking actors who
have access to common information, as we have done in this volume. Entire
books have been written about the theory of general equilibrium, and we’ll only
cover the basics here. In particular, in this chapter we cover:

•   the basic definitions of an economy and a Walrasian equilibrium;

•   basic properties of a Walrasian equilibrium; and

•   the existence and other mathematical properties of Walrasian equilibria.

Chapter 15 concerns the efficiency of Walrasian-equilibrium allocations. And in
Chapter 16, we discuss how time and uncertainty can be accommodated within
the framework of general equilibrium.

14.1.   Definitions
The first set of definitions concerns the context of our analysis, an economy. The
following pieces make up an economy:

•   A finite integer k, the number of commodities. Rk is called the commodity
space.

•   A finite number F of firms. Firm f is characterized by a nonempty
production-possibility set Zf ⊆ Rk.

•   A finite number H of consumers.1 Consumer h is characterized by:

•   her consumption space Xh, which is a nonempty subset of Rk



•   her utility function uh : Xh → R (We might specify instead the
consumer’s preference ordering h, but since we momentarily assume
that preferences are continuous, starting with utility functions is
without loss of generality. That said, I will feel free, when convenient,
to write x h x′  meaning uh(x) ≥ uh(x′), and so forth.)

•   her (commodity) endowment, eh ∈ Xh

•   her shareholdings, given by nonnegative numbers sfh for f = 1, …, F
and h = 1, …, H, and such that ∑h sfh = 1 for each f

The symbol ε is used to denote an economy.
In some cases, we will work with an economy without firms: consumers

have endowments that they trade, but no transformation of commodities is
possible. In such cases, we say that the economy is a pure-exchange economy.

Various assumptions about pieces of this definition will be made at various
times in the chapter. But the following assumptions are nearly always made.

Assumption 14.1. Each consumer’s commodity space X h is . Each

consumer’s utility function uh is continuous. Each firm’s production-possibility
set Zf is nonempty and closed.

To explain the “ nearly” in “ nearly always”: Unless explicitly contravened,
these assumptions hold throughout the chapter. When we get to questions of
existence of equilibrium, we will (temporarily) assume that the consumption
space Xh of consumer h is something smaller than .

The second definition (this one set out formally) concerns the object we are
studying, in the context of some economy ε.

Definition 14.2. A Walrasian equilibrium for the economy ε is a price vector p
∈ Rk, a consumption allocation {xh; h = 1, …, H}, and production plans
{zf; f = 1,…, F}, such that

a.  For each consumer h, xh ∈ Xh and solves the problem



b.  For each firm f, zf ∈ Zf and solves the problem

c. Markets clear: 

(For a pure-exchange economy, a Walrasian equilibrium is a price vector p
and a consumption allocation such that requirement a holds, where the
summation in the right-hand side of the budget constraint is omitted, and
requirement c holds, where the final summation over firms is omitted.)
Several remarks about this definition are in order:

•   Implicit in requirement a is the assumption that consumers are utility
maximizers. In requirement a, and more specifically in the problem
displayed there, which is the consumer’s utility-maximization problem, the
inequality p · xh ≤ p · eh + ∑f s

fh p · zf is the consumer’s budget constraint.
For most of this book, budget constraints have taken the form p · x ≤ y, for
some given income y. But in general equilibrium, the consumer’s level of
wealth or income is endogenized: The consumer comes endowed with a
vector of commodities eh; this endowment acquires value p · eh depending
on equilibrium prices. And the consumer obtains wealth from her
shareholdings in the firms: At the equilibrium prices p, the firm chooses a
production plan zf (which is a netput vector just as in Chapter 9), so that p ·
zf is the net profit of the firm. Consumer h owns an sfh share in firm f, where
shares in each firm are normalized to sum across consumers to one. Hence,
consumer h receives her share sfhp · zf of firm f’s profit. In total, then, the
consumer’s wealth or income is the value of her endowment, plus the sum,
taken over all firms, of her share in the profits of the firms.

•   Implicit in requirement b is the assumption that firms are profit maximizers.



•   We have assumed in our definition of an economy that each consumer’s
endowment eh lies in Xh, the consumer’s consumption space. This is done,
more or less, so we can be sure that the consumer’s utility-maximization
problem has a feasible solution; that is, there is some xh ∈ Xh that satisfies
the budget constraint. But if that is why the assumption is made, it isn’t
(yet) enough: The consumer is assumed to get her share sfh of the profitof
firm f, and we have not yet made assumptions to guarantee that firms make
nonnegative profit. If we assume 0 ∈ Zf for each f—so that a profit-
maximizing choice must give nonnegative profit—then we’re okay on this
score.

•   The consumer’s budget constraint says ≤, which means that the consumer
can choose not to use all the purchasing power she receives from her
endowment and shares in the firms’ profits. And, in the market clearing
condition c, we have an inequality ≤. Both of these inequalities are
sometimes made equations, in other treatments of general equilibrium. The
inequality in the budget constraint is not of much consequence as long as
consumers are locally insatiable; if a consumer is locally insatiable, we
know that she will spend her full budget. But if she could be locally
satiated, we aren’t forcing her to spend more than it takes to reach this
point.

The inequality (instead of an equality) in the market-clearing condition
has greater economic interest. Imagine that one of the goods is a “ bad,”
meaning that it lowers the utility of consumers. A concrete example might
be some form of pollution. If a firm produces this bad commodity, and if we
have an equality in requirement c, then we are forcing some consumer (in a
Walrasian equilibrium) to consume this commodity. That, in itself, is not
impossible to do: Note that we have not restricted prices to be nonnegative
(let alone strictly positive), and if this bad commodity has a negative price,
a consumer might be willing to “ consume” it, as doing so loosens her
budget constraint, giving her more resources to purchase good
commodities.

But by having an inequality in c, we are allowing (as part of a Walrasian
equilibrium) this bad commodity to go unconsumed after everything is said
and done. In the case of noxious goods, then, the inequality in c may be



inappropriate as a modeling assumption.
There is no bottom line to these considerations; no single way to model

goods that are “ bads” is unambiguously best. I will proceed with the
definition of a Walrasian equilibrium given above; but if you consider
applying this sort of model to a situation with goods that are bad, you
should probably think carefully about this part of the definition.

•   In requirements a and b, consumers and firms are price takers. They believe
they can buy and/or sell any amount of any of the commodities at the going
market price, without changing that price. The excuse for this assumption is
the usual rationale: It is probably approximately true, if consumers and firms
are both many and small. In any case, it is part of the story of general
equilibrium.

•   When, in previous chapters, we discussed the consumer’s utility-
maximization problem and the firm’s profit-maximization problem, we
made assumptions guaranteeing that solutions exist, at least for strictly
positive prices. (Given that Zf is closed and uh is continuous, those
assumptions guarantee that we can bound the set of feasible and relevant
consumption bundles/production plans.) But it is part of the definition of a
Walrasian equilibrium that prices are arranged so that consumers and firms
can solve their respective problems. If, for instance, we specify an economy
E in which a firm has a constant-returns-to-scale technology, then prices in
any equilibrium must be such that the firm, at those prices, cannot make a
positive profit.

•   In some treatments, the definition includes the condition p ≠ 0. We don’t
insist on this, but see Proposition 14.4 upcoming.
To economize on notation, the following conventions are adopted:

X denotes the space of consumption allocation vectors, or 
, with typical element x. For x ∈ X, write xh for h’s

part of the allocation.

Z denotes the space of production plans for all the firms, or 



, with typical element z. For z ∈ Z, we write zf for f’s

part of the overall production plan.

Therefore, a Walrasian equilibrium consists of a triple (p, x, z), where p gives
the equilibrium prices, x is the consumption allocation, and z is the production
plan.

In the next chapter, we will be in the business of comparing the
consumption allocation portion of Walrasian equilibria with other consumption
allocations that are feasible, using all the resources (endowments and firms’
technologies) this economy has to offer. So the following definition is made:

Definition 14.3. For a given economy ε, the space of socially feasible
consumption allocations, denoted X*, is defined as

Note that, in this definition, we allow for the disposal of goods; that is, the
feasibility constraint is an inequality. This lines up with our use of an
inequality in part c of the definition of a Walrasian equilibrium.

14.2.   Basic Properties of Walrasian Equilibria

Proposition 14.4.

a.  If (p, x, z) is a Walrasian equilibrium for some economy, then so is  (λp,
x, z) for all λ > 0.

b.  If consumer h is locally insatiable, then in any Walrasian equilibrium  (p,
x, z), p · xh = p · eh + ∑f sfhp · zf. (In other words, locally insatiable
consumers must satisfy Walras’ Law.)

c.  If any consumer is globally insatiable, then every Walrasian-equilibrium
price vector p satisfies p ≠ 0.



d.  If any consumer has a nondecreasing and globally insatiable utility
function, or if any firm has a free-disposal technology, then every
Walrasian-equilibrium price vector p must satisfy p ≥ 0.

e.  If (p, x, z) is a Walrasian equilibrium for some economy in which every
consumer is locally insatiable,

(In words, the economy as a whole must satisfy Walras’ Law.) And if, in
addition, p ≥ 0, then for each commodity 

 implies pi = 0. (In

words, for nonnegative prices and locally insatiable consumers, any good
in excess supply must have a price of zero.)

Proof. Part a is entirely straightforward. Part b follows more or less
immediately from Proposition 3.1d; that proposition is stated in the context of a
consumer with a set amount of income y, but the logic is unchanged. The first
half of part e results from summing up the equation in part b across all
consumers and noting that shares in each firm sum to one. Given this, rewrite
Walras’ Law (for the whole economy) as 

 Each component of

the term inside the parentheses must be nonpositive by the market-clearing
condition. So if p ≥ 0, for the dot product to be zero, each individual product in
the dot product must be zero. This immediately implies the second half of e.

As for parts c and d: Suppose that p is part of an equilibrium and consumer
h is globally insatiable. Were p = 0, the consumer would be unconstrained; she
could afford any bundle and, therefore, her utility-maximization problem would
have no solution. But in any Walrasian equilibrium, each consumer (and each
firm) must have a finite solution to her (its) problem. So p = 0 is not possible,
with one globally insatiable consumer.



Suppose p is part of a Walrasian equilibrium and pi < 0. Suppose consumer
h has nondecreasing and globally insatiable preferences. Let xh denote h’s
equilibrium consumption. Then by global insatiability, we can find another
bundle h that satisfies uh( h) > uh(xh). If p · h ≤ p · xh, then we have an
immediate contradiction to the assertion that xh solves consumer h’s utility-
maximization problem at prices p, so we can assume that p · h – p · xh > 0;
define M: = p · h – p · xh. Let b be the unit vector in the commodity-i
direction; that is, b = (0, …, 0, 1, 0, …, 0) where the 1 is at component
position i. Then h + (M/|pi| )b ≥ h, and therefore ui( h + (M/|pi| )b) >
uh(xh). But p · [ h + (M/|pi| )b] = p · h + pi(M/|pi| ) = p · h – M = p · xh,
contradicting the optimality of xh at prices p. And suppose p is part of a
Walrasian equilibrium, pi < 0, and firm f has a free-disposal economy. Then
whatever production plan, zf, firm f is undertaking at the equilibrium, the plan zf

– b is feasible for it (this alternative plan involves the firm doing what it would
otherwise do, but buying and disposing of one more unit of commodity i), and
this plan gives –pi more profit than does the plan zf, contradicting the supposed
optimality of plan zf.

Part d of the proposition gives conditions that ensure that the entire
(equilibrium) price vector is nonnegative. But the proof makes clear that we can
prove similar results one commodity at a time: pi ≥ 0 in any Walrasian
equilibrium if either (1) some consumer’s utility function is nondecreasing in
commodity i, and this consumer is globally insatiable, or (2) some firm can
freely dispose of commodity i.

In view of all the work we did earlier with strictly positive prices, we might
want conditions that establish that equilibrium prices are strictly positive. An
obvious result of this sort is the following:

Proposition 14.5 (Part 1). Suppose that for some consumer h, uh is strictly
increasing in the consumption of commodity i. Then pi > 0 in every Walrasian
equilibrium.



Proof. If (p, x, z) is alleged to be a Walrasian equilibrium with pi ≤ 0, then h
can increase her consumption of good i without violating her budget constraint.
S o xh cannot possibly be utility maximizing for h at the prices p, a
contradiction.

The assumption that uh is strictly increasing in the consumption of
commodity i doesn’t apply to some commodities, of course. But the result of
Proposition 14.5 can be “ extended.” Suppose, for instance, that we know
commodity i has strictly positive market value (that is, pi > 0 in any Walrasian
equilibrium), and some firm f, whatever else it is doing, can use a second
commodity, j, as incremental input to produce a strictly positive incremental
amount of i. Formally,

Proposition 14.5 (Part 2). Suppose commodity i is ensured to have strictly
positive price in every Walrasian equilibrium—because, for instance, it
satisfies the conditions of part 1 of this proposition—and suppose for some
commodity j ≠ i, there is a firm f such that, if z ∈ Zf, then there exists  ∈
Zf such that i – zi > 0, j – zj ≤ 0, and l = zl for all other l than i or j.
Then pj > 0 for every Walrasian-equilibrium price vector p.

The proof is left for you as a simple exercise.

14.3.   The Edgeworth Box
A number of insights into the nature of Walrasian equilibria can be gained by
looking at caricature examples. Some caricatures are parametric examples. A
selection is provided by Problems 14.2 through 14.5 at the end of this chapter;
you should work through these.

The Edgeworth Box is a different sort of caricature. It depicts a simple yet
still somewhat general case: pure exchange; two consumers; two goods. The
generality (in terms of the ability to shape the two consumers’ preferences, given
by their indifference curves) allows for a fairly rich variety of phenomena. But
with two consumers, two goods, and no firms, it allows for a visual
representation of what is going on.



The two consumers, Alice and Bob, are abbreviated h = A and B. Each has
her (h = A) or his (h = B) endowment, eh ∈ . The social endowment,

denoted by e, is the sum of the two endowments, or e = eA + eB.
Follow along in Figure 14.1.
The picture begins in panels a and b, with indifference curve diagrams

depicting the preferences of, respectively, Alice and Bob. In Figure 14.1, and in
most Edgeworth Boxes you will see, indifference curves are drawn to depict
preferences that are strictly increasing and strictly convex. This isn’t necessary,
but it is common. Note in both panels the open circles representing the
endowments of the two consumers, as well as the filled-in circle at the social
endowment.

Then the box is constructed. Imagine rotating panel b by 180 degrees,
giving you panel c. And then superimpose panel c on panel a, putting the origin
of panel c on top of the social endowment of panel a, so that the social
endowment of c lands on top of the origin of panel a. Panel d results. The
“ box” in the name Edgeworth Box is the box formed in panel d by the two sets
of coordinate axes. Note that each point inside the box represents a way of
dividing the social endowment between Alice and Bob, where everything not
given to her is instead given to him.

Move on to Figure 14.2. I’ve depicted a more extreme version of panel d
here, more extreme because the initial endowment point gives more of good 2
and less of good 1 to Alice, and the reverse for Bob.

In panel a (now Figure 14.2), the shaded region shows all the ways to
divide the social endowment between Alice and Bob that leaves each at least as
well off as they are at the initial endowment and that wastes none of either good.
That is, these divisions are Pareto improvements on the initial endowment.
Pareto-efficient divisions of the social endowment are divisions where any
attempt to improve the utility of one party decreases the utility of the other;
assuming indifference curves are smooth and preferences are quasi-concave, these
would be points of tangency of two indifference curves, at least as long as the
point is interior to the box. Panel b shows the full range of Pareto-efficient
allocations as a heavy curve that runs from the origin in the southwest to the
other origin in the northeast. The heavier portion of this consists of points that
are Pareto efficient and that give each consumer as much utility as she or he gets



at her or his initial endowment; in the next chapter we’ll learn that these points
are called core allocations. (I’ve drawn the picture so that, except for the two
“ origins,” the Pareto-efficient points lie inside the box. Depending on the slopes
of the indifference curves, Pareto-efficient allocations could lie along the
boundary of the box. See Problem 14.1.)





Figure 14.1. Constructing the Edgeworth Box. For two consumers, Alice
and Bob, two goods, and pure exchange, begin with indifference curve
diagrams for the two. Their endowment of the goods are marked on their
indifference curve diagrams by the open circles, while the filled-in circle is
the social endowment. This gives panel a for Alice and panel b for Bob.
Then panel b is rotated 180 degrees (panel c) and superimposed on panel
a, with the social endowment on one set of coordinate axes placed on top
of the origin in the other set of axes. Panel d results. Note that, in panel d,
each point inside the box formed by the two sets of axes represents a
division of the social endowment between Alice and Bob in a way that
wastes none of either good.





Figure 14.2. Efficiency and equilibrium in the Edgeworth Box

As for Walrasian equilibria: An equilibrium involves prices and price-driven
choices by each consumer. For a two-good economy, relative prices are given by
the slope of iso-cost lines, and the iso-cost line corresponding to a consumer’s
wealth is the iso-cost line through her initial endowment. A nice feature of an
Edgeworth Box is that the same point represents (on their respective coordinate
axes) the intial endowments of the two consumers, and a line through that
common initial endowment point simultaneously depicts the iso-cost (equals
initial wealth) line for both consumers. See, for instance, panel c, where the line
drawn represents (approximately) a price ratio p1 : p2 = 4 : 3. The
corresponding price-driven choice that Alice would make (marked with A*) and
the price-driven choice that Bob would make (marked B*) are inconsistent with
market clearing; demand for good 1 is higher than and demand for good 2 is less
than the social endowment of these two goods. (Be sure you see this: Bob’s
demand for good 1 is measured as the horizontal distance from his origin, in the
northeast corner, to the point B*.) Panel d shows a Walrasian equilibrium: It is
necessarily (!) a Pareto-efficient point (as you’ll learn next chapter), where the
line through the endowment point and this point has a slope that matches the
slopes of the two indifference curves.

Before leaving the Edgeworth Box, let me be very clear on one point: The
box allows you to depict divisions of the social allocation that do not waste any
of the endowment. As long as one consumer or the other gets strictly higher
utility from consumption of each good, the Pareto-efficient divisions will all
have this no-waste property. But panel a of Figure 14.2 asserts that it shows
divisions that are Pareto improvements on the initial endowment, and that,
strictly speaking, isn’t quite right. There can be Pareto improvements that
waste some of either or both goods, as long as the waste isn’t too high and the
division of what is not wasted is pretty close to efficient.

14.4.   Existence of Walrasian Equilibria
Does a given economy ε possess a Walrasian equilibrium? Or, put somewhat
differently, what assumptions about the economy ε are sufficient to guarantee the
existence of at least one Walrasian equilibrium? Answers to this question
constitute a substantial literature; in his chapter on this topic in the Handbook



of Mathematical Economics (1982), Debreu gives over 340 references. Although
other methods for proving existence have been developed, the original methods
employed fixed-point theorems.2 Appendix 8 discusses fixed-point theorems; we
will employ Kakutani’s Fixed-Point Theorem , which I reproduce from the
appendix here:

Proposition 14.6 (Kakutani’s Fixed-point Theorem). Suppose that X is a
nonempty, compact, convex subset of Rn for some integer n. Suppose that F : X
⇒ X is a correspondence from X to (subsets of) X that is upper semi-
continuous, and convex and nonempty valued. Then for some x ∈ X, x ∈ F (x).

The idea, then, is to identify a set X and a correspondence φ from X to X for
which fixed points (x ∈ X such that x ∈ φ(x)) are Walrasian equilibria; then
make enough assumptions about the economy ε so that a fixed-point theorem
such as Kakutani’s can be applied. This very general plan of attack admits a
wide variety of specific approaches, beginning with identification of X; for
instance, some approaches take for X the space of nonnegative, nonzero prices,
normalized to sum to one (that is, X = {p ∈  : ∑i pi = 1}); this space is

called the unit simplex in Rk, and is denoted by P. In other approaches, X is the
space of relative weights put on consumers (that is, 

), or the unit

simplex in RH, but with a very different interpretation for the components of H.
Some approaches take for X the product of these two spaces. Later in this
section, the approach employed takes for X the product of P, the unit simplex of
prices, and a compact set of excess demands (a compact subset of Rk).

A different dimension on which approaches to the question of existence vary
concerns the starting point for the analysis. Very roughly, papers separate into
two basic approaches. Some papers work directly with the consumers and firms
that make up the economy. Others begin with an excess-demand correspondence
or function. Of course, in the latter approach, consumers and, for economies with
production, firms are at least implicitly present; assumptions are made about the
excess-demand correspondence or function that are justified by appealing back to
assumptions about the consumers and firms.

I will start with a result of the first type, working directly with consumers



and firms, and following the approach of Arrow and Debreu (1954). 3 This
presentation follows very closely some class notes of Vijay Krishna (2008).
This approach starts with definitions and a result of independent interest.

Generalized games and their Nash equilibria

Definition 14.7. An n-player generalized game 
 for a finite integer n consists of, for each l =

1, …, N,

a.  a set of strategies or actions Al,

b.  a constraint correspondence , and

c.  a utility function 

A Nash equilibrium  for this generalized game is a strategy profile 
 such that, for each l = 1, …, n,

d.   and

e.  

Readers who know some (noncooperative) game theory will recognize that this
is nearly the same as the definition of a game in strategic form, but with one
complicating feature: In the usual definition of a strategic-form game, the set of
strategies or actions available to a player is independent of the choices of other
players. In this definition, the correspondence C formalizes the notion that what
is available to player can depend on the choices of the other players. Of course,
this formulation, taken literally, presents significant problems of timing in the
staging of the game: If the choices available to each player are constrained by the
choices of all the other players, then how can choices be made? When are they
made?

Consider in this regard the following simple example of a generalized game:
There are two players; that is, n = 2. For l = 1, 2, Al = {H, T}. C1(H) = {H},



C1(T) = {T}, C2(H) = {T}, and C2(T) = {H}. (The assignment of utilities is
irrelevant, as you will see momentarily.) The point of this example is probably
obvious, but in case not: If 2 chooses H, then the only choice available to 1 to
H. But if 1 chooses H, the only choice available to 2 is T, which makes T the
only choice available to 1, which makes H the only choice available to 2. No
strategy profile, or assignment of strategies/actions to the two players, satisfies
the constraint that al ∈ Cl (am) for l, m = 1, 2, l ≠ m. There is no feasible way
for the players to play this (generalized) game.

Our interest in this concept of a generalized game arises in the context of
Walrasian equilibrium, and it is worth noting explicitly that this conundrum
about how/when actions can be chosen if they are constrained by other actions
taken simultaneously is inherent in the concept of a Walrasian equilibrium.
Prices in an equilibrium presumably arise from the production and consumption
choices of firms and consumers. But firms cannot make profit-maximizing
choices without knowing the equilibrium prices, and consumers cannot make
utility-maximizing choices without knowing their budget sets, which require
equilibrium prices. Perhaps there is some mechanism that implements a
Walrasian equilibrium, but the equilibrium concept itself is something of a
reduced-form solution concept; it (perhaps) presumes the existence of some
mechanism that gets the economy to an equilibrium, and being an equilibrium
is a necessary condition for the outcome of this mechanism (again, perhaps), but
the concept in no way tells us what is the mechanism, how it works, or whether
in fact there is a mechanism.

Here, then, is the starting point for another branch of the literature of general
equilibrium, a branch that we (in this volume, at least) ignore entirely: How is a
general equilibrium to be implemented? We ignore this question not because it
is uninteresting; it is vitally interesting if we are to take the concept seriously.
But the tools needed to approach this question—at least the tools that are
needed in modern approaches to this question—are tools from game theory,
tools that are only developed in Volume 2.

Notwithstanding this hole, we can still theorize about generalized games.
We will be using the notion of a strategy profile for all players except l, or
(am)m≠l rather a lot; I’ll henceforth denote this by a–l.

Proposition 14.8. Suppose that G is a generalized game for which



a.  each Al is a nonempty, compact, convex subset of Rkl for some integer kl,

b.  each Cl is a continuous, nonempty-valued, and convex-valued
correspondence, and

c.  each u is jointly continuous in the full vector of actions and quasi-concave
in al (for each fixed a–l).

Then G has a Nash equilibrium.

Remark. Since a Nash equilibrium strategy profile a* = ( , …, ) must be

feasible in the sense that each ), the assumptions in the

proposition (specifically, assumptions a and b) must imply that a feasible
strategy profile exists. In other words, assumptions a and b rule out the sort of
pathologies that the simple two-player example presents.

Proof. For each l = 1, …, n, consider the parametric maximization problem

where the variable over which the maximum is being taken is al, the strategies
employed by others, or a–l (drawn from the full product set )

is the parameter, and ul (al; a–l′) means ul evaluated at the argument (a1, …, an),
with al in the lth coordinate slot, and the other coordinates given by the
“ parameter” a–l. Let  be the value of the maximized function

(properly, the supremum, until we prove that the supremum is achieved), and
let  be the set of maximizers. The assumptions made ensure that

we can apply Berge’s Theorem to this problem, concluding that 
 is a continuous function and 

 is an upper semi-continuous correspondence. We

moreover know that  is nonempty, and the quasi-concavity of ul in



al and convexity of Cl (a–l) ensure that  is convex.

Piece together the various  correspondences: Define

as follows. At the argument a = (a1, …, an), (a′1, …, a′n) ∈ A*(a) if, for each, l
a′l ∈ (a–l). I assert that this is an upper semi-continuous, nonempty-

valued, and convex-valued correspondence. This takes some staring, but in the
end is a fairly simple exercise in definitions, which I will leave to you as
Problem 14.6.

And now we can invoke Kakutani’s Fixed-Point Theorem. There exists
some  such that a* ∈ A*(a*), which means that each 

, which is precisely the definition of a Nash equilibrium.

Existence of a Walrasian equilibrium for a very bounded economy
The next step in proving the existence of Walrasian equilibrium is to turn the
problem of finding an equilibrium into a generalized game. To do this, and to
apply Proposition 14.8, we need to satisfy the compactness assumptions of the
proposition, which will mean some very strong boundedness assumptions
imposed on the economy. In a final step (next subsection), we’ll show how to
relax these strong boundedness assumptions, requiring (only) weaker
boundedness assumptions.

We work with an economy ε in which there are H consumers and F firms,
and we create a generalized game with n = H + F + 1 players. Each consumer is
a player, choosing her consumption bundle xh. Each firm is a player, choosing
its production plan zf. And the last player is a mythical auctioneer, who chooses
prices p from the unit simplex P.

Of course, there is no problem with the set P being compact. But we are



used to consumers who choose consumption bundles from  and firms that

choose production plans from sets Zf that are (at least) unbounded below. That’s
where the very bounded assumptions come in: We will look at economies
where consumer h selects a utility-maximizing consumption bundle from a
compact set Xh ⊆ , and where the production-possibility sets Zf are

compact. Otherwise, the assumptions made are reasonably standard:

Proposition 14.9. Suppose the economy ε satisfies the following conditions:

a.  For each consumer h, Xh is a compact and convex subset of , eh is

interior to Xh, and h is continuous and convex.

b.  For each firm f, Zf is compact and convex and contains the origin.

Then ε has a Walrasian equilibrium.

Proof. As already noted, we prove this by creating a generalized game, the Nash
equilibria of which will be Walrasian equilibria.

The players in the game number 1 + H + F:

•   One player is a mythical auctioneer, who chooses a price p from the unit
simplex P, unconstrained by the choices of the other players. (The
auctioneer’s utility function will be given momentarily.)

•   Each consumer is a player, with full strategy set Xh, but with choices
constrained by the choice of the auctioneer: If the auctioneer is choosing p ∈
P, then consumer h must choose xh from the set 

, where πf

is the profit function of firm f, or 
. The utility of

consumer h is uh(xh), where xh is her choice of action.

•   Each firm f is a player, with strategy set Zf. Firm f ‘s choice is
unconstrained by the choices of the other players, and its utility depends on
its own choice zf and the choice of the auctioneer p, given by p · zf.



•   The auctioneer’s utility function, denoted by v, depends on all the choices
by consumers, firms, and its own choice of price, and is given by v(p, (xh),
(zf′)) = . That is, the

auctioneer’s objective is to choose p to maximize the value of the social net
trade, given the choices by the consumers and the firms.

To apply Proposition 14.8, we must check that all (unconstrained) action sets
are compact and convex subsets of some finite-dimensional Euclidean space, that
the constraint correspondences are continuous and convex valued, and that each
utility function is continuous in all the actions and quasi-concave in own action.
That each (unconstrained) action set is a compact and convex subset of a finite-
dimensional Euclidean space is by assumption. The constraint correspondences
for the firms and the auctioneer are trivial (they give no constraints beyond
choosing from Zf or P′), so they are clearly continuous and convex valued. As
for the constraint correspondence of consumer h, budget sets are clearly convex.
Continuity of each objective function in the full array of actions is quite clear,
and quasi-concavity of each objective function in that player’s own action is also
easy: It is assumed for consumers; the objective functions of firms and the
auctioneer are all linear in own actions.

What about continuity of the consumer’s constraint correspondence? Results
about the continuity of the budget set correspondence that we proved in earlier
chapters are insufficient on two grounds: Each consumer’s wealth is determined
endogenously, and (more problematically) we allow individual prices (but not
the full vector p) to be zero. So this takes some work: Fix consumer h, and
temporarily, let 

. That is, yh(p) is the budget constraint on consumer h in our generalized game;
when the auctioneer chooses p from P, consumer h must choose an xh such that
p · xh ≤ yh(p). Because 0 ∈ Zf for all firms f (by assumption), πf (p) ≥ 0 for all
p. Moreover, as a consequence of Berge’s Theorem (and the assumed
compactness of each Zf), we know that πf (p) is continuous in p. Therefore, the
function yh(p) is continuous in p and satisfies yh(p) ≥ p · eh for all p.

Upper semi-continuity of the constraint-on-h correspondence is easy.



Suppose {pn} is a sequence of prices from P approaching p, and  is feasible

at pn for each n and limn  = xh. Feasibility of  entails  ∈ Xh for all

n, so the compactness of Xh implies that xh ∈ Xh. Feasibility also entails pn · 
 ≤ yh(pn) for all n; use continuity of the dot product on the left-hand side and

of yh on the right-hand side to conclude that p · xh ≤ yh(p). That’s upper semi-
continuity.

Lower semi-continuity is harder and is where the assumption that eh lies in
the interior of Xh is employed. Because of this, we know there is some  ∈ Xh

strictly less (less in all coordinates) than eh; this implies that for some δ  > 0,

Now suppose that we are given an x that is budget feasible for h at some specific
p0; that is, x ∈ Xh and p0 · x ≤ yh(p0). Suppose as well that we are given a
sequence of prices {pn} with limit p0. To show lower semi-continuity, we have
to produce a sequence {xn} with limit x and where xn is budget feasible at prices
pn. (We must do this for all n beyond some initial index, of course.) To do
this, we look at convex combinations of x and . Since Xh is convex, all such

convex combinations are in Xh. Fix (large) positive integer M. Since yh(p0) – p0

· x ≥ 0 and pn → p0, there exists NM sufficiently large so that, for all n > NM,

Take the second inequality in display (14.1) for pn (recall that it holds for all p
∈ P′) and multiply by 1/(M + 1), and combine it with the second inequality in
(14.2) multiplied by M/(M + 1). We have that, for all n ≥ NM,



Now choose N1, N2, …, so that N1 < N2 < N3 < …. And for each n > N1, let
Mn be the largest integer so that n > NMn and

We know that pn · xn ≤ yh(pn). And we know that lim n Mn = ∞ ; as soon as n
exceeds NM, Mn will exceed M. Hence lim xn = x, and we are done.

Therefore, we know that a Nash equilibrium to this generalized game exists,
which I’ll denote by (p, (xh), (zf)). The assertion, obviously, is that this Nash
equilibrium is a Walrasian equilibrium of the original economy. The profit-
maximization and utility-maximization conditions hold by design, once it is
noted that a profit-maximizing choice by firm f means that p · zf = πf (p). But
what about market clearing?

We know that each consumer satisfies her budget constraint, or

Summing this inequality over all the h, reversing the order of summations in
∑h ∑f, and recalling that shares sum to 1, this gives



That is, the auctioneer’s optimized objective function is less or equal to zero at
the Nash equilibrium. But suppose there was excess demand for some good;
that is, for some 

. The

auctioneer can pick the price vector p that is 1 in coordinate i and zero in all
other coordinates to achieve a strictly positive value of her objective function.
Since we know that, at its optimum, the auctioneer gets a nonpositive objective
value, no good is in excess demand: Markets must clear.

Existence for a somewhat bounded economy
The very strong bounds imposed on the pieces of economy ε in Proposition
14.9 render it less than ideal. We can use the proposition as a step in proving a
result that is a good deal less restrictive (although it does add one strengthened
assumption on consumer preferences):

Proposition 14.10. Suppose the economy ε satisfies the following conditions:

a.  For each consumer h, Xh is a convex subset of , eh is interior to Xh,

and h is continuous and semi-strictly convex.

b.  For each firm f, Zf is convex and contains the origin.

c.  There exists a large (scalar) β such that: If  is a selection of

production plans, where zf ∈ Zf for each f, such that 
 for all f.

Then ε has a Walrasian equilibrium.

Before giving the proof, some comments are in order.



•   The definition of semi-strictly convex preferences was given back in Chapter
2, but has not been used since, so here it is again: Preferences are semi-
strictly convex if they are convex and if, whenever x h x′ , ax + (1 – a)x′ 

h x′  for all a ∈ (0, 1). As a special case, if preferences have a concave
representation, they are semi-strictly convex.

•   Condition c is the boundedness condition we impose. It says, more or less,
that production technologies are not such that an unbounded amount of any
good can be produced from the resources that can be provided by the
economy. This does not mean that firms cannot have constant-returns-to-
scale technologies. But if (say) firm f can produce unlimited amounts of an
output good as long as it can get unlimited amounts of some input good,
then it must not be possible for it to get unlimited amounts of that input
good. This precludes, for instance, the production equivalent of a “ perpetual
motion machine,” such as (for instance) where firm 1 can turn one unit good
1 into 1.1 units of good 2 on an unlimited scale, while firm 2 can turn one
unit of good 2 into 1.1 units of good 1. It also precludes the knife-edge case
where firm 1 can turn one unit of good 1 into one unit of good 2 (on any
scale), while firm 2 can do the reverse.

•   If ε is a pure-exchange economy, then condition c holds automatically. So,
as long as the conditions in a are acceptable, this gives a pretty general proof
of existence for pure-exchange economies.

Proof. The idea of the proof is to use the bound in c to create an artificial
economy  from ε that satisfies the conditions of Proposition 14.9, use 14.9 to

extract a Walrasian equilibrium for , and then prove that this is also an

equilibrium for ε.
L e t .

Repeated applications of the triangle inequality tell us that for any selection of
production plans (zf) such that ∑h eh + 

, and also | |zf| |  ≤

β < γ for each f.



Create  from ε as follows: For each consumer h, limit her consumption

space . For each firm f,

limit its production possibilities set 
. The preferences of the

consumers and their endowments are unchanged. (It might be worth observing
that the definition of γ ensures that each eh is still in the interior of h.)

T hen  satisfies the conditions of Proposition 14.9, and there exists a

Walrasian equilibrium (p, (xh), (zf)) for . I assert that (p, (xh), (zf)) is in fact a

Walrasian equilibrium for the original economy ε:

•   Market clearing (for the economy ε) of course holds, since it holds in .

•   Take any consumer h. Suppose that at prices p, with income given by p · eh

+ ∑f sf hp · zf, some affordable bundle  ∈ Xh is strictly better than xh.
Since Xh is convex and preferences h are semi-strictly convex, this implies

that for all a ∈ [0, 1), axh + (1 – a)  h xh. Of course, all these convex
combinations of xh and  are affordable for h (at the equilibrium prices and
her equilibrium wealth). But since each xh′ ≥ 0 and 

, we know that 

; hance | |xh| |  < γ.

Therefore, for some a < 1 (but, presumably, close to 1), axh + (1 – a)  ∈ 
h, which would contradict the optimality for h of xh among all budget-

feasible bundles from h. No such  can exist, and xh is best for h from

all budget-feasible bundles in her original (unconstrained) consumption
space.

•   Take any firm, say f. Suppose that, at prices p, there is some production
plan  in f’s unconstrained production-possibility set Zf that gives higher



profit than does zf. Since Zf is convex, all convex combinations azf + (1 – a)
 are in Zf, and (since profit is linear), all convex combinations for a < 1

must give greater profit than does zf. But since 
, we know that | |zf| |  ≤ β

< γ, which implies that for some a < 1 (but, perhaps, close to 1), 
, which would be a contradiction to zf

being profit maximizing (at prices p) in f. No such  can exist; zf is

profit maximizing at prices p in all of Zf.

This means that (p, (xh), (zf)) is a Walrasian equilibrium for ε.

Existence using aggregate excess demand
The alternative approach to beginning with consumers and firms is to work with
an aggregate excess-demand correspondence p ⇒  (p) and seek a result along
the lines, If p ⇒  (p) satisfies … [fill in some conditions], then there exists
at least one p and ζ ∈ (p) such that ζ ≤ 0.

To be clear, this correspondence is meant to aggregate not only the excess
demands of consumers in the economy, but also the netput decisions of
individual firms. Specifically, if Zf *(p) represents the set of optimal (price-
maximizing) net-puts for firm f at prices p, and h(p) is the set of optimal
(utility-maximizing) excess demands by consumer h (for some given and fixed
endowment vector eh), and if we have finitely many firms and finitely many
consumers, then

where we are taking a Minkowski “ sum” of the sets. The scare quotes around
“ sum” are there because the sign is reversed for netput vectors by firms; we want
demands to be positive and supplies to be negative, which means positive signs



on inputs and negative signs on outputs, the reverse of what we did in Chapter
9. In other words, ζ ∈ (p) means that 

 for a selection of xh from

the set of optimal demands for h and zf from the set of optimal netputs for f,
both at prices p.

This is only one possibility of the genesis of . We might alternatively
imagine a pure-trade economy with a continuum of consumers, and then (if you
read the last parts of last chapter) (p) is the Aumann integral of the individual
consumers’ excess-demand sets at p. Or we might imagine that firms choose
their netputs by some criterion other than maximizing profit. The point is, we
start the formal developments with p ⇒  (p), making assumptions about
this correspondence. For instance, it is typical to assume that

•   Z (p) is homogeneous of degree 0 in p, or (p) = (λp) for λ > 0,

•   p → (p) is upper semi-continuous,

•   Walras’ Law: If ζ ∈ (p), then p · ζ = 0, and

•   Each (p) is a convex subset of Rk.4

The justification for these assumptions (and others that we will make)
derives from those in-the-background consumers and firms. For instance, with
finitely many consumers and firms, firms with closed and convex production-
possibility sets that satisfy the recession-cone property, and consumers with
convex, continuous, and locally insatiable preferences, you have all the results
needed to justify these four assumptions for strictly positive prices. Or,
alternatively, suppose that we have instead a pure-trade economy populated by
consumers with continuous and locally insatiable but not necessarily convex
preferences. And suppose we have a continuum of such consumers, the
distribution of which is given by a non-atomic measure. Then (if you read
through to the end of last chapter) you know that Aumann’s Lemma guarantees
the convexity of each (p), even if the various h(p) are not necessarily
convex.

Specific results add various boundedness assumptions to the list above (and,



as we’ll see, may relax Walras’ Law), the justification for which also
(sometimes implicitly) is played back to the in-the-background consumers and
firms. And, very importantly, specific results differ concerning the assumed
domain of ; for which prices are aggregate excess-demand sets well defined?
If, for instance, one wants to have in the background firms with constant-returns-
to-scale technologies, aggregate excess demand may be undefined for some
prices; namely those for which the firms can make strictly positive, and hence
infinite, profit. I won’t try to chase those variations down here (the Handbook
chapter by Debreu [1982] is a good starting point). Instead, I’ll assume that 
(·) is defined at least for all strictly positive prices p. (So, to the extent that I’m
imagining firms making up a portion of aggregate excess-demand, their
production-possibility sets must satisfy the recession-cone property.)

But there is still the question: Is  defined only for strictly positive prices,
or does it extend to all nonnegative prices? Even in a pure-exchange economy,
excess demand for prices some of whose coordinate values are zero is
problematic; if consumers’ (or even one consumer’s) preferences are never
satiated in that good, they will demand infinite amounts of the good. If,
however, we are willing to assume (in the background) that every consumer is
eventually fully satiated in every good, and if firms cannot make use of (and so
will not demand) infinite amounts of any input good, then it could be
reasonable to suppose that  is defined for all nonnegative p. However, in such
cases, we lose some of the motivation for Walras’ Law, which depends on local
insatiability. The following result is classic:

Proposition 14.11 (The Debreu-Gale-Kuhn-Nikaido Lemma). Let P be the
unit simplex in Rk, that is 

. Suppose that  is a

correspondence with domain P and range Rk (which is to say, (p) ⊆ Rk for
each p). Suppose that p ⇒ (p) is upper semi-continuous, nonempty valued,
and convex valued, that p · ζ ≤ 0 for all ζ ∈ (p) , and that there is a
uniform bound on all the sets (p). Then there exists p ∈ P and ζ ∈ Z(p)
such that ζ ≤ 0.



Remarks. The obviously “ difficult” additional assumption here is that the (p)
are uniformly bounded. This would seemingly go best with assumptions about
(eventual) global satiation in each good separately—that is, past a certain level,
each consumer (or firm) has no use for more of each good. Since this could
conceivably play havoc with Walras’ Law, the lemma supposes only that p · ζ
≤ 0 for ζ ∈ (p), which (for those in-the-background actors) amounts to an
assumption that consumers obey their budget constraints. Note that  is
defined in this proposition only for prices p in the unit simplex; hence no
mention of homogeneity is needed.

One can imagine using this result as part of the proof of less restrictive
results, where one bounds a given economy in something like the way we did
earlier this section and then proves that the bound can be removed. Hence its
name is the D-G-K-N Lemma. The multiple names attached to this result are
not because the four did this collaboratively, but instead because they came up
with proofs virtually contemporaneously and independently. In fact, the result as
stated here is a simplified version of the full result, which concerns bounded 
whose domain is a closed and convex cone of prices.

The ingenious proof that follows is due to Debreu (1956).

Proof. Let B be a compact and convex subset of Rk such that (p) ⊆ B for all
p ∈ P. The existence of B is guaranteed by the uniform boundedness
assumption. Define a correspondence Φ on the domain P × B as follows:

T he ζ′  part of the definition is straightforward, but think for a minute what is
going on with the p′  part: At the argument (p, ζ), the price portion of vectors in
Φ(p, ζ) are prices that only put positive weight on the largest components of ζ.
This should remind you of the auctioneer in the generalized game: Φ, like that
auctioneer, is “ picking” prices p′  that maximize the market value of the vector
that is playing the role of excess demand. (This proof strategy can be found in a
lot of existence proofs.)

I assert that Φ(p, ζ) is nonempty and convex and that (p, ζ) ⇒ Φ(p, ζ) is



upper semi-continuous. Nonemptiness is obvious. For convexity, note that
Φ(p, ζ) is the product of two sets, {p′  ∈ P : p′i > 0 implies ζi ≥ ζj for all j} and

(p). That (p) is convex is an assumption of the proposition; to show that
the other set is convex, simply note that if p′  and p″ are both in the set, then
they only put positive weight on the largest components of ζ, and so
(obviously) does any convex combination of them. And the product of two
convex sets is obviously convex.

Now suppose that (pn, ζn) → (p0, ζ0) and, for each n, we have a ( n, n)

∈ Φ(pn, ζn) where ( n, n) → ( 0, 0). Because of the upper semi-

continuity of , it is immediate that 0 ∈ (p0). And suppose that, for

some i,  > 0. Then for all large n,  > 0; hence  for all j,

and hence  for all j. Together these imply that ( 0, 0) ∈ Φ(p0,

ζ0), which is upper semi-continuity.
This means that Φ satisfies all the required conditions to apply Kakutani’s

Fixed-Point Theorem. (The domain P × B is clearly compact.) Therefore, there
is some (p, ζ) such that (p, ζ) ∈ Φ(p, ζ). Of course, this means that ζ ∈ (p),
and also that pi > 0 only if ζi ≥ ζj for all j. Were it the case that ζi > 0 for some
i, then p would only charge (be strictly positive for) j s such that pj > 0, which
would imply p · ζ > 0. This contradicts p · ζ ≤ 0 for all ζ ∈ (p), and so ζ ≤
0, which is what we needed to show.

The obvious weakness in this result is in the assumption that  is defined
(in an upper semi-continuous and uniformly bounded manner) out to the
boundary of the price simplex. If we imagine that goods are always desirable, it
is more likely that demand for a given good, and hence excess demand, grows
without bound as the relative price of that good approaches zero (and assuming
that the consumers’ incomes are not simultaneously vanishing) and is undefined
when the relative price of the good is zero. To accommodate this sort of
situation, we have the following result.



Proposition 14.12.5 Let Po be the open unit simplex in Rk; that is, Po = P ∩ 
. Suppose  is a correspondence from Po to Rk that is nonempty and

convex valued, upper semi-continuous, satisfies Walras’ Law  (p · ζ = 0 for all
ζ ∈ (p)), is uniformly bounded below, and satisfies the following boundary
condition: If {pn} is a sequence of strictly positive prices from Po that
approaches p0 that is not strictly positive, and if ζn ∈ (pn) for each n, then
limn | |ζn| |  = ∞. Then there exists p ∈ Po such that 0 ∈ (p).

Remarks. As in Proposition 14.11, we are restricting attention to  defined on
prices normalized to lie in the unit simplex, so we don’t need to mention
homogeneity. The assumptions that (p) is nonempty and convex, that p ⇒ 

(p) is upper semi-continuous, and that Walras’ Law holds, should all seem
standard at this point.

The uniform lower bound is easiest to justify if we think of this excess-
demand correspondence emerging from a pure-exchange economy; in that case, a
lower bound on excess demand is provided by the sum of all the endowment
vectors. With firms around, it is a little harder to justify; the sort of no-
perpetual-motion-machines assumption we encountered in Proposition 14.10 is
required.

The boundary condition deserves the most attention. Suppose that we have
a sequence of prices {pn} from Po converging to some p0 ∈ Po. Of course, p0 is
nonnegative, and since the sum of its components is 1, there are j such that 

> 0. If we imagine that at least some consumers have strictly positive
endowments of such goods j, then those consumers will have income or wealth
that, along the sequence, is strictly bounded away from zero. And then, the idea
is, as the price of some good i goes to zero, these consumers will demand
increasing, and unboundedly increasing, amounts of good i. Of course, this is
just the underlying idea; to be turned into a result requires assumptions on the
preferences of the consumers. But it is the sort of logic that makes the boundary
assumption reasonable. It should be observed that in saying that | |ζn| |  → ∞ , it
is only the components of ζn whose prices are going to zero that can diverge;
Walras’ Law implies that the excess demand for any good whose price is



bounded away from zero must be bounded above (by a bound that depends on
the consumer’s overall endowment size and the amount by which the price of
the good is bounded away from zero).

Finally, note that the conclusion is 0 ∈ (p) for some p. Before we said
that our general goal was to find a p and ζ ∈ (p) such that ζ ≤ 0. But here
the price p must be strictly positive, and if Walras’ Law holds—if p · ζ = 0 for
strictly positive p—then ζ ≤ 0 implies ζ = 0.

Proof.6 We mimic Debreu’s proof of the D-G-K-N Lemma. To begin, let P
for  > 0 be the unit price simplex in Rk but with each price constrained to be
at least ; that is, P  = {p ∈ P : pi ≥  for all i = 1, …, k}. Let B < 0 be the
uniform lower bound on each component of ζ ∈ (p); I assert that each
component of ζ for ζ ∈ (p), p ∈ P , is bounded above by B  = –B/ .
This follows from Walras’ Law: Suppose ζ ∈ (p) for p ∈ P . We know
that p · ζ = 0. The dot product is ∑i piζi, which we can separate into

The entire sum must be zero, the second term is bounded below by B, and each
pi ≥, so if ζi ≥ 0 it must be that ζi ≤ –B/ .

Next, for every  > 0 (and  < 1/k), construct a correspondence Φ  on the
domain P  × {ζ ∈ Rk : B ≤ ζi ≤ B } as follows: (p′, ζ′) ∈ Φ (p, ζ) if ζ′  ∈ 

(p), p′  ∈ P , and p′i =  if, for some j ≠ i, ζj > ζi. In other words, given a
pair (p, ζ), Φ (p, ζ) is the product of (1) the set of all prices in P  that put
weight greater than only on the “ largest” components of ζ and (2) the set (p).
Note that since p ∈ P , every ζ′ ∈ (p) satisfies B ≤ ζ′ i ≤ B , so Φ (p, ζ)
is a subset of the domain of the correspondence. The domain is clearly compact.
By the arguments given in the proof of the D-G-K-N Lemma, Φ (p, ζ) is
convex and nonempty for every (p, ζ), and (p, ζ) ⇒ Φ (p, ζ) is upper semi-
continuous. Hence for every  ∈ (0, 1/k), we can find at least one fixed point of



the correspondence; select one such fixed point for each  = 1/n (n > k), calling
the fixed point (pn, ζn). Note well, this means that ζn ∈ (pn) and  = 1/n

if, for some j ≠ i, .

The sequence of prices {pn} lies in P, which is compact, so looking along a
subsequence if necessary, we can assume that limn pn exists and equals some p0.

I assert that p0 must be in the interior of P. Suppose it is not: By the boundary
condition, we know that limn | |ζn| |  = ∞ . Since the components of ζn are
bounded below, this means that as n → ∞ , some components of ζn are growing
(positively) without bound. Let ; of course,

limn zn = ∞ . Let In = {i : ζn
i = zn}; we know that 

 must equal 1/n for j ∉ In.

But then pn · ζn ≥ B + (1 – k/n)zn, which for large enough n will be strictly
positive, contradicting Walras’ Law.

Hence, p0 is interior to P. Letting r = mini , this implies that pn ∈ Pr/2

for all sufficiently large n; hence there is a uniform upper bound on the ζn.
Looking along a subsequence as necessary, we know that ζn converges to ζ0,
and by upper semi-continuity of  on the interior of P, ζ 0 ∈ (p0).
Moreover, the argument used in the proof of the D-G-K-N Lemma shows that all
the coordinate values of ζ0 must be the same, so by Walras’ Law, they all must
be 0.

To close this section, let me reiterate: There are many, many existence-of-
Walrasian-equilibrium results in the literature. There are many that use
variations on fixed-point arguments as here, but with different (and, usually,
weaker) assumptions, and then there are other methodologies that have been
employed. We’ve barely scratched the surface.

14.5.   The Set of Equilibria for a Fixed Economy



Having proved (under conditions) that an economy has at least one Walrasian
equilibrium, it is natural to wonder, How many? Economists brought up on the
classic picture of supply equals demand (Figure 1.1) are fond of the definite
character of the “ answer”; there is one and only one price at which the rising
(and continuous) supply curve hits the falling (and continuous) demand curve,
and hence the theory makes a very definite prediction about the outcome.
Moreover, in many cases one is able to engage in fruitful comparative statics
exercises concerning the single equilibrium; as this parameter rises, equilibrium
price rises (or falls). Obviously, such results are helped by uniqueness of the
equilibrium.7 Is the set of Walrasian equilibria for a given economy well
behaved in this sense?

The literature provides three sorts of results. The first sort of result provides
conditions under which there is, for the given economy, a unique Walrasian
equilibrium. Following the analogy with Figure 1.1, the conditions are not hard
to envision conceptually: We want conditions that guarantee that, as the relative
price of any good rises, its excess demand falls. Formalizing this conceptual
vision is not trivial, but it can certainly be done; see, for instance, Mas-Colell,
Whinston, and Green (1995, Section 17F).

On the other hand, it is easy to give examples of economies that admit
multiple equilibria. Consider, for instance, the following caricature exchange
economy featuring two goods and two consumers, Alice and Bob. Alice and
Bob have identical preferences, given by the utility function u((x1, x2)) =
min{x1, x2}. Alice is endowed with one unit of good 1 and none of good 2;
Bob with one unit of good 2 and none of good 1. Then for any price vector (p1,
p2) ∈ P (that is, normalized so that p1 + p2 = 1), Alice has initial wealth of p1
and so will choose the bundle (p1, p1), while Bob has initial wealth p2 and
chooses (p2, p2). (If this isn’t obvious to you, write down Alice’s problem,
noting that at her optimal bundle, x1 = x2. Or draw the Edgeworth Box
representing this economy, which may be a good idea in any case. If p1 or p2 is
zero, the choices indicated are not the only utility-maximizing choices for one of
the two, but they are utility-maximizing choices.) Of course, these choices are
market clearing; every price vector is a Walrasian-equilibrium price vector for
this economy.



So what, if anything, can be said about the set of Walrasian equilibria? For
one thing, the set of equilibria is (under mild conditions) closed. I will not state
this as a formal proposition, but instead indicate two ways to interpret and
prove the result. The first and easiest way is if we take as primitive an excess-
demand function ζ (defined, say, on the unit simplex P of prices) that is
continuous among its other properties. The set of equilibrium prices (in P) is
then {p ∈ P : ζ(p) ≤ 0}, which is certainly closed if ζ is continuous. Or
suppose we use the sort of “ full” formulation provided at the start of the chapter
and in Definition 14.2. Suppose that, for a fixed economy ε, we have a sequence
of Walrasian equilibria 

(where the subscript n denotes the index of the sequence) that converges to a
price, consumption allocation, and set of production plans 

. As long as enough assumptions are made so that each

consumer’s Marshallian demand correspondence and each firm’s optimal netput
correspondences are upper semi-continuous, it is clear that the limiting 

 will satisfy the conditions of being a Walrasian

equilibrium.
But that’s pretty much all one can say (beyond the results in Propositions

14.4 and 14.5). Mas-Colell (1977) proves the following remarkable result. As
always (in this chapter) P denotes the unit simplex in Rk.

Proposition 14.13 (Mas-Colell’s Theorem). Let Q be any nonempty and
closed subset of P that lies entirely within the interior of P. Then there exists a
pure-exchange economy ε (for k commodities), with consumers that have
continuous, strictly convex, and monotone preferences, such that Q is the set of
Walrasian-equilibrium prices for ε (restricted to P).

The remarkable thing is, the proposition says that this is true for any closed
subset of P that stays away from the boundaries of P. If k = 3, then P is a
triangle, and we can draw pictures. For instance, suppose we take for Q the set
shown in Figure 14.3; that is, points that are “ filled in” within the simplex.
This is a closed set within the interior of P, so Mas-Colell’s Theorem tells us
that there exists an economy, meaning a collection of well-behaved consumers



with endowments, for whom the Walrasian-equilibrium price vectors in P spell
out the names of three fathers of modern general equilibrium theory.

Figure 14.3. Equilibrium prices. Mas-Colell’s Theorem (Proposition
14.13) tells us that we can find an exchange economy for which the set of
Walrasian-equilibrium prices spell out the names of the three fathers of
modern general equilibrium theory. The example is for k = 3, and we are
looking (only) at the projection of equilibrium prices onto the unit
simplex in R3; that is, on price vectors p such that .



This result is, in fact, an extension of the Sonnenschein-Mantel-Debreu
Theorem from last chapter. The key is to find a continuous excess-demand
function (on P) that satisfies p · ζ(p) = 0 for all p and whose zeros coincide with
the set Q. In fact, this isn’t quite enough; even using Debreu’s version of the S-
M-D Theorem, we have to worry about what happens near the boundary, where
one price or another goes to zero. But Mas-Colell (1977) sharpens the S-M-D
Theorem sufficiently to deal with this. (If you didn’t fully appreciate the S-M-D
Theorem before, perhaps this will convince you of its power.) See Problem
14.10 for the easier part of the proof of this result.

So, if we allow for any economy, very little can be said in the way of
restrictions on the set of Walrasian-equilibrium prices. The third sort of result
found in the literature then asks, What can be said about the set of Walrasian
equilibria (and their prices) for “ most” economies. Short of showing that there
is a unique equilibrium, which takes fairly strong assumptions on the
underlying economy, what one hopes (and strives) for is a result that “ most”
economies have a finite number of (necessarily isolated) equilibria. Using the
methods of differential geometry and topology, such results are accessible; I will
not pursue them here but strongly recommend the excellent introduction to this
topic in Mas-Colell, Whinston, and Green (1995, Section 17D).

14.6.   The Equilibrium Correspondence
An economy ε will, in general, have a nonempty set of Walrasian equilibria.
Suppose we think of economies being drawn from some topological space of
economies; then we might be interested in the Walrasian-equilibrium
correspondence, the correspondence from the space of economies to the space of
prices×allocations×production plans that, for each economy, identifies the
Walrasian equilibria of that economy.

To illustrate how this sort of thing might proceed and to give the simplest
result available, fix a finite collection of consumers h = 1, …,H, specified by
their continuous and complete and transitive preferences h or, equivalently,

their continuous utility functions uh, with domain (consumption sets) Xh = 
. And fix a finite collection of firms f = 1, …, F, specified by their

nonempty and closed production-possibility sets Zf ⊆ Rk.8 If you are
wondering “ What about consumer endowments?,” this is what varies



parametrically: For e ∈ ( )H, economy ε(e) is the economy made up of the

fixed consumers and firms, where the vector of endowments for the consumers is
given by e. For each economy, ε(e), we let W(ε(e)) be the set of Walrasian
equilibria for ε(e), where each equilibrium is given by a price vector,
consumption allocation, and array of production plans.

Proposition 14.14. Suppose that, for every e, Walrasian-equilibrium prices for
ε(e) must be nonzero and nonnegative. The correspondence e → W(ε(e) ) is
upper semi-continuous.

This is left to you to do as Problem 14.11.

Bibliographic Notes
Formulations of general equilibrium go back to (at least) the work of Walras.
Questions of existence were “ settled” by counting equations and unknowns and
noting that they matched, after the redundant equations are removed; that is,
unrigorously. The modern formulation and (rigorous) existence results date from
the early 1950s. As noted already, the two pioneering papers devoted to
existence are Arrow and Debreu (1954) and McKenzie (1954). There are many
book-length treatments of the subject, which typically include material we will
cover in the next two chapters: Debreu (1959) is truly classic, and I first learned
the subject from Arrow and Hahn (1971), which, sadly, seems to be out of print.
Among other things, Arrow and Hahn begin with a “ Historical Introduction”
chapter that sets the subject in its broad historical context. Scarf (1973) presents
a computational approach, using methods of bilinear complementarity. I have
skimped on mathematical considerations beyond existence, in part because it is
pointless to try to compete with the wonderful exposition on the topic found in
Mas-Colell, Whinston, and Green (1995); the discussion of Mas-Colell’s
Theorem here is lifted from Shafer and Sonnenschein (1982).

Problems

 *14.1. (a) Draw an Edgeworth Box in which both consumers have strictly
increasing and strictly convex preferences (strictly quasi-concave utility) and
where the Pareto-efficient divisions of the social endowment lie entirely along



the boundary of the box. Is it possible to have a case (with strictly increasing
and strictly convex preferences) where the southeast corner of the box (all of
good 1 is given to consumer 1, and all of good 2 is given to consumer 2) is
Pareto efficient, but other Pareto-efficient points involve each consumer getting a
strictly positive amount of both goods?

(b) Suppose we have a two-consumer, two-good, pure-exchange economy in
which consumer 1 only wants to consume good 1 (and she wants as much of
that as she can get), and consumer 2 only wants to consume good 2. Their
initial endowments are identical: Each has 10 units of good 1 and 10 units of
good 2. What does the Edgeworth Box for this pathological economy look
like? Which allocations lie in the core, and what are the Walrasian equilibria?

 *14.2. Consider the following two-person, two-commodity, pure-exchange
economy. Consumer 1, Alice, has utility function uA(x1, x2) = 0.4ln(x1) +
0.6ln(x2). Consumer 2, Bob, has utility function uB(x1, x2) = 0.5ln(x1) +
0.5ln(x2). Alice’s endowment is , while Bob’s

endowment is . What are the Walrasian equilibria

of this economy?

 *14.3. Consider the following economy: There are three goods, two
consumers, and two firms. Good 3 is used as an input to the production
process, and provides no utility of consumption. Firm 1, which is owned
entirely by Alice, has a technology that allows good 3 to be made into good 1,
according to the simple linear technology x1 ≤ 3x3. That is, if firm 1 uses x3
units of the input good, it can make up to 3x3 units of the first consumption
good. Firm 2, owned entirely by Bob, uses the third good to make the second
consumption good, and its technology is described by x2 ≤ 4x3. Each consumer
initially owns 5 units of good 3; that is, eA = eB = (0, 0, 5). Alice’s utility
function is uA(x1, x2, x3) = 0.4ln(x1) + 0.6ln(x2), while Bob’s utility function is
uB(x1, x2, x3) = 0.5ln(x1) + 0.5ln(x2).

What are the Walrasian equilibria of this economy? What would be the



equilibria if the shareholdings were reversed?

 14.4. Redo Problem 14.3, where the only change is that, this time, eA = eB =
(5, 5, 5).

 14.5. Redo Problem 14.3, but where the technology of the first firm is
described by  and the technology of the second firm is

described by .

 *14.6. In the proof of Proposition 14.8, I asserted (in the penultimate
paragraph of the proof) that if we pasted together the various 

correspondences to create A*, then A* is an upper semi-continuous, nonempty-
valued, and convex-valued correspondence. Provide the details to support this
assertion.

 14.7. In the proof of Proposition 14.9, the constraint on the actions of
consumer h imposed by the actions of the other players (firms and the
auctioneer) was set as follows: Consumer h is constrained to choose an xh from
Xh that satisfies the further constraint 

. Suppose we modified this,

to say that consumer h must satisfy the further constraint 
, where zf is the production

plan chosen by firm f. If you try to redo the proof with this seemingly
innocuous change, you will run into substantial difficulties. What are they?

 *14.8. The proofs of Proposition 14.11 and 14.12 can be simplified or, at
least, changed, if we assume that we begin with an excess-demand function
instead of an excess-demand correspondence. In this problem, I point you in the
direction of a different proof of Proposition 14.11 for excess-demand functions;
Problem 14.9 will concern Proposition 14.12.

Suppose that ζ : P → Rk is continuous and satisfies p · ζ(p) ≤ 0 for all p. For



each p ∈ P and i = 1, …, k, let ξi(p): = max{pi, ζi(p) + pi}, and let

Prove that φ is a continuous function that maps P into itself. Now apply
Brouwer’s Fixed-Point Theorem (see Appendix 8), and argue that if φ(p) = p,
then ζ(p) ≤ 0.

 *14.9. Let Po be the interior of the unit simplex, and suppose we have an
excess-demand function ζ : Po → Rk that is continuous, satisfies Walras’ Law
(p · ζ(p) = 0 for all p ∈ P o), is bounded below, and satisfies the boundary
condition: If {pn} is a sequence of prices drawn from Po with limit p0 that is not
strictly positive, then limn | |ζ(pn)| |  = ∞ .

Under these assumptions, construct a correspondence φ on the unit simplex of
prices P = {p ∈  : ∑i pi = 1}. For p ∈ Po, let φ(p) = {p′  ∈ P : p′i > 0

only if ζi(p) ≥ ζj(p) for all j = 1, …, k}. And for p ∈ P \ Po, let φ(p) = {p′  ∈ P
: p′i > 0 only if pi = 0}. Think of this as follows: For p in the interior of P, φ(p)
consists of all price vectors in P that assign positive prices to those goods that,
according to ζ(p), are in greatest excess demand. And for p on the boundary of
P, φ (p) assigns positive prices to those goods that “ in theory” would be in
infinite net demand, if we had defined ζ at the boundary. (The second of these
characterizations is a bit inaccurate, but it is in the rough spirit of the second
extra assumption.)

Show that φ is nonempty valued, convex valued, and upper semi-continuous.
Then apply Kakutani and prove that any fixed point of φ must be interior and
satisfy ζ(p) = 0.

 14.10. One piece of the proof of Mas-Colell’s Theorem (Proposition 14.13) is
to generate, for a given closed set Q ⊆ P, which is entirely interior to P, an



excess-demand function ζ that is continuous on the interior of P, that satisfies p
· ζ(p) = 0, and that is zero (only) on the set Q. (Mas-Colell’s extension of the
SM-D Theorem depends as well on this excess-demand function exploding in
norm for any sequence of prices that approach the boundary of P, but don’t
worry about that.) Fixing the set Q, let d(p, Q) = minq∈Q | |p – q| | ; because Q
is closed, we know that the min here is appropriate and that p → d(p, Q) is a
continuous function of p. Let  be any arbitrarily selected member of Q, and let

It should be clear that, away from the boundary of p, this function is continuous
in p. Prove that it satisfies p · ζ(p) = 0 for all p (∈the interior of P) and that it
is zero at p if and only if p ∈ Q. (In the chapter, we said that an equilibrium
was any p such that ζ(p) ≤ 0. Why don’t we need to worry about the possibility
of ζ(p) < 0?)

 14.11. Prove Proposition 14.14.

 

1 H and h are mnemonics for household. We don’t use I and i because we use
i for the typical commodity index; that is, we write i = 1, …,k, and so forth.

2 The bibliographic notes at the end of the chapter give a cursory history, but
for now it is worth observing that Arrow and Debreu (1954) and McKenzie
(1954) are generally cited as the two papers that ignited this literature.

3 While the connection is a bit less direct, the results I give later, which
begin with an excess-demand correspondence, are more in the spirit of the
second seminal paper, McKenzie (1954).

4 The literature does extend to analyses where the commodity space is infinite
dimensional, but I won’t tackle any of that here.



5 The form given here is attributed by Debreu (1982) to Hildenbrand (1974).
6 This proof was suggested to me by Phil Reny. Debreu’s chapter in the

Handbook provides a significantly more complicated proof, albeit for a more
complex version of the result. This leads me to suspect that the proof I’m about
to give has a problem; if so, I don’t see it. And if it doesn’t have a problem, it
is so natural following Debreu’s proof of the D-G-K-N Lemma that it probably
has been given elsewhere; if someone has a reference, I’d be grateful to be told of
it.

7 This is not meant as a precise statement and, indeed, if one uses the
methods of monotone comparative statics, it is not only imprecise, but
somewhat incorrect.

8 Recall that Assumption 14.1 holds throughout this chapter, so this adds no
new assumptions.



Chapter Fifteen



General Equilibrium, Efficiency, and the Core

From the earliest days of academic economics (which is to say, from the time of
Adam Smith), economists have written paeans of praise to competitive markets.
“ The invisible hand of prices coordinates the activities of myriad producers and
consumers in an efficient manner, and moreover in a manner that, experience has
taught us, centrally planned and administered economies cannot match.” (Cue
background music with choirs of angels.) Indeed, taken a step or two further,
some versions of this hymn of praise to markets become hymns of praise to
greed, self-interest, and the profit motive.

Behind the ideological bombast of these claims are serious models and
analyses that mix ideas about the incentive to innovate and the aggregation of
information by prices; models and analyses that, when done well, point out
serious limitations to the simple claim that “ markets are good.” Incentives (to
innovate or otherwise) and information aggregation are topics well beyond the
framework of general equilibrium that was created last chapter, so this is not
something that we can seriously tackle at this point. But within the context of
general equilibrium, fundamental results provide a starting point for assertions
that price equilibria are “ good.” This chapter develops some of those
fundamental results.

In essence, this chapter presents four types of results:

•   The First Theorem of Welfare Economics  shows that, under seemingly
very mild conditions, the allocation portion of a Walrasian equilibrium is
Pareto efficient. Using the resources (endowments and production capacities)
provided in an equilibrium, no consumer can be made strictly better off than
she is in a Walrasian equilibrium without making some other consumer
worse off.

•   But, as we discussed in Chapter 8, to say that some mechanism (in this
case, the price mechanism) produces Pareto-efficient outcomes falls short of a
justification for the mechanism: It may produce a particular Pareto-efficient
outcome that is, at the same time, vastly inequitable. The Second Theorem
of Welfare Economics  repairs this flaw in the following sense: Under
somewhat more restrictive assumptions, and subject to a technical caveat, it
proves that any (feasible) Pareto-efficient allocation is the allocation portion



of a Walrasian equilibrium (sort of), if you are allowed to redistribute
endowments and shareholdings first.

•   Pareto efficiency is one criterion of goodness of a social outcome, but
imagine a situation in which, relative to a given Walrasian-equilibrium
outcome, another feasible outcome (a) is better for some subset of all the
consumers in the economy and (b) can (somehow) be enforced by this
subset. Of course, for (a) to hold for an equilibrium outcome, which must be
Pareto efficient by the First Welfare Theorem, it must be that this alternative
outcome makes someone outside the subset worse off. But if this subset has
the power to enforce this outcome, isn’t (a) still a valid objection to the
goodness of the original Walrasian equilibrium? This idea, suitably
formalized and generalized, leads to the game-theoretic notion of the core.
And the third result of this chapter shows that the hypothesized situation
cannot happen: Under mild conditions, every Walrasian equilibrium lies in
the core of the economy, meaning no subset of consumers has the power to
make its members better off than at the equilibrium outcome, although (of
course) this result is predicated on a particular specification of the power
possessed by each subset of consumers.

•   And, very roughly, if a consumption allocation is in the core, then it is a
Walrasian equilibrium. At least, this is true if there is “ enough”
competition in the economy. We formalize this result as a limiting result as
the number of consumers increases, in the Debreu-Scarf Theorem; and then
we discuss how it is obtained as an exact result for “ large” economies
(economies with a continuum of agents).

All these results depend on the assumptions that markets are competitive
(consumers and firms take prices as given) and that there are no externalities.
The chapter ends with a discussion of externalities and a variant on Walrasian
equilibrium, Lindahl equilibrium, which in theory if not in practice “ solves”
the problem of externalities.

15.1.   The First Theorem of Welfare Economics
We continue in this chapter to adhere to Assumption 14.1. For the sake of
completeness, here it is again (renumbered):



Assumption 15.1. Each consumer’s commodity space X h is . Each

consumer’s utility function uh is continuous. Each firm’s production-possibility
set Zf is closed and nonempty.

For an economy ε, recall from Definition 14.3 that X* is the set of feasible
allocations for the economy:

where . Also define

Or, in words, X* consists of all bundles of goods that are less than or equal to
bundles that the economy is capable of producing (including the initial
endowments). Of course, if x ∈ X*, then ∑h xh ∈ X*. But note carefully; x ∈
X* means that each xh ∈ Xh; that is, each xh is nonnegative. In defining X*, we
allow “ bundles” of goods with negative components. (See Problem 15.1 for
more on this point.)

Proposition 15.2 (The First Theorem of Welfare Economics). Suppose (p, x,
z) is a Walrasian equilibrium for an economy with locally insatiable
consumers, such that p ≥ 0. Then x is Pareto efficient within X*.

Proof. Let (p, x, z) be the Walrasian equilibrium in question, and let 
. That is, Y is the value at the equilibrium prices of

the summed-up equilibrium consumption bundles of the consumers in the



economy.
The proof consists of showing that the hyperplane {x ∈ Rk : p · x = Y}

separates (in a strict sense) bundles of goods that the economy is capable of
producing from bundles of goods that can be distributed to the consumers in a
fashion that is Pareto superior to x.

We have, first of all, that

To see why this is true, note first that by local insatiability, each consumer
spends all of her endowment, or p · xh = p · eh + ∑f sf hp · zf. Summing this
over all h, we get 

where the last equation follows from the fact that the sum of the shares in each
firm totals 1. But for any zf ∈ Zf, p · zf ≥ p · zf, because zf is profit maximizing
at the prices p. Hence, for any  ∈ Z,

Now take x ∈ X* we have  for some 

∈ Z. Since prices p are assumed to be nonnegative, we can dot this inequality
by the prices p and, combining with the previous display, we have

which is (15.1).
Fixing x, the equilibrium allocation, let



here PS is an obvious mnenomic for “ Pareto superior.” And let

Or, in words, PS(x) is the set of bundles of goods that can be parceled out to the
consumers in a manner that is Pareto superior to x. The point of these
definitions is that

This is a consequence of two consumer-by-consumer inequalities: For  ∈ 
,

For the second of these, suppose  h xh. Since xh is optimal for consumer h
facing prices p, it must be that  is unaffordable for h at these prices. But since
(we assume) consumers are locally insatiable, xh must exhaust h’s budget at
prices p; hence  must cost strictly more than xh at prices p. And for the first,
even if  ∼h xh, if p ·  < p · xh, then local insatiability implies that h can
purchase some bundle near to (but strictly better than)  for less than p · xh,
which would contradict the optimality for h of xh at prices p.

But with these two consumer-by-consumer inequalities, we have (15.2): If 
 ∈ PS(x), then  = ∑h h for some  ∈ PS(x). For this , h h xh for



al l h, and h h xh for at least one h. Hence, by the two consumer-by-
consumer inequalities,

Pulling the p outside the sum on the left-hand side gives p · , while the right-
hand side is Y.

And, with (15.1) and (15.2) in hand, we conclude that x must be Pareto
efficient. For if it were not, there would be some feasible allocation  that
Pareto dominates it. To be feasible, the bundle of goods that allows the
allocation  must have value (under prices p) no greater than Y. But to be
Pareto superior to x, the same bundle must have value (again, under prices p)
strictly exceeding Y. The two are incompatible.

It is worth emphasizing that the assumptions in the First Theorem—
equilibrium prices must be nonnegative and consumers must be locally
insatiable—are pretty minimal. Minimal or not, you might wonder whether we
need them. We used p ≥ 0 in one place, where we said that if x ∈ X*, the
physical feasiblity of x, which is the inequality x ≤ ∑h eh + ∑f 

f for some array
of production plans , can be turned into a value inequality. That is, we can
“ dot” both sides of the physical feasiblity inequality and get a value inequality
running in the same direction. A negative price might reverse the inequality.
But if we had from the start defined physical feasibility with an equality—if
dumpsters are not freely available—then we wouldn’t need to assume that p ≥ 0
at this (or any other) step.

Local insatiability, on the other hand, is absolutely at the heart of the First
Theorem. If consumers are not (all) locally insatiable, Walrasian-equilibrium
allocations can be Pareto inefficient. Roughly put, a consumer who has a local
bliss point (a point that, locally, maximizes her preferences) can, at an
equilibrium, waste resources that other consumers would like to have but cannot
afford. For more on this, see Problem 15.2.



15.2.   The Second Theorem of Welfare Economics
The proof just given for the First Theorem of Welfare Economics is written in a
way that emphasizes its internal logic: If (p, x, z) is a Walrasian equilibrium
with p ≥ 0 and with locally insatiable consumers, then the price vector p and
scalar Y = p · (∑h xh) form a hyperplane that separates technologically feasible
bundles of goods from bundles that can be allocated to consumers in a manner
that is Pareto superior to x. Hence, what is feasible cannot be Pareto superior to
x.

This suggests a possible converse. Suppose x is a Pareto-efficient allocation
within some economy. By definition, this says that the set of bundles that can
be allocated in a manner Pareto superior to x are disjoint from the set of bundles
that are feasible for this economy. Suppose we use the Separating-Hyperplane
Theorem to find a price vector that separates these two sets; that is, that
separates X* from PS(x). Perhaps this separating price vector is, in some sense, a
vector of equilibrium prices.

Roughly speaking, this is the line of argument in the Second Theorem of
Welfare Economics. But there are two—shall we say?—snags in getting this to
work. First—and not really a snag but instead a technical requirement—is that
to employ the Separating-Hyperplane Theorem, we will need to know that the
sets being separated are convex. We’ll need assumptions on the firm’s
production-possibility sets Zf to ensure that X* is convex and on consumer
preferences to ensure that PS(x) is convex. And—this time a real snag—in the
First Theorem, we got semi-strict separation between the two sets; we had a ≤
inequality on one side and a > inequality on the other. Unless we can call upon
the Strict-Separation Theorem—and if you think about it, we cannot; PS(x) is
not closed, and neither set is likely to be compact—-we will get two weak
inequalities. Because of this, the Second Theorem deals not with Walrasian
equilibria but with something slightly weaker:

Definition 15.3. A Walrasian quasi-equilibrium for an economy ε is a triple
(p, x, z) such that p ≠ 0, where

a.  zf maximizes p · z over z ∈ Zf, for each f,

b.  p · xh ≤ p · eh + ∑f s
f hp · zf,



c.  If xh ∈ Xh is such that xh h xh, then p · xh ≥ p · eh + ∑f s
f hp · zf, and

d.  ∑h xh ≤ ∑h eh + ∑f z
f.

Comparing this with the definition of a Walrasian equilibrium, the difference
comes in the consumer-maximization part of the definition. In a Walrasian
equilibrium, the consumer maximizes her utility at the allocation, given prices
and her wealth, where it is implicit in the consumer-maximization part of the
definition that the equilibrium allocation is budget feasible for each consumer.
Here, budget feasibility is explicit (part b), but in place of optimality of the
equilibrium allocation, we have the slightly weaker condition c. How much
weaker?

Proposition 15.4. If (p, x, z) is a Walrasian equilibrum for economy ε, then it
is a Walrasian quasi-equilibrium. Conversely, if  (p, x, z) is a Walrasian
quasi-equilibrium for ε and if  for

consumer h, then for this consumer, if xh h xh, then 
. Or, put the other way

around, for this consumer h, xh maximizes her preferences over her budget set.
So if each consumer’s net wealth at the prices p is strictly positive, the quasi-
equilibrium is a Walrasian equilibrium.

Proof. If (p, x, z) is a Walrasian equilibrium for ε, then parts a, b, and d of
Definition 15.3 are immediate. And if xh ∈ Xh satisfies xh h xh, then (so that
xh is optimal) it must be that xh is not budget feasible, or 

. So part c of the definition

holds with a strict inequality.
Conversely, suppose (p, x, z) is a Walrasian quasi-equilibrium for ε and, for

consumer . Suppose that x

∈  is such that x h xh and 

. Part c of the definition



then tells us that .

Since preferences are continuous, for some α strictly less than (but, presumably,
close to) 1, αx h xh, but p · (αx) < p · x (since 

, which contradicts part

c of the definition. Hence if 
, it must be

that .

Therefore, if p · eh + ∑ f s
fhp · zf > 0 for all h, every consumer maximizes

her preference over her budget set with the bundle xh. The physical-feasibility
condition of a Walrasian equilibrium is precisely d in Definition 15.3, and the
firmprofit-maximization condition is a, so this is indeed a Walrasian
equilibrium.

In other treatments of these ideas, you may find condition b of the definition
of a quasi-equilibrium omitted. This omission has the following explanation.

Proposition 15.5. Suppose all consumers are locally insatiable.

a.  If condition c in the definition of a Walrasian quasi-equilibrium holds for
any triple (p, x, z), then p · xh ≥ p · eh + ∑f sf hp · zf for each h, and
(hence) ∑h p · xh ≥ ∑h p · eh + ∑f p · zf.

b.  Conditions c and d in the definition of a Walrasian quasi-euqilibrium
imply condition b for any triple (p, x, z) such that p ≥ 0.

c.  If you replace the inequality in condition d in the definition of a
Walrasian quasi-equilibrium with an equality, then condition c and the
modified condition d imply condition b for any triple (p, x, z), regardless
of the signs of components of p.

Proof. (a) Suppose that for some triple (p, x, z), p · xh < p · eh + ∑f sf hp · zf.
By local insatiability, there is some xh near enough to xh so that p · xh < p · eh



+ ∑f s
f hp · zf and yet xh h xh, which would be a contradiction to condition c

of the definition. Hence condition c implies that p · xh ≥ p · eh + ∑f sf hp · zf.
Adding this up over all h gives ∑h p · xh ≥ ∑h p · eh + ∑f p · zf.

(b) If p ≥ 0, then condition d of the definition implies that ∑h p · xh ≤ ∑h p · eh

+ ∑f p · zf. Therefore, enlisting part a of this proposition, conditions c and d
together imply equality. But then we must have equality for each consumer
individually; if some consumer spent more than her wealth, to get equality in
the adding up, we would need some other consumer to spend less, which would
contradict part a.

(c) If condition d is redefined to have equality rather than an inequality, then
regardless of the sign of components of p, we have ∑h p · xh = ∑h p · eh + ∑f p ·
zf. Now proceed as in the previous paragraph.

Now for the main result of this section:

Proposition 15.6 (The Second Theorem of Welfare Economics). Suppose
that, for a given economy E, each Zf is convex, and each h is convex and
locally insatiable. Suppose x ∈ X* is Pareto efficient within X*. Then there
exists a way to reallocate endowments and shareholdings among consumers
such that, for the economy with the reallocated endowments and
shareholdings, there are production plans z and a nonzero price vector p such
that (p, x, z) is a Walrasian quasi-equilibrium.

Proof. Recall how this is meant to go. We want to use the Separating-
Hyperplane Theorem to separate X*, the set of all bundles of goods this
economy can produce, from the set of all bundles of goods that can be allocated
among the consumers in a fashion that is Pareto superior to x. The assumption
that each Zf is convex is easily seen to be enough to ensure that X* is a convex
set, but to get convexity of the other set, it is convenient to work with the set of
bundles that can be divided in a fashion that is strictly Pareto superior to x.
Formally, define



Since each h is convex, the set SPS(x) is convex: Let 
 be any two members of SPS(x),

where  and  are the corresponding two members of SPS(x). For any α ∈ [0,
1 ] , α h + (1 – α) h h xh for each h, since, for each h, the convex
combination is at least as good for h as whichever of h and h is less good,
and both h and h are strictly better for h than xh. Therefore, 

. (Why is it more convenient to work with strict Pareto superiority? See
Problem 15.3.)

Of course, because x is Pareto efficient, the (now convex) sets SPS(x) and X*

are disjoint. So there is a hyperplane that separates them: For some vector p ≠ 0
and some scalar Y, p · x ≤ Y for all x ∈ X* and p · x ≥ Y for all x ∈ SPS(x).

By the usual argument (X* is comprehensive below), p ≥ 0.
Some pieces of notation will be handy. We are assuming that x is in X*,

which means that  for some array

of feasible production plans z ∈ Z. Let x0 denote ∑h xh. Also, because of local
insatiability, for each household h we can find a sequence of consumption
bundles { } that approach xh and such that (1) 

.

I assert that p · x0 = Y; that is, x0 lies along the hyperplane that separates X*

from SPS(x). Of course, since x is feasible, x0 ∈ X*, so p · x0 ≤ Y. On the other



hand, for any n, the allocation ; therefore

 and so  But, by

the triangle inequality,

Therefore, p · x0 ≥ Y – H/n. Since n is arbitrary here, p · x0 ≥ Y, which proves
the assertion.

Since 

. But, of course, 

. We conclude that 
.

Moreover, p · xh ≥ 0 for each h, so if we let βh = p · xh/Y, we have that βh ≥ 0
for each h and ∑h βh = 1. (If Y = 0, any assignment of weights (βh) that sum to
one will do.) Consider endowing consumer h with a βh share of the social
endowment and a βh share of each firm, and at the prices p, consumer h’s wealth
will be precisely βhY, which is precisely p · xh.

I assert, then, that with these alternative endowments and shareholdings, (p,
x, z) is a Walrasian quasi-equilibrium. Parts b and d of the definition hold by
construction; we only have to verify parts a (firms are maximizing their profits)
and c (a bundle that is better than xh for consumer h costs at least as much as
xh).

For part a, pick any firm f′  and any production plan z′  ∈ Zf′ . Consider the
array of production plans where firm f′  produces z′  and all other firms f ≠ f′
p roduce zf. This production plan produces the bundle of goods 

 z′  ∈ X*. Since this is an element of X*, its



value under p is less or equal to Y, or

Cancel the identical terms on either side of the inequality and you get p · z′ ≤ p
· zf′ . Hence zf′  is indeed profit maximizing for firm f′ . Since f′  is arbitrary here,
we have part a of the definition.

And for part c, choose any consumer h′  and any consumption bundle x such
that x h′ xh′ . For integer n, consider the consumption allocation that gives x
t o h′  and  to consumer h, for h ≠ h′ . This consumption allocation is in

SPS(x), and so

Rearrange this as

where the last inequality uses the triangle inequality. The integer n here is
arbitrary; hence p · x ≥ p · xh, which is part c of the definition.

It is easy to get lost in the details, but the argument is really quite
straightforward. The convexity assumptions on the Zf and the h ensure that
the sets X* and SPS(x) are convex. They are disjoint if x is Pareto efficient. So a
hyperplane separates them. Since x is feasible, ∑h xh is in X*, but local
insatiability puts ∑h xh on the boundary between X* and SPS(x), and hence



within the hyper-plane itself. And from there, it is more or less a matter of
bookkeeping to (1) find a way to redistribute endowments and shareholdings so
that each consumer h can just afford xh at the prices p, (2) verify that firms are
maximizing profits with the plan that makes x feasible, and (3) verify that any
consumption bundle for any consumer that gives the consumer more utility than
xh must cost at least as much as xh.

To reiterate from before, we only get a quasi-equilibrium because, when we
do the separating, the Separating-Hyperplane Theorem only provides a weak
inequality. But perhaps this is just a lack of imagination; you may wonder
whether there isn’t some argument that shows we wind up with a full-blown
Walrasian equilibrium. We know, in fact, that if p · xh > 0 for every consumer,
we do have a full-blown Walrasian equilibrium. But one can construct examples
in which some consumers have zero-value bundles assigned to them at the only
prices p that separate X* from SPS(x) and in which we produce (only) Walrasian
quasi-equilibria. See Problem 15.4 (and its solution in the Guide) for more on
this point.

15.3.   Walrasian Equilibria Are in the Core
The First Welfare Theorem can be strengthened for the case of a pure-exchange
economy by showing that any Walrasian-equilibrium allocation is in the core of
the economy.

The concept of the core, from cooperative game theory, is one answer to the
following question: Which outcomes cannot be blocked by any subset of the
individuals involved? Recall that the set of consumers is {1, …, H}, which we
henceforth denote by H. A nonempty subset of H, typically denoted by J, is
called a coalition of consumers. In general (that is to say, in general games in
coalitional form), one specifies which outcomes each coalition J can guarantee
for its members, and an outcome is said to be blocked if some coalition can
guarantee for its members some alternative outcome that is at least as good for
every member of the coalition and strictly better for some members. A key part
of the formulation, then, specifies the power of each coalition; what outcomes
can each coalition guarantee for its members? In the context of a pure-exchange
equilibrium, the natural definition is, Each coalition J is able to distribute
among its members the endowments of those members.1 This leads to the



following double-barreled definition.

Definition 15.7 For a pure-exchange economy ε:

a.  For each nonempty subset J ⊆ H = {1, …, H}, define

b.  A feasible allocation x ∈ X* is a core allocation for ε if, for every
nonempty subset J ⊆ {1, …, H} and for every ( j)j∈J ∈ XJ, if j j xj

for each j ∈ J, then xj ∼j j for each j ∈ J.

A couple of comments are in order about this definition. In the paragraph
preceding the formal definition, I spoke in terms of a coalition blocking an
allocation x; condition b states in contrapositive form the condition that x is
unblocked by any coalition J and any allocation xJ that is feasible for J. Also
game theorists usually call H the coalition of the whole; note that XH is just
X*, and property b, applied to the case of H, says that x is Pareto efficient.
Therefore, being in the core entails being Pareto efficient, and it (conceivably) is
a stronger requirement. In fact, you can see from an Edgeworth Box that it is a
stronger requirement: Specialized to that case (two-person, two-good, pure
exchange), and in the case depicted in Figure 14.2b back on page 337, the
Pareto-efficient points are all the points from the southwest corner to the
northeast corner, along the heavily shaded line. To be in the core, an allocation
(in this two-consumer case) must also provide each individual (viewed as her
own coalition) with at least as much utility as she gets from her endowment;
therefore the core consists of the segment of the Pareto-efficient set that is extra-
heavily shaded.

Even though being in the core entails more than Pareto efficiency, being a
Walrasian-equilibrium allocation is stronger still:

Proposition 15.8. If (p, x) is a Walrasian equilibrium for a pure-exchange
economy ε in which all consumers are locally insatiable and p ≥ 0, then x is a



core allocation of ε.

Proof. The proof of this proposition is quite similar to the proof of the First
Theorem of Welfare Economics, so I’ll (only) provide an outline of the steps,
leaving it for you to fill in the details. Suppose (p, x) is a Walrasian equilibrium
for the pure-exchange economy ε in which all consumers are locally insatiable
and with p ≥ 0. Let YJ = ∑j∈J p · ej; that is, YJ is the value of the endowment
of coalition J at prices p. Show that if ( j)j∈J ∈ ( )J is such that j j xj

for all j and xj j xj for at least one j ∈ J, then p · (∑j∈J j) > YJ. And
show that p · (∑j∈J j) ≤ YJ for all ( j)j∈J ∈ XJ. Apply these two results to
conclude that anything feasible for coalition J cannot be Pareto superior for the
members of J to their allocation under x.

Is the definition of the core that we’ve given here the “ right” concept on
economic grounds? The question is too vague to have a definitive answer. But
among the many objections (not the best word to use in the current context) to
the concept of the core as defined here, two that are often heard are:

•   In the definition as given, a coalition “ objects” to an allocation x if the
coalition can divide its own endowment among its membership in a way
that is Pareto superior for its members, meaning that everyone is at least as
well off, and at least one member is strictly better off, than at x. For an
objection to x to succeed, you might ask for a more solid inducement for
those objecting: Define, instead, that a coalition can only successfully object
to x if it can find a way to divide its own endowment among its members
that makes every member strictly better off than at x. With locally insatiable
consumers, there is less to this difference than you may think (what if, in
the first definition, the one coalition member who is strictly better off has a
strictly positive allocation under the objection?). But it is still a difference.

•   The definition allows any objection to x to go unchallenged. Suppose
instead, if J objects to x, then consumers from outside J are given the
opportunity to register counterobjections. Without trying to be precise, you
could imagine that a counterobjection takes the form of a coalition J that



includes some members of J and some consumers not from J′ , that is
sufficient to break coalition J in the sense that it induces some members of J
to bolt from J and join J′ . We might look, with such a structure, for
allocations x such that, to any objection to x, there is a counterobjection that
defeats the objection. To be a valid objection, it must be that no
counterobjection that defeats it can be raised.2

Whatever you think of these considerations, note that they both make it harder
to object to a proposed allocation and, therefore, enlarge the set of allocations
that survive valid objections. The core as we’ve defined it is “ small,” at least as
far as these considerations are concerned. And Walrasian-equilibrium allocations
are in this small core.

The core and Walrasian equilibria with production
Proposition 15.8, and our discussion so far in this section, concerns pure-
exchange economies only. The reason is that it isn’t clear a priori how to
allocate productive possibilities to coalitions of consumers less than the entire
population. The issue here is, What production resources does coalition J
command, as it thinks of objections to some x ∈ X*? What is XJ? Here are
some possibilities:

1.  A coalition of consumers less than the coalition of the whole (that is, J a
strict subset of H) can only redistribute its own endowment. It cannot use
the productive capabilities of the firms. In symbols,

2.  At the other extreme, any coalition of consumers can employ the
production technology of any firm, or



3.  A coalition of consumers is allowed to use the productive capacity of firm f
(only) if 100% of the shares of firm f are held by consumers of the set J:

where FJ is defined (for now) as the set of firms f such that ∑j∈J sf j = 1.

4.  We allow any coalition of consumers to use the productive capacity of any
firm in which the coalition’s shareholdings total strictly more than 50%;
the formal definition is the same as in possibility 3, except that F J is the
set of firms f such that ∑j∈J sf j > 0.5.

5.  We allow coalition J to use the productive capacity of a scaled copy of each
firm, scaled by the coalition’s shareholdings. Formally, we first define sf J =
∑j∈J sf j and then

And there are other possibilities, besides.
It should be clear that giving more power to each coalition J makes it easier

to raise an objection to an allocation x from X*, and so giving more power to
each coalition J shrinks the core. Therefore, if we want to conclude that
Walrasian-equilibrium allocations are in the core, we have the best shot with
possibility 1 above, and the worst shot with possibility 2. (This assumes that



the technologies of firms are useful. To avoid cases where coalitions would be
happy to be able not to have to use firms, we assume that 0 ∈ Zf for each firm.)
In fact, here is what we get:

Proposition 15.9. Suppose 0 ∈ Zf for each f. A Walrasian-equilibrium
allocation is in the core of the economy, where the core is defined relative to
feasible sets XJ for each coalition, if p ≥ 0, each consumer is locally
insatiable, and:

a.  each XJ is defined using rule 1, 3, or 5, or

b.  each XJ is defined using any of the rules above, as long as all firms have
constant-returns-to-scale technologies.

The idea of the proof in every case is to mimic the proof of Proposition 15.8.
Define, for each J, its equilibrium aggregate wealth using equilibrium prices as
YJ, and then show that if ( j)j∈J is in XJ (in any of the cases), we have p ·
(∑j∈J j) ≤ YJ. The details are left to you as an exercise, but they can be found
in the Student’s Guide if you get stuck.

15.4.   In a Large Enough Economy, Every Core Allocation Is a
Walrasian-Equilibrum Allocation

The First Theorem of Welfare Economics says that every Walrasian-equilibrium
allocation is efficient, and the Second Theorem says that every efficient
allocation is (more or less) Walrasian. We now know that every Walrasian-
equilibrium allocation is a core allocation, so how about a converse to this?
Since being in the core implies efficiency, the Second Theorem is already one
sort of converse, if we are allowed to redistribute endowments. But what about
the converse if we aren’t allowed to redistribute endowments? Is there any truth
t o Every core allocation for a given economy is a Walrasian-equilibrium
allocation for the original endowments?

This isn’t true in general, of course. We see this for two-person, two-good,
pure-exchange economies, depicted in an Edgeworth Box. All efficient points
that lie between the two indifference curves through the initial endowments are
in the core; to be a Walrasian equilibrium, the line tangent to the two



indifference curves through this point (which are tangent to one another,
assuming smooth indifference curves and that we are interior to the box) must
pass through the initial endowment point. This simply won’t happen at every
point in the core, in general.

At least since Edgeworth (1881), though, there has been the notion that, “ in
large economies,” the only outcomes that can survive a robust negotiation
process are competitive equilibrium allocations. The literature provides several
formalizations of this remarkable idea. One approach involves economies where
each consumer has infinitesimal impact on others because each consumer is, in
fact, infinitesimal: Instead of having a finite set of consumers, the economy is
composed of a continuum of consumers; in this case, every core allocation is
indeed a Walrasian-equilibrium allocation. A second approach allows there to be
a finite number of consumers, but assumes that no single consumer has any
power in the sense that, if we remove from the economy a consumer and her
endowment, everyone who remains can achieve just as much utility as with her
present. And, in a third approach, one starts with a finite economy, where some
core allocations may not be Walrasian-equilibrium allocations, but then the
number of consumers is increased, with the hoped-for result being that, as the
number of consumers rises, the core shrinks to the set of Walrasian-equilibrium
allocations. The key to such results is to add consumers in the right way:
Imagine, for instance, a three-good economy, where two of the consumers are
endowed with and enjoy the consumption of the first two goods, and all other
consumers are endowed with and enjoy only the third good. However many of
those other (third type of) consumers you add, they will have no impact on the
core as regards the first two. Roughly put, what is needed is to increase the
number of consumers in the economy in a way so that every consumer becomes
insignificant to every other consumer; no one depends on anyone else to any
great degree, but can do nearly as well, if necessary, dealing with others.

This is a rich literature, and we’ll provide only a taste here. Specifically,
we’ll provide the seminal result of the third type, the Debreu-Scarf Theorem
and then discuss briefly how results of the first type are constructed.

The Debreu-Scarf Theorem involves the notion of a replica economy. Begin
with a finite, pure-exchange economy ε. That is, we have a finite list of
consumers h = 1, …, H, each of whom has preferences given by a utility
function uh defined on  (for some positive integer k) and an endowment eh.



Attach a superscript 1 to this economy, so it is relabeled ε1 and called the one-
replica version of ε. Then for any finite integer N, the N-replica version of ε,
denote εN, is an economy with NH consumers, N of whom have preferences
given by u1 and endowment e1, N more of whom are characterized by u2 and e2,
and so forth: There are N-replicas of each of the H consumers in the original
economy. Whereas we have enumerated consumers with the symbol h so far, in
replica economies we use counters hn, meaning the nth consumer (out of N) of
type h (out of H).

Allocations for εN can, of course, give different copies of a specific type of
consumer different consumption bundles; a general allocation for εN is a point
(xhn)h=1,…,H;n=1,…,N ∈ ( )HN such that ∑h,n xhn ≤ N ∑h eh. We are

interested, however, in what are called equal-treatment allocations, which are
just what the name implies: allocations in which xhn = xhn∑ for all h, n, and n′ .
We continue to reserve the symbol x for an allocation for the base economy; that
is, x ∈ ( )H. But we also talk about the equal-treatment allocation x for all

replica economies εN, with the understanding that, in the N-replica economy εN,
consumer hn gets xh in the equal-treatment allocation x.

We can justify restricting attention to equal-treatment allocations at the cost
of assuming that each consumer has strictly convex preferences:

Proposition 15.10 Suppose that all consumers have strictly convex preferences.
Then any (general) allocation (xhn) that is in the core of N-replica economy εN

(for any N) isan equal-treatment allocation. (Since we know that every
Walrasian-equilibrium allocation is in the core of the economy, this implies as
well that every Walrasian-equilibrium allocation is an equal-treatment
allocation.)

Proof. Suppose (xhn) is a feasible allocation for the N-replica economy, which
means that ∑h,n xhn ≤ N ∑h eh. Form a coalition of consumers consisting of one
representative of each type by the following rule: For type h, choose one of the
replicas whose utility uh(xhn) is least among {uh(xh1), uh(xh2), …, uh(xhN)}. If all
consumers of type h have the same utility under this allocation, choose any one;
in general, if there is a tie for least utility (among replicas of this type), any one



that has this least level of utility will do. Then consider the allocation for this
coalition in which the representative of type h receives (1/N) ∑n xhn. That is, the
representative of type h gets the average amount obtained by all replicas of this
type under (xhn). It is obvious that since the full allocation (xhn) is feasible, this
allocation is feasible for this coalition of representatives. Of course, since h is
convex, this average allocation given to the representative of type h leaves her at
least as well off as she was under (xhn); remember that she was selected on the
basis of having utility less than or equal to all other replicas of type h. And if
the full allocation was not an equal-treatment allocation—that is, if for some h
the xhn are not all identical—then because h is strictly convex, this average
allocation gives the representative of type h strictly greater utility than she had
under (xhn). That is to say, if the allocation (xhn) is not an equal-treatment
allocation, it is “ blocked” by the coalition we’ve constructed and is not in the
core, which is the contrapositive of the statement we set out to prove.

With this as justification or otherwise, ask the question: Is the (feasible)
equal-treatment allocation x in the core of εN for large N? Two remarks begin
to answer this question:

•   Suppose x, viewed as an equal-treatment allocation for εN, is not in the core
of εN. This means that there must be a coalition of consumers in EN that
block x. But every coalition in EN is also a coalition in EM for M > N, so
this same coalition would block x from being in the core of EM. If the
equal-treatment allocation x is not in the core of εN for some N, then it is
not in the core of εM for all M > N.

•   Suppose x is a Walrasian-equilibrium allocation for the base economy ε,
with corresponding prices p ≥ 0. Then x, viewed as an equal-treatment
allocation, is a Walrasian-equilibrium allocation for εN for all N, supported
by the price vector p. So if all consumers are locally insatiable, Walrasian-
equilibrium allocations x for the base economy (for nonnegative price
vector p) are, when viewed as equal-treatment allocations, in the core of εN

for all N.



To paraphrase, as long as we restrict attention to equal-treatment allocations for
replica economies—and, if preferences are strictly convex, we are fully entitled to
do so according to Proposition 15.10, as long as our interest is in core
allocations—we know that the core shrinks (at least, cannot grow) as the
number of replicas increases, but it never shrinks to be less than Walrasian-
equilibrium allocations for the original economy (for locally insatiable
consumers, and as long as the equilibirum prices are nonnegative). The
following remarkable result completes this picture:

Proposition 15.11 (The Debreu-Scarf Theorem).  Suppose ∑h eh is strictly
positive and h is nondecreasing and strictly convex for each h. If x ∈ (

)H, viewed as an equal-treatment allocation, is in the core of εN for all N, then
it is a Walrasian-equilibrium allocation for the base economy ε (and, hence,
for all εN), for some strictly positive price vector p.

Before giving the details of the proof, a few remarks are in order. We’ve added
assumptions that the social endowment is strictly positive and that preferences
are nondecreasing and strictly convex. Note that the assumptions on preferences
are enough to guarantee that preferences are strictly increasing (if you don’t see
this immediately, think about it some more); hence local insatiability and
nonnegativity of equilibrium prices will not be a problem. Of course, strict
convexity of preferences justifies looking at equal-treatment allocations, at least
insofar as we are interested in core allocations. But these assumptions are (also)
required for small steps in the proof; without them, and if we assumed local
insatiability of preferences directly, we’d still get a result about Walrasian quasi-
equilibria; we’ll state this result at the end of the proof.

It is easy to get lost in the details of the proof, so let me give the main idea
before giving details: We have a pure-exchange economy ε and an allocation x,
and we want to know: When is x a Walrasian-equilibrium allocation, relative to
a given endowment vector (eh)? Compare this with the question asked and
answered in the Second Welfare Theorem: There we have an allocation x, and
we want to know when this is a Walrasian-equilibrium allocation, but where we
allow ourselves the freedom of redistributing the social endowment, so the
answer is (more or less): It is, as long as we can pass a separating hyperplane



between the set of all bundles that provide a Pareto improvement on x and the
set of bundles the economy can realize.

In this case, we aren’t given the freedom to redistribute the social
endowment; endowments (eh) are fixed, and we want to know if x is a
Walrasian-equilibrium allocation relative to those endowments. In this regard,
consider consumer h and the set

Translating from symbols to words: this is the set of net trades that h can
make, starting from her endowment eh, that will leave her in a feasible
consumption position (hence the restriction ζ + eh ≥ 0) and that are better for her
than xh.3 If there are prices p that support xh as a utility-maximizing choice for
her, starting from eh, then p · ζ must be strictly positive for all ζ from this set;
otherwise, she could afford something better than xh. So p needs to define a
hyperplane that puts h(xh, eh) on its strictly positive side. (If we are content
with x being the allocation portion of a Walrasian quasi-equilibrium, we need p
to define a hyperplane that puts h(xh, eh) on its nonnegative side.)

But the same price vector p needs to work for all consumers h
simultaneously. This means that ∪h

h(xh, eh) has to lie on the strictly
positive (or, for quasi-equilibria, nonnegative) side of the hyperplane defined by
p. And if that is true, the same must be true of the convex hull of this union. To
set some notation, fixing the consumers, their preferences, and their
endowments, let

where the CH stands as always for “ convex hull.” Please note that if we assume
that each consumer’s preferences h are convex, we’ll know that each set 
h(xh,eh) is convex. But we have no reason to suspect that the union of these sets



is convex. So the taking of the convex hull of the union will be necessary. We
will, of course, be finding p by applying the Separating-Hyperplane Theorem,
so this becomes the key question in the proof:

What does it take, in terms of assumptions about the basic economy ε and/or
replicas εN, to ensure that *(x,e) can be put on the strictly positive (or
nonnegative) side of a hyperplane through the origin?

Geometrically, the answer is easy. If *(x, e) can be put on the strictly positive
(or, at least, nonnegative) side of a hyperplane defined by p · x = 0, for
nonnegative p, it is necessary that *(x, e) cannot have any intersection with
the strict negative orthant in Rk. But this is sufficient as well: Suppose *(x,
e) does not intersect the strict negative orthant. The set *(x, e) is convex, by
construction. The strict negative orthant is convex. So the Separating-
Hyperplane Theorem tells us immediately that there exists p such that p · ζ ≥ 0
for all ζ ∈ *(x, e) and p · ζ ≤ 0 for all strictly negative ζ. The second half of
this also implies that p ≥ 0. We don’t quite have everything we need (even for
showing that p makes x a quasi-equilibrium allocation); we need to show that p
· xh ≤ p · eh for each h. But that will be a matter of fairly simple bookkeeping.
(You’ll see why momentarily.) Now, to move from quasi-equilibrium to full
Walrasian equilibrium will take a bit more cleaning up, as will showing that
the prices that support this equilibrium are strictly positive. But the heart of the
argument is this application of the Separating-Hyperplane Theorem and the
answer to the reformulated question:

What does it take, in terms of assumptions about the basic economy ε and/or
replicas εN, to ensure that *(x, e) does not intersect the strict negative
orthant in Rk?

The genius in the Debreu-Scarf Theorem is in recognizing the connection
between the answer to this question and the cores of the replica economies.
With that bit of initial intuition, here are the details of the proof.



Proof. Fix the economy ε and an allocation x, and define h(xh, eh) for each h
and *(x, e) as in (15.3) and (15.4) above.

Suppose that *(x, e) is not disjoint from the strict negative orthant in Rk.
That is, there exists some ζ, strictly less than zero, that is also a member of 
*(x, e). We know that ζ = ∑h αhζh for ζh ∈ h(xh, eh), where the coefficients
αh are all nonnegative and sum to 1. (We can select one ζh from h(xh, eh) for
each h because we know that the h(xh, eh) are all convex sets, since
preferences are all (strictly) convex. If we didn’t know that preferences were
convex, we might have to select more than one ζh for a given h, to make up an
arbitrary point in the convex hull. Keep this variation in mind as you read
through the proof.)

Because ζ = ∑h αhζh is strictly negative, we can perturb the weights slightly
to ensure that they are all nonnegative rational numbers, they still sum to one,
and the convex combination is still strictly negative. Assuming this has already
been done in the initial selection of weights (αh), we can then let M be the least
common multiple of the denominators of the αh, so we know that

is strictly negative, for integers Mh whose sum is M. Look at the economy εN

for N ≥ M and a coalition consisting of M1 copies of consumer 1, M2 copies of
consumer 2, and so forth. This coalition can generate net trades for its members
of ζ1 for all copies of consumer 1, and so forth; the fact that ∑h(Mh/M)ζh ≤ 0
implies ∑h Mhζh ≤ 0, which means this is a feasible reallocation of the
endowments of the members of this coalition. And this reallocation leaves all
members of this coalition strictly better off than they are with their part of x, so x
is not in the core of εN for all N ≥ M. We know that the cores of εN are ordered
by set inclusion; that is, if x, viewed as an equal-treatment allocation for εN, is



not in the core of εN, then it is not in the core of εM for all M ≥ N. Hence this
shows by contraposition that, if x (viewed as an equal-treatment allocation) is in
the core of εN for all N, then *(x, e) must be disjoint from the strict negative
orthant in Rk.

(If you read the previous paragraph too quickly, you may miss the genius of
Debreu-Scarf. It just happened, so please take the time necessary to savor its
beauty.)

Both *(x, e) and the strict negative orthant are convex sets, so there is a
hyper-plane that separates them; i.e., a nonzero price vector p ∈ Rk and a scalar
β such that p · ζ ≥ β for all ζ ∈ *(x, e) and p · ζ ≤ β for all strictly negative
ζ. By the usual argument (since the strict negative orthant is on one side), p ≥
0. Moreover, it is clear that β ≥ 0, since we can drive p · ζn to 0 with a sequence
{ζn} from the strict negative orthant that approaches the origin.

I claim that p · (xh – eh) ≥ β. To see this, recall that uh is strictly increasing,
and so if we take any nontrivial, nonnegative commodity bundle z, uh(xh + z)
> uh(xh) for all  > 0. But then xh + z – eh ∈ h(xh, eh), and (therefore) p ·
(xh + z – eh) = p · (xh – eh) + p · z ≥ β. Pass to the limit as approaches zero
from above, and p · (xh – eh) ≥ β follows. (Suppose we didn’t assume that each
uh was strictly increasing, but only locally insatiable. Could you still prove the
assertion of this paragraph?)

I claim that β = 0, and p · (xh – eh) = 0 for each h. Begin with the feasibility
inequality,

evaluate each side with the price vector p (which is nonnegative, and so doesn’t
change the inequality), collect terms to one side, and you get



But, term by term, the terms in the last summation must each be at least β, and
β ≥ 0. So β must be zero, and each term in the sum must be zero.

We are virtually done. The claim, clearly, is that the price vector p together
with x forms a Walrasian equilibrium. We certainly know that it is a Walrasian
quasi-equilibrium:

•   The market clearing condition ∑h xh ≤ ∑h eh holds, because we assumed
that x is a feasible allocation.

•   The bundle allocated to consumer h (or the various copies of consumer type
h) is affordable: We just showed that p · xh = p · eh.

•   Any bundle h that is strictly preferred to xh by type h costs p · eh or more:
If h is strictly preferred to xh, then h –eh is in h(xh, eh), and so p ·( h

–eh) ≥ β = 0, which is p · h ≥ p · eh.

The only pesky part is that we need to argue that we can drop the “ quasi”
portion of the last piece, which means that we need to show that if h is strictly
preferred to xh, then p · h > p · eh.

The first step is to show that p must be strictly positive. If k = 1, then this
is obvious, as the Separating-Hyperplane Theorem produces a nontrivial
(nonzero) hyperplane. So suppose k > 1, and imagine that pi = 0 for some good
i. Since p is nontrivial, there is some good j for which pj > 0. Good j is in
positive total supply (this is the one place we use that assumption), and
preferences are strictly increasing, so in any Pareto-efficient allocation x (and x
must be Pareto efficient, if it is in the core even of ε1), some consumer type h is
ending up with a strictly positive amount of j. Fix that person h, and look at xh.
Add one unit of good i to xh; consumer h is strictly better off. So we can take
away some small amount of good j (and this consumer has some j to be taken



away, which is why we needed all that fluff, getting to this point), and the
consumer still prefers the new bundle to xh. Call this new bundle h; h – eh

is in h(xh, eh), so p · ( h – eh) must be greater than or equal to zero. But we
know that p · (xh – eh) = 0, and the difference between h and xh is that h

has one more unit of a good whose price is zero, and a bit less of a good with a
positive price, so p · ( xh – eh) < p · (xh – eh) = 0, a contradiction. Price
vector p must be strictly positive.

And now, suppose xh is strictly preferred to xh. Preferences are strictly
increasing, and xh ∈ , so it is inevitable that h ≠ 0. Since prices p are

strictly positive, p · h > 0. And now we are in business: By continuity of
preferences, for α close to one, α h is strictly preferred to xh; hence α h – eh

is in h(xh, eh), and therefore p · α h ≥ p · eh. But since p · h > 0, p · h

> αp · h = p · α h ≥ p · eh. Our quasi-equilibrium is a full-fledged
Walrasian equilibrium.

Consider the following variation on Debreu-Scarf:

Proposition 15.12. Fix a finite pure-exchange economy ε, in which each
consumer is locally insatiable. Suppose that a feasible allocation x for this
economy, when interpreted as an equal-treatment allocation for replica
economies built from ε, is in the core of εN for all N. Then x is the allocation
portion of a Walrasian quasi-equilibrium of ε, with nonnegative prices. And,
letting p denote (nonnegative) prices that accomplish this, if xh is strictly
positive for consumer h, then p · h > p · eh for every h that is strictly
preferred by h to xh.

We’ve removed from Debreu-Scarf the assumption that preferences are strictly
convex; indeed, we don’t even assume preferences are convex. We’ve removed
the assumption that preferences are nondecreasing; assuming (only) local
insatiability. And we have removed the assumption that the social endowment
is strictly positive. Now we don’t have as good an excuse as we had earlier for



restricting attention to equal-treatment allocations in the replica economies; it
becomes an integral part of the proposition that we look (only) at such
allocations. And we can no longer assert that the supporting prices are strictly
positive or that they give a full-fledged Walrasian equilibrium. But we get to
nonnegative prices and a Walrasian quasi-equilibrium, and the same basic
argument works. We use the proof only as far as the three bullet points back one
page. And in two places we have to make some changes. I’d challenge you to
find those two places, but since they are clearly marked, the challenge is
somewhat less: Make sure you understand how to get past these two places
without losing the basic flow of the proof.

An alternative, intuitive proof (with lots more assumptions)
Notwithstanding the mathematical beauty of the proof of the Debreu-Scarf
Theorem, it doesn’t convey to many people an immediate intuitive sense in
which “ large numbers of a given type” leads to the result. (It does do so if your
intuition has internalized the idea that large numbers convexify, so the set of
Pareto-improving net trades becomes convex. But it takes a very well developed
intutition to regard this as intuitive.) So here is an alternative proof that requires
more assumptions but does a better job in conveying the intuition.

The assumptions we add are that every consumer h has a differentiable
utility function uh, that x is strictly positive, and that the marginal utility for
each consumer h of each good i is strictly positive at the allocation xh. If x is not
efficient, we know it is not in the core of even ε1, so suppose x is Pareto
efficient. Then our extra assumptions imply that the ratios of marginal utilities
for all consumers are equal; writing 

 is the same

for all h, for each i and j. Let p1 = 1 and, for i = 2, …, k, let 
; that is, we are creating relative prices that match

the ratios of marginal utilities. We know, of course, that if x is a Walrasian-
equilibrium allocation for any prices, it must be for this set of (relative) prices p.

So check whether p · eh ≥ p · xh for all h. If it is, then with all the convexity
assumptions we’ve made, we know that we have a Walrasian equilibrium. So
suppose it is not. Suppose that, for some h, p · eh < p · xh. Relabel the



consumers so that this h is h = 1; that is, we suppose that p · e1 < p · x1. Type
1 is getting more value than her endowment is worth; can’t the others do
without her and improve their own lot?

They certainly can do so, “ on the margin.” Suppose all the consumers
except for type 1 tried to do without type 1. They could keep their allocations
xh (h ≠ 1), but they would have to absorb the net trade x1 – e1. Imagine that
they had to absorb only a small piece of this: That is, imagine they consume xh

+ (x1 – e1)/M instead of xh for large M. Taylor’s Theorem tells us that the
change in their utility, if M is large, is

but since p · (x1 – e1) > 0 and  is proportional to p, the

summation is strictly positive. For M large enough, every consumer h ≠ 1 is
strictly better off with xh + (x1 – e1)/M than with xh. Indeed, this is even true of
consumers of type 1; for M big enough, they strictly prefer x1 + (x1 – e1)/M to
x1.

Here is where “ big numbers” come in. Suppose M is large in the sense of
the previous paragraph. For any replica economy εN, N ≥ (M + 1)/H, take the
coalition of everyone but one copy of consumer 1. We give each consumer in
this coalition what she had before (xh for type h), plus her equal share of the net
trade x1 – e1 that must be absorbed because we leave one type 1 out. This gives
each consumer of type h the allocation xh + (x1 – e1)/(NH – 1), which (as long
as N ≥ (M + 1)/H, so NH – 1 ≥ M) is strictly preferred by this consumer to xh.
This coalition blocks x.

Therefore, if x is in the core of εN for all N, it must be that p · xh ≤ p · eh for
all h, which makes (p, x) a Walrasian equilibrium.

Continuum economies



At the start of the previous subsection, I mentioned that, to a well-developed
intuition, the key idea is that large numbers convexify. If you have been reading
and consuming in the past two chapters the remarks made about economies with
a continuum of agents, Aumann integrals, and Aumann’s Lemma, you can
probably guess how those remarks extend. In fact, the first article by Aumann
concerning these “ large” economies, in which he defines Aumann integrals and
provides his lemma, namely Aumann (1964), demonstrated an immediate
equivalence between the core of such economies (pure-trade, with a nonatomic
measure of consumers) and their Walrasian-equilibrium allocations. The proof
that every Walrasian-equilibrium allocation is in the core is, except for
mathematical details, just like the proof we gave (or, more accurately, outlined,
based on the proof of the First Theorem); equilibrium prices will separate for
each coalition J (now a measurable subset of the set H of all consumers4) Pareto-
improving bundles from bundles less than or equal to the coalition’s overall
endowment. And to show that every core allocation is (quasi-) Walrasian, the
argument is very close to the one presented here in the formal proof of the
Debreu-Scarf Theorem. Suppose x is a core allocation (for the given endowment
vectors given by e). For each consumer h, define h(xh, eh), the set of net
trades that when added to eh improve on xh for h. Being in the core means that
for each coalition J, no (measurable) selection ζh ∈ h(xh, eh) can be feasible
for the coalition, or

(Here, μ is the nonatomic measure of the consumers.) Of course, this is just
saying that the Aumann integral of the h(xh, eh) has no intersection with the
negative orthant. Add to each h(xh, eh) the element 0 (the origin in Rk),
where in the Aumann integral for coalition J, you assign the selection 0 for h ∉
J, and the statement x is in the core becomes



where the integral is the Aumann integral for the h(xh,eh) augmented with the
origin. But Aumann’s Lemma tells us that the integral is a convex set. We
have everything needed to pass a separating hyperplane p between the negative
orthant and the Aumann integral in the display, and then do the bookkeeping
needed to finish off the proof. (And, of course, please note that convexity
assumptions on individual preferences and any discussion of equal treatment are
unnecessary; Aumann’s Lemma about the convexifying power of aggregation is
doing all the hard work.)

Of course, this is just the idea of the proof. There are details both
technical/mathematical and economic to which we must attend. To see those
details properly handled, you will have to consult one of the original papers on
the subject or a more advanced book. But this discussion shows, I hope, the
basic lines of this marvelous result.

15.5.   Externalities and Lindahl Equilibrium
The First Theorem of Welfare Economics (and the core-compatibility of
Walrasian-equilibrium allocations) is a remarkable result that has been used
polemically, to argue that unfettered markets produce very good (efficient)
economic outcomes. Usually these arguments are propaganda—very few modern
economies are perfectly competitive, this ignores entirely questions of equity,
and economic performance is driven as much by processes of growth and
innovation as by static allocation; general equilibrium, even as interpreted to
incorporate time and uncertainty as in next chapter, doesn’t seriously address
the forces of innovation. But read appropriately—as a catalog of what it takes to
get efficiency out of market equilibrium—the First Theorem still has a lot to
say.

In particular, an important assumption hidden away in the result is that there
are no externalities in consumption or production. An externality is simply a
case in which the economic activities of one party—a consumer or a firm—have
a direct impact on the utilities or production-possibility sets of others, where by



a direct impact I mean, not via the price mechanism. It is easiest to work with
consumption externalities, so I will do so: Formally, the idea is that the utility
of consumer h depends not only on what she herself consumes, xh, but on the
entire vector (x, z). It matters to her what her neighbors consume, what the firm
down the street does, and so on. We can think of there being specific
externalities—h is affected only by the consumption decisions of her next-door
neighbors, for example—but the idea is always, uh (or h) turns on more than

xh.
When there are these consumption externalities, Walrasian-equilibrium

allocations are not (necessarily) Pareto efficient. Problem 15.11 gives a simple
illustration. But it might be helpful as well to indicate where the proof of the
First Theorem breaks down.

Recall the proof. We take a Walrasian equilibrium ( p, x, z) (with p ≥ 0) and
some ( , ) which is meant to be Pareto superior to it. If this alternative plan
is feasible, it satisfies

and by dotting both sides of inequality with the nonnegative prices, we get

where the second inequality follows because z is profit maximizing at p. So far,
externalities (in consumption) don’t affect the proof at all. (If there were
externalities in production, which means that Z f depends nontrivially on (x, z),
the second inequality step would already pose a problem.)

But this alternative plan is supposed to be Pareto superior to the
equilibrium plan. In the proof, we concluded from h h xh and local

insatiability that p · h ≥ p · eh + ∑f s
f hp · zf for each h, with strict inequality



for some h (the h for which there is strict preference of the hat allocation). When
there are externalities, this simply doesn’t follow. To begin with, it doesn’t
make sense to write h h xh; instead the appropriate thing is that ( , ) 
h (x, z), with strict preference for at least one h. And so it is even possible that 

h < xh for some h—that is, the hat plan gives h strictly less direct
consumption and so is surely affordable—but h prefers the hat plan because it
calls for less consumption of some noxious good by a neighbor, or because it
calls for less production, and hence less pollution by some neighboring plant.
And so the proof dies.

An important view on why externalities cause inefficiencies, due to Ronald
Coase (1960), is that the inefficiencies arise because of ill-defined property
rights. If I am adversely affected by the pollution of a firm down the street from
me, we should establish whether (1) I have the right to clean air, and the firm
must pay me if it wants to pollute, or (2) the firm has the right to pollute, and I
have to pay it if I want its pollution abated. The Coase Theorem says that if
property rights of these sorts are established and consumers and firms bargain in
good faith, then an efficient outcome will be reached.

At the level of general equilibrium, this idea is expressed in what is called a
Lindahl equilibrium.5 In a Lindahl equilibrium, transfers are made between
every pair of agents for every activity undertaken by one that might have an
external effect on the other. In our current setting of consumption externalities,
we have

(1)  prices p ∈ Rk for the goods themselves;

(2)  for every h and h′ , a set of transfer prices rhh′ ∈ Rk that records transfers
from h to h′  made for the choice of xh by h, and

(3)  for every f and h, a set of transfer prices qf h ∈ Rk that records transfers
from f to h made for f’s choice of zf.

The profitof firm f, given all these prices and given that the firm chooses
production plan zf, is p · zf – ∑h qf h · zf. Given prices and a production set Zf,
the firm is meant to choose zf to maximize these transfer-included profits.

Consumers maximize the utility uh(x, z) that they accrue from the entire



vector of economic activity (x, z), subject to the following budget constraint:

That is, consumer h pays for the goods she consumes, and she pays transfers to
other consumers for her consumption choice. Her resources are the value of her
endowment, her share of the profits of the firms, and the value of transfers she
receives from firms and from other consumers for their production/consumption
choices.

A Lindahl equilibrium is a vector (p, q, r, x, z ) where: firm f, taking prices
as given, maximizes its net-of-transfer profits at zf; consumer h, taking prices as
given, maximizes her preferences at (x, z), given the budget constraint above;
and markets clear, in the usual fashion. N.B., every consumer chooses the full
vector (x, z), and it is a condition of equilibrium that these choices all agree.

Proposition 15.13. Even with externalities in consumption, if (p, q, r, x, z ) is
a Lindahl equilibrium with p ≥ 0 and consumers are locally insatiable, then (x,
z) is Pareto efficient among all plans that are feasible given the production
technology and endowments.

Proof. Suppose (x, z) is not Pareto efficient. Then there is some Pareto-superior
plan, ( , ). Since ( , ) h (x, z) for all h, it must be (by the usual
argument of local insatiability) that, at the prices (p, q, r), each h can only just
afford ( , ), or

Moreover, for some consumer h (who strictly prefers the hat plan to the
equilibrium plan), this inequality must be strict. Hence if we sum these



inequalities over h, we get

The interconsumer transfers cancel, and the shareholdings sum to 1 for each
firm, so this is

Cancelling the common firm-to-consumer transfers gives

Since prices p are nonnegative, this contradicts physical feasibility of the hat
plan.

Bibliographic Notes
Many of the references relevant for this chapter were given last chapter or in the
course of this chapter. If one wishes to go back to the early development of the



idea that competitive equilibria are efficient, Smith (1776) and his paean to the
invisible hand is generally accorded precedence; Edgeworth (1881) and Pareto
(1909) are more modern but still classic references. (In particular, Edgeworth
provides the informal argument that bargaining among many individuals leads
to price equilibria.) Through the first half of the 20th century, proofs of the
efficiency of competitive price equilibria depended on the idea that, in an
equilibrium, ratios of marginal utilities would all be equalized; see, for instance,
Samuelson (1947, Chapter 8). The first proofs and discussion in the modern
style (the style given here) are found in Arrow (1951b) and Debreu (1951).

The Debreu-Scarf Theorem is found in Debreu and Scarf (1963). References
for Lindahl equilibria are provided in the text.

Problems

 15.1. In our development of the First and Second Theorems of Welfare
Economics, we defined X* to be all “ bundles” in Rk that are less than or equal
to bundles the economy is technologically capable of producing. This includes
“ bundles” with negative components, which may strain the sense of
“ technologically feasible,” even with dumpsters freely available. (Can we write
an IOU to a dumpster as in, “ We owe you six tons of steel, which we don’t
currently have”?) Suppose instead we defined 

, for some

selection of production plans}? How if at all would this affect developments in
Sections 1 and 2 of this chapter?

 *15.2. Consider the following two-person, pure-exchange economy. The two
consumers are Alice and Bob (A and B′). Alice’s endowment is eA = (2, 0) and
her utility function is . Bob’s

endowment is eB = (1, 3) and his utility function is 

.

(a) Prove that the prices p = (1, 1) are Walrasian-equilibrium prices for this
economy.



(b) Are the equilibrium allocations at these prices Pareto efficient? (They are
not, so…)

(c) Why has the First Theorem of Welfare Economics failed?

 15.3. In the proof of the Second Theorem, we worked with the sets SPS(x)
an d SPS(x) instead of PS(x) and PS(x) because, we said, it was “ more
convenient” to do so. Explain.

 *15.4. The Second Theorem of Welfare Economics produces a Walrasian
quasi-equilibrium, and at the end of Section 15.2, we asserted that one can’t do
better: An economy ε and a Pareto-efficient allocation x for that economy can be
constructed such that x is not the allocation portion of a Walrasian equilibrium,
no matter how you reallocate endowments and shareholdings. In fact, one can
find an example with pure exchange, two commodities, and two consumers (that
is, with an Edgeworth Box). Produce such an example. (A picture will do.)

 *15.5. Provide the details for the proof of Proposition 15.8.

 15.6. In the context of a pure-exchange economy, we said that an allocation x
∈ X* was in the core of the economy if for every coalition J and every (xj)j∈J
∈ XJ, if xj j xj for all j, then xj ∼j xj for all j. This is equivalent to the
following two-part definition:

The allocation x ∈ X* is blocked by coalition J if, for some (xj)j∈J ∈
XJ, xj j xj for all j and xj j xj for at least one j ∈ J.

The allocation x ∈ X* is in the core of the economy if it is not blocked
by any coalition.

We’d make it harder to block an allocation if we changed the first part of this
two-part definition to read:

The allocation x ∈ X* is blocked by coalition J if, for some (xj)j∈J ∈
XJ, xj j xj for all j ∈ J.



In the text, I asserted that there is less to this distinction than may meet the eye,
and I then mumbled something about “ suppose the objection by a coalition
involves giving the person strictly better off a strictly positive allocation.”
Clarify my mumblings.

 *15.7. Prove Proposition 15.9.

 15.8. Proposition 15.10 shows that, in the N-replica economy εN, if all
consumers have strictly convex preferences, then every core allocation is an
equal-treatment allocation. Therefore, this proposition has as corollary that, in
εN, every Walrasian-equilibrium allocation is an equal-treatment allocation.
Give an alternative and direct proof of this corollary. (Your alternative and direct
proof should not invoke the notion of a coalition. In fact, in showing that, if
(xhn) is a Walrasian-equilibrium allocation, then xhn = xhn′  for all n and n′ , you
should not invoke the presence of any type other than type h. This alternative
proof is simple: If it takes you more than three lines, you should think harder
about it.)

 15.9. Prove that a strictly quasi-concave function u :  → R that is also

nondecreasing is strictly increasing.

 15.10. Give the details concerning the proof of Proposition 15.12.

 *15.11. Suppose Alice and Bob live in a two-person, two-good exchange
economy. Letting (xA,xB) be an allocation for the two of them, where 

 and , suppose that Alice has

quite standard (for this volume) preferences given by 
. Bob, on

the other hand, enjoys Alice’s consumption of the first good (but not the
second): His utility function is 

. Alice’s endowment is eA = (4, 0); Bob’s endowment is eB = (0, 4).



(a) What is the set of Pareto-efficient allocations of the social endowment (4, 4)?

(b) A (standard) Walrasian equilibrium is a price vector p and an allocation x
such that markets clear and each consumer maximizes her or his utility through
her or his choice of own-consumption (Alice chooses xA; Bob chooses xB)
subject to her or his budget constraint and taking the choice of the other
consumer as given. What are the Walrasian equilibria of this economy? Are
they (is it) Pareto efficient?

(c) What is the Lindahl equilibrium of this economy? (There is only one—just
produce it.) Is it efficient? (Of course it is. That’s what Proposition 15.13 tells
you. In fact, you may want to use that fact to find the equilibrium prices.)

 *15.12. What does the front-cover design depict?

 

1 Let me qualify this. This is the natural definition in a political economy in
which each individual’s rights to her endowment cannot be abrogated. The
political power to confiscate the property of others—for instance, to tax based on
(super) majority rule—changes this.

2 If you want to chase down this idea of counterobjections to objections, look
in the literature of cooperative game theory for the bargaining set.

3 In Chapters 13 and 14, we used the term excess demand for vectors ζ, but in
those cases, a price vector p was specified, so the word demand was appropriate.
Here, no price p is present (yet), so net trade seems the more appropriate name.

4 In earlier discussion, I suggested that h ∈ H was a type of consumer, and
the nonatomic measure on H measured the relative proportions of sets of types.
Here, it makes more sense to think of each h as a consumer, with the measure
giving “ number” of consumers in a given measurable subset of H.

5 Lindahl proposed this equilibrium before Coase (in 1919, although in the
references I provide a citation to an English translation of his original article as
Lindahl, 1958), so to some extent he anticipates Coase.



Chapter Sixteen



General Equilibrium, Time, and Uncertainty

The basic model of general equilibrium posits k commodities and competitive
markets in each of those commodities. The commodities can be physical goods,
measured in some units, such as bushels of wheat or, being more exact, bushels
of a particular variety of wheat. And they can be services; a haircut, say, or
transportation by taxi to the airport. In the basic model, each commodity has a
price, with all trading seemingly done in a single instant. And, if we are going
to adhere to the notion that all trade takes place simultaneously, any and all
production by firms is also instantaneous.

By interpreting the notion of a commodity more broadly, however, we can
bring both time and uncertainty into the story. We can imagine markets taking
place at different points of time and in different contingencies. We can imagine
production that takes time and produces random amounts of output. We can
incorporate into the basic story the notion of financial markets, in which various
sorts of financial securities are bought, held for a while, and then sold by
consumers. We can even envision shares in the various firms being among the
items traded in those financial markets. In this chapter, we describe how these
interpretations can be made—more accurately, how they are made in general
equilibrium theory—and the very substantial problems that arise.

By page count, this is the longest chapter in this volume. The ideas aren’t
complex and the mathematics isn’t difficult. But the number of variations is
quite large. You may find it helpful to take this in pieces; the natural break
points are probably between sections 2 and 3, and then between 4 and 5.

16.1. A Framework for Time and Uncertainty
Time in the models we explore is discrete and finite: There is a first date,
denoted by t = 0, and then a finite and discrete sequence of future dates, denoted
t = 1, 2, …, T. (We use the terms “ date t” and “ time t” completely
interchangeably.) The literature also contains models with infinite sequence of
future dates—that is, with time measured by t = 0, 1, …; models with a doubly
infinite sequence of dates, or t = …, −1, 0, 1, 2, …; and models with time
measured continuously, with either finite or infinite horizon(s). But these all
raise complications that, on this first pass, we ignore.

As for uncertainty, we imagine a set Ω of states of nature, with typical state



of nature given by ω. As back in Chapter 5, the list of states of nature is meant
to be a complete list of mutually exclusive and exhaustive states, encoding all
relevant uncertainty (at least, that resolves by the end of the economy). We will
assume throughout that Ω is a finite set; extensions to infinite Ω, especially in
the literature of finance, are common. (In just a few paragraphs, you’ll see that if
we allow Ω to be infinite or for there to be an infinite time horizon, we
encounter infinite-dimensional commodity spaces. That is, in fact, good
motivation for extending the methods and ideas of Chapters 14 and 15 to allow
for infinite-dimensional commodity spaces. But we do not do so in this
volume.)

Time and uncertainty intertwine when we answer the question, What do
agents in the economy we are constructing know about the state of nature ω at
a particular date t? “ Agents” here refers both to consumers and to firms or, at
least, to the managers of firms who decide on the production plans of each firm.
Of course, it is entirely possible that different agents know different things at a
given time, a possibility that dramatically affects the nature of a lot of economic
activity. But this is another complication that, in this volume, we ignore.
Instead, we make the following formulation assumption: Every agent at every
point in time has access to the same information about the state of natureωas
has any other agent at that time.

And, having made that assumption, we model the (common) information
with an information partition of Ω. The symbol Ft is used to denote a partition
of Ω, a collection of subsets of Ω that have pairwise empty intersection and joint
union that is all of Ω. Elements of Ft—that is, subsets of Ω—are denoted by ft
and are called time-t contingencies. The interpretation is that, at date t, (all)
agents know which time-t contingency ft ∈ Ft contains the actual state of the
world and no more. We assume throughout that

•   no uncertainty has resolved by date 0, so that F0 = {Ω},

•   all uncertainty resolves by date T, so that for each ω ∈ Ω, {Ω} ∈ FT, and

•   agents’ information refines from one date to the next, meaning that if ft+1 ∈
Ft+1, then ft+1 ⊆ ft for some ft ∈ Ft. In this case, we call ft the immediate
predecessor of ft+1, and ft+1 is one of ft’s immediate successors.



The first two assumptions are made for notational convenience: If they didn’t
hold, and given where we are going, we could reformulate things so that they do
hold. (Since you don’t yet know where we are going, you’ll have to trust me
on this.) The third assumption, however, has content, going with the notion
that Ft tells us what uncertainty has resolved for the agents by time t.
Uncertainty that has resolved by time t will surely have (also) resolved by time
t+1. But insofar as Ft is interpreted as the information agents possess about the
state of the world at time t, the third assumption incorporates the idea that once
agents have some information about the state of nature, they retain it; they do
not forget.

Once these assumptions are made, we can depict the framework of time and
uncertainty with a tree structure, as in Figure 16.1. Each node or slice of a
branch at a point in time represents a contingency at that time. The passage of
time is marked by moving from left to right. The receipt of new information is
depicted by branches splitting from one time to the next. See the figure and its
legend for more on this.



Figure 16.1. A time-uncertainty-information tree. This tree diagram
provides a graphical representation for the type of time, uncertainty, and
information structure used in this chapter. Time is discrete and finite,
beginning with t = 0 and ending at some finite T; here T = 4. Time
moves from left to right. States of nature ω ∈ Ω are the tips of the tree,
here 16 in number, with three of the states, ω1, ω4, and ω5, marked.
Information at a point in time, formally a cell ft in a partition Ft of Ω, is
depicted as a node in the tree. We always assume that there is no
information received by time 0, or f0 = Ω, or (in the tree) a single root for
the tree. In the diagram, at time 1, agents have learned that either ω ∈
{ω1, …, ω5}, which is marked as , or ω ∈ {ω6, …, ω11}, or ω ∈

{ω12, …, ω16}. At date 2, there are five possible states of information or
contingencies, including  as marked; there are eight at date 3. Note that

if the state of nature is ω4, then agents learn that the state is one of ω1
through ω5 at date 1, they learn that is it either ω4 or ω5 at date 2, they
learn nothing further at date 3, and then learn the truth (that the state is
ω4) at the final date, t = 4.

Note that, in this formal structure, a time-t contingency ft is a subset of Ω.
Therefore, ft by itself does not (necessarily) distinguish its time. For instance, in
Figure 16.1, . As a concession to less cluttered

notation, we change things a bit and make the following convention: When we
write ft, it means the time-t contingency marked with its date. Think of ft being
the pair (t, {·}), where the second component is the cell in the information
partition Ft. But, despite this, we write things like ω∈ft or ft ⊆ f′t′; no
confusion should result.

Having established this convention, we let  is

called the set of all contingencies. That is, a contingency is a time-and-
information pair; in the tree diagram, it is any one of the nodes in the tree,
including terminal nodes. The number of time-t contingencies will be denoted
b y Nt, with N : = N0 +N1 + … + NT denoting the total number of



contingencies. Note that, in Figure 16.1, N = 33.
As already noted, each ft ∈ F for t > 0 has a unique immediate predecessor

in the tree, a time-t−1 contingency ft−1 that contains ft. We write  for this

immediate predecessor of ft. The set of all predecessors of ft (for t > 0) is denoted
by P(ft); this includes , as well as the immediate predecessor of , and so

forth, stretching back to f0. And we use S(ft) to denote all the successors of ft,
for t < T.

16.2. General Equilibrium with Time and Uncertainty
With these pieces of framework in place, we can now repeat everything we did
i n Chapters 14 and 15, but with the notion that the commodity space is
enlarged and enriched by time and uncertainty.

We suppose that there are k basic commodities, which means physical
goods and services: think of “ a bushel of wheat” or “ a ride to the airport.” Each
of these commodities is now expanded into N different “ contingency-labeled
commodities”: For each contingency ft (for t = 0, …, T), we have a commodity
such as “ a bushel of wheat in contingency ft” or “ a ride to airport in
contingency ft.” We sometimes call this sort of thing a contingency-stamped or
-labeled commodity.

Having commodities stamped by contingencies is clearly a godsend when it
comes to more realistic models of production-possibility sets. If, say, we want
to model a technology in which it takes two periods to achieve some production
activity, we could require inputs be provided in date-t contingencies with output
arriving at date t+2 in all successor contingencies. To model a production
process in which the yield of usable output is random, we could have the output
levels in date-t+2 contingencies vary. We can envision production plans by the
firm in which they undertake production in some time-t contingencies but not in
others. (And we can imagine consumers choosing to consume certain goods or
services in some contingencies but not others.)

Of course, most tangible goods (not services) have a nontrivial shelf-life;
wheat at date t can be stored and saved for, say, up to three periods. If the
storing and saving is done by a firm, this means a more complex production-



possibility set, with contingency-ft wheat an input that leads to output
contingency-ft+3 wheat, for all ft+3 that are successors of ft, if we want to model
the activity of storing for three periods. And we can easily take into account the
cost of this storage activity, as a further required input to the production process,
and/or spoilage, where, for instance, x units of input to the process gives only
(1−α)x units of output, where α represents the spoilage rate. Accommodating
storage by consumers is a bit trickier, but only a bit: essentially, you can
provide for this with a clever definition of the utility of bundle of goods.

But, having contingency-stamped each commodity, we can then revert to the
constructs and theorems of Chapters 14 and 15. The price vector p is now k × N
dimensional, but a Walrasian equilibrium has the same structure, and all the
theorems go through.

To be explicit, the idea in such a construction is that markets open once and
once only, at (or just prior to) date 0, when consumers and firms essentially
forward contract for all the activities they then will carry out as time passes and
contingencies unfurl. If consumer h is endowed with 100 units of wheat in
time-t contingency ft, she can contract to supply this to the market in that
contingency, receiving 100 times the price of ft wheat, which she uses (say) to
purchase 30 units of ft+2 corn, delivery of which occurs at time t+2, if the state
of nature does indeed lie within ft+2. In fact, she doesn’t specifically exchange
wheat for corn in this fashion; instead, she makes a full net trade, selling some
goods and taking in profits from her shareholdings in firms, and using the
wealth so generated to buy a consumption bundle that, through time and as
uncertainty resolves, she consumes.

But all the market activity—all the buying and selling or, more accurately,
the promises made to supply and taken to receive various goods and services at
various times and in various contingencies—all this happens a priori. It’s a very
fanciful model of what really happens in the real world, but it is only a model,
after all, and it greatly expands the scope of all the nice theory of Chapters 14
and 15.

Summing up, notation, and assumptions
This economy and its Walrasian equilibria set a benchmark for what follows, so



let me sum up by making explicit a few things that have so far been implicit,
creating some useful notation, and making some assumptions.

The setting has k basic commodities and a time/uncertainty/information
(t/u/i) structure specified by the time index t = 0, …, T, set of states of nature
Ω, and information-partition structure {Ft;t = 0, …, T}. The t/u/i structure
allows us to create sets of time-t contingencies for each t, the union of which is
the set of all N contingencies. This then gives us the commodity space, where
each basic commodity is copied N times, for a total of kN contingency-stamped
commodities. Consumers and firms are introduced in the usual fashion, but now
the consumption space of each consumer h is , endowments lie in this

space, and preferences are defined over this space. For the firms, production-
possibility sets Zf are subsets of RkN, in the usual fashion. The symbol ε is used
to denote such an economy.

We will use x ∈  to denote consumption bundles and z ∈ RkN

for production plans, appending the superscripts h and f, respectively, when we
need to indicate the consumption bundle of consumer h and the production plan
of firm f. (The use of f for firms and ft for contingencies should not cause a
problem.) For a consumption bundle x, the amount of basic good i in
contingency ft specified in x is denoted xift; xft denotes the vector in  whose

ith component is xift. The endowment of consumer h in an economy is denoted

by eh, with components .

The all-at-once market structure for economy ε consists of kN markets, all
conducted at time t = 0 (or just prior), with one market in each of the kN
contingency-stamped goods. Letting p be a price vector for these markets, with
components denoted pift, Walrasian equilibria for the all-at-once market structure

are defined exactly as in Chapter 14; a Walrasian equilibrium consists of a price
vector p, consumption plans x (with components ), and production plans

z.
We make the following assumptions about consumers:

Assumption 16.1. Each consumer h has continuous, nondecreasing, and



locally insatiable preferences. And, for each contingency ft, some consumer is
globally insatiable in the consumption of contingency-ft commodity i = 1; that
is, for each ft there is some consumer h such that, for any x ∈ , there

is an x′ ∈  such that x and x′ are identical except on coordinate 1ft,

and uh(x′) > uh(x). We hereafter refer to basic commodity 1 as wheat.

Proposition 16.2. In any Walrasian equilibrium, equilibrium prices are
nonnegative, and the price of contingency-ft wheat is strictly positive for all ft.
Moreover, every consumer satisfies her budget constraint with equality, and
every Walrasian-equilibrium allocation is Pareto efficient.

This follows from a combination of earlier results and, for the strict positivity of
the prices of ft wheat, an extension of an earlier argument. As something of a
review, I’ll leave it to you to supply all the details (in Problem 16.1a).

Bankruptcy and breach
In a Walrasian equilibrium (in general), it is implicit that all agents fulfill their
obligations. If a consumer’s equilibrium allocation calls for her to deliver some
of her endowment of some good to the market, she does so. If a firm is supposed
to provide the market with some quantity of output, it does so.

Back in Chapters 14 and 15, this sort of requirement didn’t raise an
eyebrow. If all economic activity takes place at once, we can envision simple
enforcement mechanisms for this for consumers: Each consumer must deliver to
the market any commodities that she is supplying, before she is allowed to take
away commodities that she is (on net) demanding. For firms, it is a bit harder;
it is bad enough that production is instantaneous, but how do we insist that
firms deliver their outputs before they can take the inputs they need to produce
those outputs?

What is a small worry concerning firms in Chapter 14 becomes a much
bigger worry now. Consumer h contracts to deliver some amount of commodity
i at date 3, in contingency f3, and she uses this to purchase other goods and
services at dates 0, 1, and 2. When date 3 rolls around, why doesn’t she declare
bankruptcy and renege on her promise? Why don’t firms buy a lot of inputs



early on and, in bad states of nature, renege on their promises to deliver output?
This sort of thing is ruled out in all the models of this chapter. The excuse

for this modeling assumption goes back to our assumption of common
information. In particular, everyone knows everything that everyone else knows.
Once this assumption is made, it isn’t that hard to follow it with the
assumption that every agent in the economy evaluates every other agent’s
promises and plans, verifying that they can all be fulfilled. Then, some sort of
legal mechanism is put in place to ensure fulfillment. Or, if we don’t want to
have every agent doing this, at least some entity checks on the bona fides of
every agent’s plans and, ex post, enforces all promises.

You hardly need me to tell you that bankruptcy and breach of promises,
both oral and contractual (written), are real-life phenomena. But from the
standpoint of economic theory, these are phenomena that mix differential
information (different agents have access to different bits of information) and a
lack of foresight for what the future may bring. They are important issues, but
we don’t have the tools to deal with them here, and so for the time being, we
assume them out of existence.

16.3. Equilibria of Plans, Prices, and Price Expectations: I. Pure
Exchange with Contingent Claims

The last section shows how to incorporate time and uncertainty into the basic
model of general equilibrium, but at the cost of a market structure that is fairly
unrealistic and, perhaps less obviously, with assumptions about individual
behavior that begin to stretch credibility. (Are consumers really able to decide
what foods they will want to eat many periods from now?) The plot for the rest
of the chapter, more or less, is to try to bring the market institutions closer to
reality, although, as you’ll see, doing so stretches credibility on individual
behavior even further.

Firms add significant complications to the stories we are about to tell, so for
the next few sections, we suppress them. For now, we look only at pure-
exchange economies.

Then, to make the market institutions more realistic, imagine that at each
date t, and in each contingency ft, markets will open (and clear) in each of the k
basic commodities. Call these markets the contingency-ft spot markets, and let



prices in these markets be denoted by rft ∈ . (Hence, I’ve assumed

that spot-market prices are nonnegative. But this restriction on the sign of spot-
market prices is without substantial loss of generality given Assumption 16.1,
or even a weakening of this assumption to be given later; see Problem 16.1b.)
And, in addition, at time 0, in the sole time-0 contingency, f0, additional
markets are conducted in which consumers are able to transfer wealth among the
various contingencies.

There are two ways to envision what is traded in these additional markets.
The first, which goes with the name contingent futures markets, begins by
fixing some tangible commodity that is certain to have a strictly positive price
in every spot market.1 The special role in Assumption 16.1 about commodity
1, wheat, was made for this purpose: At time 0, in addition to markets in the k
spot commodities (f0 wheat, f0 corn, f0 rides to the airport, etc.), we have N – 1
futures markets, in which contracts to deliver ft wheat (measured in the same
units that are used in the ft spot markets) are traded for immediate “ cash.” One
such market exists for every contingency ft except f0. No one begins with an
endowment of these contracts, and for every buyer, there must be a seller, so we
allow consumers who trade in these contracts to take short positions, meaning
that, at time 0, some consumers use their wealth to buy promised contracts in ft
wheat (for the various future contingencies) while others sell these contracts;
they promise to deliver the wheat if and when ft comes about, in return for
which they get current cash with which to buy other things, which could be
immediate (spot) consumption goods or futures contracts for wheat in other
contingencies.

Think of a consumer with a large endowment of goods and services at date t
for some t, or in some contingency ft, but who is endowment-poor at some
other date t′ or contingency f′ t′ . This consumer, knowing of her relative good
fortune at t or ft, anticipates that, should ft come about, she can use her resources
in that contingency to buy wheat and discharge obligations she makes at time 0.
So she sells futures contracts—if she is generally wealthy at date t, she might
sell contracts in all the time-t contingencies; if she is wealthy in specific
contingencies ft, she might sell contracts in those contingencies only. And she



uses the proceeds from this sale to purchase futures contracts for time-t′
contingencies (all of them or some of them) in which she is endowment-poor.

Moreover, her purchases of wheat futures for, say, contingency f′ t′, aren’t
intended for consumption purposes, necessarily. Imagine that this consumer is
completely neutral to the consumption of wheat; she has no desire to consume
any of it. (This is consistent with nondecreasing preferences, as long as
consuming wheat doesn’t lower her utility.) But if she is endowment-poor in
contingency f′ t′, she might buy f′ t′-wheat futures at time 0 with the intention, if
f′ t′ happens, to take delivery of the wheat she bought and then sell it on the f′ t′
wheat spot market, using the proceeds from that sale to buy corn, or ice cream,
or whatever it is that she wants to consume, in the then-functioning spot
markets. Similarly, she need not be rich in endowed wheat in ft to sell ft-labeled
wheat in the futures market: If, say, she is rich in ft corn, she can sell ft wheat
futures and, should ft eventuate, sell her ft corn and buy ft wheat in the spot
market, with which she discharges her obligation to supply wheat.

Prices in these futures contracts are denoted by q ∈ , where qft ∈

R+ is the price at date 0 for the promised delivery of a unit of wheat in
contingency ft. Note that I’ve assumed that these prices will all be nonnegative.
In fact, given Assumption 16.1, they will be strictly positive in the sort of
equilibrium about to be defined. (See Problem 16.1c.)

Definition 16.3. An equilibrium of plans, prices, and price expectations (or
EPPPE) for this (pure-exchange) economy is an array (r, q, x, y) consisting
of:

a.  for each contingency ft (including f0), a price vector rft ∈ ,

where rft gives the (prospective) equilibrium prices for spot commodities in

the ft spot market;

b.  a price vector q ∈ , where qft for each contingency ft other than

f0 is the price (at time 0) of the contingency-ft futures contract in wheat;



c.  for each consumer h, a consumption plan xh ∈ , where ,

for i = 1, …, k and ft a contingency, is the amount of contingency-f t good i
that h consumes in equilibrium; and

d.  for each consumer h, a contingent-futures-market position yh ∈ 
, where  (for each contingency ft other than f0) is the

position taken in the contingent futures market for ft-contingent wheat by
h; if  > 0, then h is a buyer of ft contingent wheat, while  < 0

means that h is a seller of these contingent futures contracts.

These must satisfy:

e.  Each consumer’s plans  xh and yh satisfy her contingency-by-contingency
budget constraints, which are:

where  is h’s endowment of commodities in contingency ft.

f.  For each h, xh maximizes uh (h’s utility function), over all consumption
plans xh ∈  for which there is a corresponding futures-market

position yh ∈  that, together with xh, satisfy the budget

constraints (16.1).

g.  All markets clear:



One should be wary of definitions with seven clauses, but there is less to this
definition (from a formal standpoint) than may at first seem. The idea is captured
by the name of this creature, an equilibrium of plans, prices, and price
expectations. Starting back at time t = 0, consumers in this economy think
through everything that will happen and plan accordingly. In particular, they
anticipate (accurately!) what will be the equilibrium prices in each contingency-ft
spot market. And they make their plans: They decide (optimally!) how to use
the contingent futures contracts to move their wealth around, from one
contingency to another, choosing at time 0 their immediate consumption as
well as positions in futures contracts that will achieve this, while planning what
they will buy and sell in the various contingent spot markets, based on their
(accurate!) anticipation of future contingent spot prices.

Of course, consumer h faces budget constraints, one for each contingency ft.
For the initial contingency, her budget constraint is special, because that is
when she takes positions in the futures markets; we get the budget constraint
that is the first line of (16.1). On the “ purchase” side are the cost of h’s
immediate consumption and the cost of her futures market position; recall that 

 > 0 when h is a buyer of contingency-ft (future) wheat, so when  > 0,

this is a drain on h’s resources, while if  < 0, this loosens her time-0

budget constraint. On the “ resource” side of this constraint is just the value of
h’s immediate endowment.

The second line of (16.1) gives h’s budget constraint for all contingencies
other than f0. On the purchase or left-hand side is the cost of consumption; on
the resource or right-hand side is the value of her endowment plus the value in
that contingency of her position in the futures market. Again, if  > 0, then

h is receiving wheat from the futures market, which increases her wealth. But if 
 < 0, she must make good on contracts she sold, which subtracts from her

wealth.
And, what makes this an equilibrium, all of this fits together. Each

consumer anticipates all future prices, each consumer maximizes her utility
given those anticipations, and all markets clear. Note that we insist on equality



in the time-0 futures markets; note also that, because of this, when we write out
market clearing in the contingency-ft-wheat spot market (part of the first
inequality in (16.2)), we can ignore futures market positions, because they net
out to zero.

Proposition 16.4. (Recall Assumption 16.1, which remains in force.) Suppose
(p, x) is a Walrasian equilibrium for the all-at-once market structure. Then (r,
q, x, y) where

is an EPPPE for the economy with contingent futures markets. And if (r, q, x,
y) is an EPPPE for the economy with contingent futures markets, then (p, x),
where

is a Walrasian equilibrium for the all-at-once market structure.

A formal proof will be provided momentarily, but note what this is saying. We
don’t quite have a one-to-one correspondence between equilibria with one
market structure and the other, because prices in the contingent spot markets can
be arbitrarily scaled; that’s why, in defining p from q and r, we must
renormalize the spot-market prices. But in terms of what really matters, namely
the consumers’ consumption allocations, every equilibrium allocation for the
all-at-once market structure is an equilibrium allocation for the contingent-
futures-market market structure, and vice versa. Of course, this means that all the
nice results of Chapters 14 and 15, concerning existence and, even more
significantly, (Pareto) efficiency of Walrasian-equilibrium allocations, translate
into the same results for this market structure. Moreover, note how we move
from a Walrasian equilibrium to an EPPPE, in terms of the futures-market
positions: We simply work out how much “ cash” consumer h will need in the
ft-spot market and assign her the position that meets those needs.



At the same time, note the very heroic assumptions that are (implicitly)
made about the powers of the consumers and, in particular, their predictive and
strategic powers. They forecast with perfect accuracy what future spot prices will
be and then they optimize their lifetime consumption plans given those forecasts
(and current prices).

Proof. Now to prove the proposition. You are forewarned that this is a very
tedious exercise; if you find yourself thinking, “ It is amazing how things are
working out,” you are giving too much credit to what is going on. Once you
understand how the two equilibria are related, this is all absolutely
straightforward accounting (using Walras’ Law as one of the available
accounting identities).

Suppose that (p, x) is a Walrasian equilibrium. Define r, q, and y as shown.
To show that (r, q , x, y) is an EPPPE, we must verify that each consumer
satisfies her budget constraints and is maximizing utility subject to those
budget constraints, and that markets clear.

Concerning the budget constraints, since r is defined to be p, y can be
rewritten as . Therefore, by

definition, the second part of (16.1) holds with equality: yh is defined to make
this so. As for the first half, begin with the budget constraint in the Walrasian
equilibrium, which holds with equality because all consumers are locally
insatiable:

Break each sum into terms for contingency f0 and for all others:

Rearrange terms and substitute r for p (since they are identical), to get



In the summation, multiply and divide each term by p1ft, and you get the top
half of (16.1), with equality.

Next is to show that the consumer is maximizing. Let  be any
consumption bundle for h that, together with a corresponding , satisfies the

budget constraints (16.1) with  substituted for xh and  for yh. Sum up over

all ft the budget constraints for  and , and you get

Substitute p for r, while noting that r1ft = p1ft = qft and that 

is just q · , and you get

Now cancel the common q · , and recognize that the remaining terms amount

to p·  on the left-hand side and p·eh on the right-hand side. Hence,  is a
budget-feasible bundle for h in the economy with an all-at-once market structure
and prices p. But since xh is a Walrasian-equilibrium allocation at those prices,
uh(xh) ≥ uh( ). That proves the maximization part of the definition of an
EPPPE.

And to show that markets clear: The first half of (16.2) is the market-clearing
condition for a Walrasian equilibrium (expressed a bit less succinctly than
usual), so it holds immediately. And, we know that p ≥ 0 and 



, so clearly .

Moreover, this dot product consists only of nonpositive terms. And, because
consumers are all locally insatiable, each satisfies Walras’ Law with equality in
any equilibrium, so this dot product is zero, and hence each term in it is zero.
That is, for each ft,

We also know that p1ft > 0 for each ft; hence for each ft,

That is market clearing in the futures market, and (r, q, x, y) is an EPPPE.
For the other half, suppose that (r, q, x, y) is an EPPPE. To show (p, x) is

a Walrasian equilibrium (for p defined as indicated from r and q), we must show
that each consumer is satisfying her (all-at-once) budget constraint, each is
maximizing subject to that budget constraint, and that markets clear.

Market clearing is immediate from the first half of (16.2).
For the rest, I assert that, in any EPPPE, both qft and r1ft must be be strictly

positive. The distinguished consumer whose preferences are globally insatiable
in ft-contingent wheat provides this conclusion; you are asked to supply the
argument in Problem 16.1c.

Now take the EPPPE budget constraint for consumer h, given by (16.1). For
each ft, multiply both sides of the inequalty by qft/r1ft and then add all these

constraints together to get



Replace the (normalized) r’s with p’s, and cancel the common term q · yh, and
you get p · xh ≤ p · eh. So xh is budget feasible for h at the prices p.

Finally, suppose that  is feasible for h at the prices p. Define 

 by . I assert that

the pair ( , ) satisfies (16.1), so that  is a feasible consumption bundle for

h in the economy with futures markets and prices (r, q ). Since xh is an
equilibrium bundle (in the EPPPE), once this is shown, we know that uh(xh) ≥
uh( ), proving that xh solves h’s utility-maxmization problem in the all-
markets-at-once economy, concluding the proof that (p, x) is a Walrasian
equilibrium for that economy.

Note that  is defined so that for all ft other than f0, the second part of

(16.1) holds with equality. We only need to verify the first part of (16.1). Since 
 is budget feasible in the all-markets-at-once economy at prices p, we know

that p ·  ≤ p · eh. Write this as

In this inequality, replace each p with its definition in terms of q and r, and use
the definition of , and you get



That is the first half of (16.1), completing the proof.

Arrow-Debreu contingent claims
At the start of this section, I said that there were two ways to set up markets in
which consumers can transfer wealth from one contingency to another. And, so
far, I’ve only talked about one of those ways: So far, the extra markets at time 0
are contingent (commodity) futures markets, which pay off in units of a
commodity (which we are calling wheat).

Imagine, instead, that we have at time 0, in addition to the time-0 spot
markets in the k basic commodities, N – 1 financial-claims markets. One
market exists for each ft other than f0, and if consumer h purchases (at time zero)
yft of these, then if and when contingency ft (other than f0) rolls around, her

budget constraint is

Indeed, the same budget constraint applies if she sells some number of these
claims; in that case, yft < 0. In other words, one of these claims isn’t a

contingent claim to a unit of wheat or some tangible commodity; instead it is a
claim to a unit of “ money” or whatever is the numeraire (currency) in the ft spot
market.

This change in formulation doesn’t make a serious economic difference to
what emerges. In particular, we obtain the same sort of result as Proposition
16.4: The Walrasian-equilibrium allocations of the economy with the all-at-once
market structure is the same as the EPPPE-equilibrium allocations of this
market economy. Indeed, life is a little more convenient when it comes to
writing stuff out with this second formulation, because you no longer need to
worry about the market value in each contingency of “ wheat” or whatever is
playing the role of wheat. On the other hand, the scaling of prices does become
an issue. In the formulation of the last subsection, prices in each contingent spot
market can be rescaled independently, without affecting the price at time 0 of the
ft-contingent claim on wheat, because if you rescale all spot prices in



contingency ft, you rescale the spot price of wheat. The point is, a bushel of
wheat in each contingency has some specific economic value (in equilibrium),
and that is what qft captures.

In this alternative framework, you can, say, double all the spot prices in
contingency ft. But when you do this, since the financial contingent claim for ft
pays off in units of account, you halve its value back at time t = 0. That is, it
takes twice as many of these financial claims to transfer the same amount of real
wealth into or out of contingency ft. It isn’t a big deal, if you are careful, but
you do need to be careful.

With this alternative formulation, the commodity wheat no longer plays any
special role, and so you might anticipate that we no longer need to assume the
existence of a consumer whose preferences are globally insatiable in ft wheat, for
each ft. We needed that to ensure that the spot price of wheat is strictly positive
in all contingencies, so that the ft-wheat futures contract would be a way to
move resources between f0 and ft. By definition, a claim that pays in units of
account will have positive value in any contingency. Or, rather, it will have a
positive price (of one unit of account). However, if we no longer assume the
existence of the wheat-loving consumer, we must make an assumption that
ensures that units of account have real economic value in each contingency:

Assumption 16.1′. Each consumer has continuous, nondecreasing, and locally
insatiable preferences. (This is just as before. What changes is:) For each ft,
there is some consumer h who is globally insatiable in ft -contingent
consumption: For this consumer h, for any x ∈ , there exists x′ ∈ 

 such that (1) x and x′ are identical on any non-ft component and (2)

uh (x′) > uh(x).

With this assumption in place of Assumption 16.1, Proposition 16.4, suitably
modified, holds for contingent financial markets just as well as for contingent
futures markets. (See Problem 16.2.)

You will often see the term Arrow-Debreu contingent claims used to decribe
these financial securities. Arrow (1953) and Debreu (1959) both discuss the idea



of contingency-stamping commodities in a general-equilibrium framework;
Arrow (1953) goes on (in a two-period setting) to show that the combination of
time-0 financial claims and subsequent contingent spot markets accomplishes
the same thing. The term “ equilibrium of plans, prices, and price expectations”
is due to Radner (1968, 1972), although he deals as well with the more
complex market structures we’ll consider next section.

Economizing on markets, but not on calculations
Since the equilibrium outcomes (in terms of consumption allocations) are
identical, why would we think that one or the other of the two market structures
—contingent claims and spot markets versus all-markets-at-once—is better?
Arrow (1953) suggests that the dynamic market structure, especially with
financial claims, comes closer to what we see in the real world (and next section
will bring us even closer to real-world institutions). And the dynamic market
structure economizes on the number of markets that must be run:

In the all-at-once market structure, if there are N contingencies and k
commodities, we need kN markets at time 0. In the dynamic economy, we need
a spot market for each date, or k(T+1), plus N–1 contingent-claims markets.
Assuming T is a good deal smaller than N—and in Figure 16.1 (for example),
N = 33 while T = 4—that is quite a savings. If, say, k = 10, then for the t/u/i
structure of Figure 16.1, the all-at-once market structure involves 330
functioning markets (all functioning simultaneously), while in the sort of
dynamic market structure studied in this section, we need 82. And, to the extent
that markets need infrastructure, in the dynamic-market structure, we only have
42 markets to operate at time 0 and 10 at each subsequent date, rather than 330
markets all running simultaneously.

But while this market structure economizes on the number of markets
required and, even more, on the number of markets that operate at any single
time, it increases (if anything) the mental gymnastics required of consumers. In
the allat-once market structure, all the markets and hence all relevant prices are
apparent to consumers at the one time the consumer makes her market
decisions. With this market structure, once markets close, consumers can pretty
much stop thinking; all that is required of them is to make good on promises to
deliver and then consume. We have no serious story about how prices are set—
recall the discussion of simultaneity back in Chapter 14, when we discussed



generalized games—but it is intuitive that in any working mechanism,
consumers learn about the terms of trade they face in, say, a date-3 contingency
as they are asked to make trades for commodities stamped with that
contingency.

In contrast, in the dynamic economy, consumers must work out for
themselves what the terms of trade in every contingency are going to be. A
consumer whose endowment in a date-3 contingency consists of a lot of corn
and very little wheat will be vitally interested in the relative prices of these two
commodities in that contingency. If, say, the price of corn will be low, this
consumer may want to use her wealth from other contingencies to transfer wealth
into this contingency. If the price of corn will be relatively high, perhaps (at
time 0) she will want to sell futures or financial claims in this contingency,
which her sizeable endowment in relatively high-price corn will allow her to
cover. (It would help her, to some extent, if the futures markets dealt in
contingent corn. But, if we have futures and not financial markets, those markets
operate in wheat.) The amount of “ figuring” she must do in the dynamic market
economy is no less than in the all-at-once market structure and, since she is on
her own in predicting what future prices will be, it seems intuitive that it is a
good deal more. A story sometimes told about why price-mediated markets are
good is that prices convey to each consumer in a low-dimensional way all
relevant information about the preferences and endowments (and, in an economy
with production, the production technologies) of other consumers. We have not
formalized this story, but if you accept it, then note: In the dynamic economy,
each consumer must contemplate the preferences and endowments of her peers,
to assess accurately what equilibrium prices will emerge. Life is easier when the
prices are posted.

Put it this way: Of course, these models are all idealizations. But the Pareto
efficiency of the market outcome—the fruits of the First Theorem of Welfare
Economics—is likely to be approximately correct only to the extent that our
idealizations are approximately correct. The very rich market structure of the all-
markets-at-once economy provides consumers with a lot of pertinent information
for getting their own decisions right, and hence it increases our confidence in the
approximate efficiency of the market outcome. The relatively sparse market
structure of the dynamic economy can only cause our confidence in the efficiency
of market outcomes to decrease.



Dynamic optimization?
And when we move to the dynamic market structure, we find the possibility of
some curious dynamic optimizations.

Imagine that k = 2, with the two goods being corn and wheat. Imagine T =
1, and Ω = {ω1, ω2}. This means we have three contingencies, and hence six
contingency-stamped goods; I’ll use (c0, w0, c11, w11, c12, w12) to denote a
consumption bundle, where the first two components are time-0 consumption,
the middle two are time-1, state-ω1 consumption, and the final two are for time
1 and state ω2. Now imagine a consumer whose utility function is

Viewed as a utility function on the six-dimensional commodity space ,

there is nothing particularly wrong or pathological about this function: It is
strictly increasing, continuous, concave; all the things you’d want. So, in the
all-markets-at-once economy, the optimizing behavior of this consumer raises no
specific concerns.

But put this consumer into the dynamic economy and, in particular,
consider her decision-making process in the {ω1}-spot market. She has a certain
amount of resources, combining her endowment in that contingency with
resources she has provided for herself by buying in the {ω1}-futures or -financial
market at time 0 (or less any resources she must give up, to fulfill promises she
made at time 0 by selling {ω1} futures or financial claims). And she faces prices
rc for corn and rw for wheat. So, she does the usual maximize-utility thing.

But it isn’t quite so simple, because of the nature of her preferences.
Phrasing this in terms of marginal utilities and bangs for the buck, her marginal
utility of {ω1}-stamped wheat is a constant 0.5, so her bang for the buck in this
commodity is 0.5 divided by the spot price in this contingency of wheat. But
her marginal utility in {ω1}-stamped corn is 1/(4(c0 + 0.5c11 + 0.5c12)1/2), and
her bang for the buck is this divided by the prevailing spot price in corn. The
point is that, in contingency {ω1}, her marginal utility for corn is smaller the
more corn she ate at time 0 and the more corn she thinks she would have eaten,



had the state of nature been ω2. The first part of this isn’t too off-putting: If the
time periods are close to each other, a big meal of corn at time 0 might put her
off corn at time 1, at least to some extent. But the second part seems … bizarre.
She knows ω2 isn’t going to happen. She may have had plans to eat a huge
amount of corn in contingency {ω2} but, in contingency {ω1}, she knows that
those plans are defunct. Yet her marginal utility for corn in contingency {ω1},
and hence her optimal allocation of her resources between wheat and corn,
depends on that never-to-be-realized feast of corn. Taking this a step further,
suppose state ω2 represents a drought in corn-growing regions, so that corn
endowments in that state are low, and spot prices for corn are correspondingly
high. Suppose that, accordingly, her plans were to consume a small amount of
corn consumption in contingency {ω2}. Then her demand for corn in the
contingency-{ω1} spot market is larger at every price, because of a drought that
she knows will never take place and to make up for a small amount of corn she
might have but now knows she will not consume. Hmmmm.

More than anything else, this is probably a good argument against this
consumer’s preferences. It seems intuitive that this sort of thing shouldn’t
happen. If, for instance, she was a subjective-expected-utility maximizer as in
Chapter 5, this wouldn’t happen. Indeed, justifications for axioms such as
Savage’s sure-thing principle come down, essentially, to an argument that this
sort of thing is so bizarre that no consumer would behave in this fashion. So
perhaps we should simply put this oddity down to “ bad preferences” and not be
concerned further.

But this does raise a point worth emphasizing. An EPPPE is an equilibrium
of prices—in that it involves market clearing—and price expectations—in that
consumers accurately anticipate future spot prices—and plans. And part of the
plans piece of this is that agents formulate their plans in the standard fashion of
dynamic choice in economic theory, as discussed in Chapter 7. For nearly all of
this book, we’ve been concerned with static choice. But here we encounter
dynamic choice, with a vengeance, and in an EPPPE, we are employing the
standard paradigm that dynamic choice is no more than static choice of an
optimal strategy, which is then carried out. To the extent that there is more to
dynamic choice than this, we have another reason to be suspicious of this



model.

16.4. EPPPE: II. Complex Financial Securities and Complete Markets
Building on the developments of the last section, we now consider economies
with more complex securities. In this section, we continue to work with pure-
exchange economies.

As before, we fix the list of basic commodities, indexed by i = 1, …, k. And
we fix a t/u/i structure, with time index t = 0, …, T, state space Ω, and N
contingencies, from f0 to an fT = {Ω} for each ω ∈ Ω. Recall that F denotes the
set of all N contingencies and that, for ft ∈ F, t > 0,  denotes the immediate

predecessor of ft. We also have a finite set of consumers, indexed by h = 1, …,
H, with utility functions uh and endowments eh.

In this setting, a security s is described by two things: a subset of
contingencies F(s) ⊆ F at which the security trades; and a dividend structure.
For the balance of this section, we assume that, as at the end of last section, the
securities are financial, meaning that dividends are paid in “ units of account” or
“ numeraire.”1 As you will learn at the end of this section, this is problematic in
some respects (more accurately, it leads to a massive amount of indeterminancy
when it comes to prices), and we’ll fix some of these problems next section.
But it simplifies the account of results we can give, better for a first pass through
the subject. Hence the dividend structure of security s is an element ds of RF (or,
equivalently, RN). We write ds(ft) for the dividend paid in contingency ft, and
we make the following further assumptions:

Assumption 16.5. The dividends paid by each security s are nonnegative, ds ∈
. Securities are traded ex dividend: Dividends paid in contingency ft are

paid to consumers who held the securities just prior to (any) contingency-ft
trading in the security. No security trades at date T. If d s(ft) ≠ 0, then there is
some contingency f′t′ that precedes ft at which s trades; or f′t′ ∈ F(s).

The first part of this assumption isn’t essential, but it does make later results
easier to state. The bit about ex dividend has the following explanation:



Suppose that in contingency ft, which is a trading contingency for some security
s, s pays a dividend of 4 units of numeraire. Suppose that consumer h enters
contingency ft holding 6 units of this security and, since this is a trading
contingency for the security, sells ∈ of her units, so she exits the period
holding 4 units. Is her dividend payment 24, based on her initial holdings, or
16? We assume the former, which (more or less) is in accord with real-life
practice.

But please note carefully: If our consumer h holds 6 units of a security, since
securities are in zero net supply, there is some consumer h′ out there with a
strictly negative position in this security. And h′ will have to come up with 4
units of numeraire for every unit of the security he is short (prior to contingency
ft trading), when and if contingency ft comes around. The term “ dividend”
conventionally refers to a payout made by a firm to holders of its equity; short-
sellers must make good on these dividends but, for the most part, payments go
from the firm to agents who hold equity of the firm. In the model we are
creating, there is some consumer short for every unit of the security that
someone else is long, and all payments of “ dividends” go from those who are
short to those who are long. For this reason, “ transfer” or “ payout” might be a
better term than “ dividend.” But “ dividend” is conventionally used, and so we
use it.

Also note why, with our ex dividend convention, it is pointless to have
securities markets open at date T. Securities have value for two reasons: the
buyer will receive a dividend at some future point; or she will be able to sell the
security to some other buyer. At date T, there are no future opportunities to sell
securities, and all dividends will have been paid, so all securities become
worthless. And the ex dividend convention is the rationale for insisting that
securities trade before they issue any (nonzero) dividends; if there have been no
opportunities for trading in the security, no one holds any, and so there is no
one to give or receive a dividend.

Some examples of securities are:

•   An Arrow-Debreu contingent claim from last section is a security that, for
some contingency ft, t > 0, pays a dividend of 1 in contingency ft, pays 0 in
all other contingencies, and trades only in contingency f0.



•   A simple time-t-to-time-t′ debt, for 0 ≤ t < t′ ≤ T, is a security that trades at
all time-t contingencies—that is, F(s) = Ft—and pays nonzero dividend
(only) at each ft′ ∈ Ft′, when it pays one unit of numeraire. Or we could
imagine that this asset is allowed to change hands—to be traded—at all
contingencies fτ, for τ = t, …, t′ – 1. We can also imagine a debt asset for
which trading initially opens at some specific ft ∈ Ft, and then trades at all
dates prior to some t′ in contingencies that are successors of the initial ft.

•   For each ft ≠ f0, the  -to-ft contingent claim is a security for which trading

takes place at the unique time t–1 predecessor  of ft—in symbols, F(s) =

{ }—and that pays 1 unit of numeraire at ft (and zero in all other

contingencies).

Because we deal with financial securities in this section, Assumption 16.1’
rather than Assumption 16.1 is relevant. For the balance of this section,
Assumptions 16.1’ and 16.5 are maintained assumptions in all results.

A full specification of a dynamic economy now consists of: a list of basic
commodities; a t/u/i structure; consumers with preferences (utility functions) and
endowments; a finite set S of securities; and a market structure consisting of
whatever trade is permitted by the securities, plus spot markets in all basic
commodities, in every contingency. Securities are in zero net supply, and in any
contingency when security s is traded, any consumer can take a position (long
or short) in that security; if the security has traded previously, she can change
her position in the security.

Definition 16.6. Fix a dynamic economy as described above. An equilibrium of
plans, prices, and price expectations (EPPPE) for this dynamic economy is an
array (r, q, x, y) consisting of:

a.  prices for each basic commodity in each contingency’s spot market, given
by ri ft, as before;

b.  prices for each security s ∈ S in each contingency in which the security
trades (or ft ∈ F(s)), given by qsft;



c.  for each consumer h, a consumption plan xh ∈ ; and

d.  for each consumer h, a trading plan for the securities, which is a vector
yh from RF ×S. Here, yh(ft, s) represents the number of units of security s
held by h in contingency ft, after trading takes place.

These must satisfy the following:

e.  Each consumer’s trading plan must respect the constraints on when
securities can be traded: yh(f0, s) ≠ 0 only if f0 ∈ F(s), and, for each ft
other than f0, yh(ft, s) ≠ yh( , s) only if ft ∈ F(s).

f.  Each consumer’s trading plan and consumption allocation must together
satisfy the consumer’s budget constraints, one for each contingency. To
write this as one inequality (without having to make a special case of f0),
we create an “immediate predecessor” 0 of f0; every trading plan yh for

h satisfies yh( 0, s) = 0 for all s, by convention. Then the budget

constraints for h, which apply jointly to a consumption plan xh and a
trading plan yh, are

g.  Each consumer h maximizes her utility, subject to feasibility: xh ∈ 
 is a feasible consumption bundle for h if there is some trading

plan yh that satisfies the constraints on when securities can be traded, as
specified in e, such that xh and yh satisfy her contingency-by-contingency
budget constraints (16.3).

h.  Markets clear:



This definition is entirely straightforward, except perhaps for the budget
constraints. In particular, qsff appears on the left-hand side of the constraint for
each ft, but for security s, this price only exists for ft ∈ F(s). The summation
should read, “ over s such that ft ∈ F(s),” but since qsft is multiplied by a term
that, per part e, must be zero if ft ∉ F(s), this bit of notational sloppiness can be
excused.

And, then, the budget constraints are simply: In each contingency, the
amount consumer h spends on consumption and (net) on securities cannot
exceed the value of her endowment and any dividends she is receiving.

Arbitrage and the subspace of feasible wealth transfers
Because all dividends are financial, we can discuss and analyze the securities
side of any consumer’s activities without worrying about commodities, their
prices, or the specific consumer’s endowments:

Definition 16.7.

a.  The set of feasible wealth transfers for a given set of securities S and
prices q for those securities is the set M(S, q) of ξ ∈ RN such that, for
some legitimate trading plan y (that is, a trading plan that satisfies
Definition 16.6e),

(Note that 0 ∈ M(S, q) in all cases, since the trading plan y ≡ 0 is always
available and legitimate.)

b.  If there exists some ξ ≥ 0 and ≠ 0 in M(S, q), we say that the securities S
and prices q admit an arbitrage opportunity. If M(S, q)  = {0},

we say that S and q do not admit arbitrage.



c.  If there is some full (pure-exchange) economy with securities S and with
consumers (who satisfy Assumption 16.1’) such that, with a full set of spot
markets open in each contingency, there is an EPPPE in which the
equilibrium prices for the securities are given by q, we say that S and q
are a viable model of the securities markets, while if there is no such
economy, we say that S and q are not viable.

Proposition 16.8.

a.  M(S, q) is a linear subspace of RN.

b.  S and q are viable if and only if they do not admit arbitrage, which is
true if and only if there exists π ∈  such that π · ξ = 0 for all ξ ∈

M(S, q).

c.  Suppose S and q are viable, and let Π(S, q) be the set {π ∈ : π · ξ =

0 for all ξ ∈ M(S, q)}. Then Π(S, q) is a cone (less its vertex, the origin),
whose dimension is N less the dimension of M(S, q). Moreover, ξ ∈ M(S,
q) if and only if π · ξ = 0 for all π ∈ Π(S, q).

In particular, M(S, q) has dimension N–1 if and only if Π(S, q) is one-
dimensional, in which case ξ ∈ M(S, q) if and only if π · ξ = 0 for (any) π
∈ Π(S, q).

Proof. (a) Suppose that ξ and ξ′ are elements of M(S, q), with ξ generated by the
trading plan y and ξ′ by y′. For any scalars α and β, αy + βy′ is a legitimate
trading plan, and it clearly generates αξ + βξ′.

(b) Suppose that S and q admit an arbitrage opportunity. In particular, suppose
that the trading plan y0 generates ξ0 ∈  which is nonzero. Then there is

some contingency ft such that ξ0(ft) > 0, while ξ0(f′ t′) ≥ for all (other) f′ t′.
Consider a consumer h who is globally insatiable in ft-contingency
consumption. (The existence of such a consumer is guaranteed by Assumption
16.1’.) Whatever consumption bundle xh is consumed by h, and whatever
trading plan yh she is using, if she uses yh + αy0, she will be able to afford xh



and, in contingency ft, have αξ0(ft) left over, with which (for large enough α) she
can improve on xh. So, S and q are incompatible with her having a utility-
maximizing choice and hence are incompatible with being part of an EPPPE. If
S and q admit an arbitrage opportunity, S and q are not viable. And, therefore, if
S and q are viable, they cannot admit an arbitrage opportunity.

Now suppose that S and q do not admit an arbitrage opportunity. Let 
.3 That is, Δ is the unit

simplex in RN. Clearly, Δ is compact and convex. Since M(S, q) is a subspace,
it is closed and convex. “ No arbitrage” implies that M(S, q) ∩ Δ = .
Therefore, the Strict Separating-Hyperplane Theorem can be applied: There is a
nonzero π ∈ RN and a scalar β such that π · ξ < β for all ξ ∈ M(S, q) and π · z
> β for all z ∈ Δ.

Since M(S, q) is a subspace, it must be that π · ξ = 0 for all π ∈ M(S, q).
For if π · ξ0 ≠ 0 for some ξ0 ∈ M(S, q), then either πξ0 or –αξ0 for very large α,
both of which are in M(S, q), would violate π · ξ < β for all ξ ∈ M(S, q). And,
therefore, β > 0. Hence, π must be strictly positive: If πft ≤ 0 for some ft, then π

dotted into the unit vector in direction ft (the vector of all zeros except for a 1 in
coordinate position ft) would be πft ≤ 0 < β, even though this unit vector is in

Δ.
Now suppose that there is a strictly positive vector π such that π · ξ = 0 for

all ξ ∈ M(S, q). Consider a one-agent, one-basic-commodity economy, where
the single agent’s preferences are given by u(x) = π·x. (Since this is a one-basic-
commodity economy, the consumption space  is simply .)

Clearly, Assumption 16.1’ holds for this consumer. Suppose the consumer is
endowed with one unit of the good in every contingency. I assert that if the
agent chooses to consume her endowment and make no trades, we have an
EPPPE for (S, q), where the spot price in each contingency is 1: The only
alternative to consuming her endowment that the agent can contemplate is to
shift her consumption by a vector lying in M(S, q). But since u is linear, the
impact this will have on her utility is π · ξ, where ξ is the shift, and this has
zero impact. So she is maximizing her utility in this economy, with these
prices, by sticking to her endowment. This is an EPPPE, and S and q are



viable.
We’ve shown viability implies no arbitrage implies existence of π implies

viability, finishing part b.

(c) Suppose both π and π′ from  both satisfy π · m = 0 and π′ · m = 0 for

all m ∈ M(S, q). Then for any strictly positive scalars α and α′, it is evident
that (απ + α′π′) · m = 0 for all m ∈ M(S, q) and, of course, αm + α′m′ is strictly
positive. So Π(S, q) is a cone less its vertex.

The rest of part c is standard theory from linear algebra. Since M(S, q) is a
subspace in RN, its orthogonal complement,

is a subspace of RN whose dimension is N less the dimension of M(S, q). More-
over, (M(S, q)⊥)⊥ = M(S, q), which means that ξ ∈ M(S, q) if and only if π · ξ
= 0 for all π ∈ M(S, q)⊥.

Note that Π(S, q) is simply M(S, q)⊥ ∩ . Since S and q are viable, we

know that Π(S, q) is nonempty (by part b); fix some π ∈ Π(S, q). If M(S, q) has
dimension N–1, then M(S, q)⊥ and, therefore, Π(S, q) are one dimensional. And
i f M(S, q) has dimension less than N–1, then form a basis of M(S, q)⊥ that
starts with π; denote this basis by {π, p1, …, pj} (so that the dimension of M(S,
q)⊥ is j+1). For i = 1, …, j, find scalar γi ≠ 0 such that π + γi pi is strictly
positive; since π is strictly positive, this can always be done by, if necessary,
taking γi close to zero. But then {π, π + γ1p1, …, π + γj pj} is a set of j + 1
linearly independent vectors in M(S, q)⊥. Since they are all strictly positive by
construction, they all lie in Π(S, q), which ensures the Π(S, q) has the same
dimension as M(S, q)⊥.

In fact, being j + 1 linearly independent vectors in M(S, q)⊥, they form a
basis for M(S, q)⊥. This means that π · ξ = 0 for all π ∈ M(S, q)⊥ is
equivalent to π · ξ = 0 for all π ∈ Π(S, q). But this, we know, is equivalent to
ξ ∈ M(S, q).



Complete-markets EPPPE

Proposition 16.9.

a.  Suppose S and q are viable, and M(S, q) has dimension N – 1. Choose π
from Π(S, q). If spot market prices are given by r, then consumer h, facing
the prices q and r, can (affordably) attain the consumption bundle x ∈
RkN (in the dynamic economy) if and only if

b.  Suppose (r, q, x, y) is an EPPPE for a dynamic economy with (financial)
securities S. If M(S, q) has dimension N – 1, then x is the equilibrium
allocation of a Walrasian equilibrium for the all-markets-at-once economy,
where the Walrasian-equilibrium prices p are given by p ift = πftrift, for π

chosen from Π(S, q).

Note that since Π(S, q) is one-dimensional, the choice of π from Π(S, q)
amounts to nothing more than a strictly positive scaling of the prices in the
Walrasian equilibrium. In view of part b, we say that an EPPPE (r, q , x, y)
where M(S, q) has dimension N – 1 is an EPPPE with complete markets.

Proof. (a) The constraint

doesn’t depend on how π is scaled, so it is without loss of generality to assume
that π is the (unique) choice such that πf0 = 1. Assume this is so.

Suppose x is a consumption bundle that satisfies the constraint. Let ξ(ft) = 
 for all ft other than f0, while for 



. Since πf0 is normalized to be 1, we

have

By the last part of Proposition 16.8c, we know that there is a trading plan that
gives the wealth transfer vector ξ. And this plan immediately allows h to
consume x and satisfy all her budget constraints: For ft ≠ f0, ξ(ft) supplies
exactly the financial resources she needs; for f0, her net expenditure is

Conversely, suppose she can afford x, which means that for some legitimate
trading plan y,

Multiply this inequality for ft by πft, and then rearrange terms and add the

inequalities, to get

But on the right-hand side we have π · ξ for the wealth-transfer vector created by
the trading plan y, and so the right-hand side is 0.

(b) Market clearing in the Walrasian equilibrium (by x) is immediately implied
by market clearing in the EPPPE by (x, y); nothing more needs to be said about
this. We must show that, for each h, xh is affordable at the prices p in the all-
markets-at-once economy and that it maximizes h’s utility among those



consumption bundles that are affordable.
We know that xh is attainable by h in the dynamic economy in conjunction

with trading plan yh. Of course, since (r, q , x, y) is an EPPPE, S and q are
viable and so, by part a, xh satisfies

But with prices p defined as in the statement of part b, this is nothing more than
p · (xh − eh) ≤ 0, the budget constraint in the all-markets-at-once economy. And
if x is affordable by h in the all-markets-at-once economy, or p · (x − eh) ≤ 0,
then replacing each pift with πft rift and breaking the sum in the dot product into

terms for each ft, we see that x satisfies the inequality in part a and hence is
affordably attainable by h in the dynamic economy at the prices r and q. But
since xh is optimal for h in the dynamic economy, this means that uh(xh) ≥
uh(x); this shows that uh(xh) ≥ uh(x) for all x that h can afford in the all-markets-
at-once economy when prices are p, and (p, x) is a Walrasian equilibrium for
that economy.4

What, in economic terms, does it mean that M(S, q) has dimension N – 1?
Why did we say (just after the statement of the proposition, before its proof) that
this meant the equilibrium had complete markets? And what is the economic
meaning of π?

The answers to these questions are (at least) implicit in the proof of
Proposition 16.9a. But to be explicit: Consumers in dynamic economies with
securities have two tasks when it comes to maximizing their utility, given
prices. They must make trade-offs in each contingency concerning their spot-
consumption of the k commodities. When we assume that a full array of k spot
markets operates in each contingency, we are assuming they have all the market
tools needed to accomplish this first task.

But, in addition, they would like to trade consumption in one contingency
for consumption in others. They would like to move wealth from contingencies



in which their endowments make them relatively rich, to contingencies in which
they have low-market-value endowments. Securities are the means for effecting
these trade-offs. And given a set of securities S and prices q, M(S, q) is the space
of contingency-to-contingency wealth trade-offs they can make. The dimension
of M(S, q) can’t be N, because (for instance) the transfer that gives $100 more
wealth in every contingency—that is, ξ = (100, 100, …, 100), which is what
we’ve called an arbitrage opportunity—is incompatible with equilibrium. But if
the dimension of M(S, q) is N 1, and if S and q are viable, then the consumer
has available a full set of possible trade-offs; if she is willing to give up enough
wealth in one particular contingency, she can obtain any vector of transfers of
wealth into all the others.5 The vector ξ, the normal to M(S, q), is just the price
vector for these trade-offs. And her budget constraint for transfers among
contingencies is: She can achieve any ξ ∈ RN, as long as π · ξ = 0. If S and q
are viable and M(S, q) has dimension N – 1, then we know that she can move
numeraire around from contingency to contingency as long as she meets that
constraint; everything she can accomplish with a legitimate trading plan must
satisfy that constraint (that is, if ξ is generated by a legitimate trading plan, then
π · ξ = 0), and everything that meets this budget constraint can be accomplished
by a legitimate trading plan (that is, π · ξ = 0 implies that ξ can be gotten by
some trading plan). And, to gild this lily, if we know π, which gives
contingency-versus-contingency trade-offs as measured in the numeraire, and we
know the various spot-market prices r, we know the (implicit) trade-offs of one
contingency-stamped commodity against another, given by the price vector p =
πr (or, more precisely, pift = πftrift).

This implies, among other things, that if we find an EPPPE in which M(S,
q) has dimension N – 1, then the equilibrium consumption allocation is Pareto
efficient. We therefore wish to know what it takes for M(S, q) to have dimension
N – 1. When is this guaranteed? When is it impossible? From the last section,
we know one case where it is guaranteed: If we have a full set of financial
contingent claims, it is certain (for any price vector q that, with these securities,
is viable) that M(S, q) has dimension N – 1. Moreover, we know that, in this
case, the set of consumption allocations in EPPPE for the dynamic economy is
identical to the set of Walrasian-equilibrium consumption allocations for the
all-markets-at-once economy. This allows us, among other things, to extend our
existence results for Walrasian equilibria to EPPPE, at least for a dynamic



economy with this set of securities. Does this generalize?
To answer these questions, a couple of lemmas are needed, the first a tool for

verifying that a set of securities S with prices q gives complete markets; the
second a more general pair of results about viable prices for arbitrary sets of
securities.

Lemma 16.10. Suppose S and q are viable. For M(S, q) to have dimension N –
1, it is necessary and sufficient that a plan can be found that produces, for
each  other than f0, the wealth transfer ξ given by

Of course, the strictly negative amount is , for the π that is

orthogonal to M(S, q).

Proof. Suppose that M(S, q) is viable and has dimension N – 1. Choose ξ from
Π. If “ some strictly negative amount” in the display just above is 

, then it is immediate that π · ξ = 0, and the last part of

Proposition 16.8 ensures that ξ ∈ M(S, q). That is necessity.
For sufficiency, note that the set of ξ of the form shown, one for each 

such that t > 0, is N – 1 linearly independent vectors. Hence if each of these is
i n M(S, q), M(S, q) has dimension at least N – 1. The proposition presumes
that S and q are viable; hence N – 1 is an upper bound on the dimension of M(S,
q), and so that is the dimension, and markets are complete.

Recall that S(ft) is the set of all successors of ft, for t < T.

Lemma 16.11.

a.  If S and q are viable, then for any s ∈ S and any contingency  at

which s trades,  if and only if there is at least one



contingency  in which s pays a strictly positive dividend.

Indeed, if S and q are viable, then for all s and for all  ∈ F(s),

for all π ∈ ξ(S, q).

b.  Fix a t/u/i structure, a set of securities S, and . If, for each

s ∈ S and  F(s), we define  by the formula (16.4), then S

and q are viable and, moreover, π ∈ Π(S, q).

I leave the proof of this lemma to you as Problem 16.5, with solution provided
in the Student’s Guide . Please see the directions provided in the problem
statement.

Lemma 16.11 has an important paraphrase: The equilibrium price of any
security in any contingency is the “properly discounted” present value of the
dividends it will pay in the future. The proper discount is given by pricing
vector π; part a then says that this statement is true in any viable price system
and, moreover, for every π ∈ Π(S, q); part b says that if we use this formula for
any strictly positive pricing vector ξ, the price process generated will, with S, be
a viable model of the securities market, with π ∈ Π(S, q) for the resulting q.

Now to generalize the results of the last section, concerning the full set of
financial contingent claims. Recall how that went: We had one security sft for
each ft ∈ F, t >  0. The security sft traded only in contingency f0 (at time 0),
and paid a dividend of 1 in contingency ft (only). Label this set of securities

SFFCC, where the superscripted FFCC is shorthand for full (set of) financial
contingent claims. Immediately following the statement of Assumption 16.1’
(page 399), we asserted that the set of EPPPE consumption allocations for the
dynamic economy with SFFCC coincides with the set of Walrasian-equilbrium
allocations for the all-markets-at-once economy. The formal statement of this



specific result and its proof are provided in the Student’s Guide . Alternatively,
we can derive this as a corollary to the following more general proposition.

Proposition 16.12. Suppose that, for a given t/u/i structure and set of
(financial) securities S, if S and q are viable, then M(S, q) has dimension N –
1. Then the set of EPPPE consumption allocations for a dynamic economy with
this set of securities coincides with the set of Walrasian-equilibrium
allocations for the all-markets-at-once economy.

Or, to paraphrase, if a set of securities is guaranteed (in any EPPPE) to give
complete markets, then its equilibrium consumption allocations are precisely
the Walrasian-equilibirum allocations.

Proof. Half of this is an immediate corollary to Proposition 16.9. Suppose that
(r, q , x, y) is an EPPPE for this set of securities. Then S and q are, by
definition, viable. Hence M(S, q) has dimension N – 1. And, therefore,
Proposition 16.9 tells us that x is a Walrasian-equilibrium allocation, for the
prices p = π r.

Conversely, suppose (p, x) is a Walrasian equilibrium for the all-markets-at-
once economy. Let π ∈ RN be the vector (1, 1, 1, …, 1), and use equation
(16.4) and this πs to define securities prices q. Let rift = pift. I assert that, with

an appropriate choice of y (to be given momentarily), (r, q, x, y) is an EPPPE
for the dynamic economy. Note first that by Lemma 16.11, we know that S and
q (defined in this fashion) are viable. By the premise of this proposition, this
implies that M(S, q) has dimension N – 1. By Proposition 16.9a, x is an
affordably attainable consumption bundle for h in the dynamic economy if and
only if , but with π and r as

defined, this is precisely the budget constraint p · (x − eh) ≤ 0, the budget
constraint in the all-markets-at-once economy with prices p. We know,
therefore, that xh is affordable and attainable by h in the dynamic economy, and
it is as good (in terms of uh) as any other affordable and attainable consumption
bundle.

Market clearing in the real-commodities markets follows immediately from
market-clearing in the Walrasian equilibrium. So all that needs to be done, to



finish the proof, is to produce trading plans yh for the consumers that (1) give
each consumer her desired consumption bundle and (2) lead to market clearing
in the securities markets.

For each consumer .

That is, for each h, ξh is wealth-transfer vector that h requires to consume xh.
Because each consumer h is locally insatiable, we know that Walras’ Law
holds, or p · (xh – eh) = 0. But since π = (1, 1, …, 1) and rft = pft, we can

rewrite Walras’ Law for h as 
.

Choose a consumer h0. For every other consumer h ≠ h0, since π · ξh = 0,
we know (Proposition 16.8c) a trading strategy yh can be constructed that
real i zes ξh. Fix such a yh for all h ≠ h0, and define 

. Note that, with this definition, Σhyh = 0 by

construction; we have market clearing in the asset markets. But does yh0
 provide

h0 with the ability to consume xh0
?

It does. Since h0 is on the opposite side of the security-market trades of all

other consumers, yh0
 generates the wealth-transfer vector . So

we must show that .

This is  for each ft. Since Walrasian-

equilibrium prices are nonnegative and all consumers are locally insatiable, we
know (Proposition 14.4e) even more than this: For each i and 

. Summing over i for each ft finishes the proof.

As a corollary to this result, consider the set of securities SFFCC. Lemma
16.10 tells us almost instantly that, if q is any viable price system for SFFCC,



then M(SFFCC, q) has dimension N – 1. Proposition 16.12 then applies; the set
of EPPPE consumption allocations for SFFCC coincides with the set of
Walrasian-equilibirum allocations for the corresponding all-markets-at-once
economy. And there are other sets of securities, besides the set SFFCC from last
section, for which the space M(S, q) has dimension N – 1 for any viable q and,
hence, to which Proposition 16.12 applies. Here are two sets that work:

•   Suppose S consists of as many securities as there are states of nature. The
security corresponding to the state ω trades at every contingency ft that
containsωexcept the time-T contingency {ω}. The security corresponding to
ω pays a dividend of 1 at time T, if ω is the state (that is, in the time-T
contingency {ω}), and nothing in all other contingencies. Call this set of
securities SSFCC, where SFCC stands for state-based financial contingent
claims.

•   As in SFFCC, we suppose S consists of N – 1 securities, one for each ft other
than f0. And the security corresponding to ft pays 1 in this contingency and
0 in all other contingencies. But, in this case, suppose that the security
corresponding to ft trades only in the contingency ; that is, it trades only

in the unique contingency that immediately precedes ft. Call this set of

securities SRFCC, where RFCC stand for rolling financial contingent claims.

I assert (and leave it to you to prove, in Problem 16.6), that for both these
sets of securities, the special property required to apply Proposition 16.12
holds: For any viable prices q, they always give complete markets. And these
are not the only possibilities: Problems 16.7, 16.8, and 16.10 are connected to
this general idea.

Recall the discussion last section about how the creation of a full set of
contingent claims reduced the number of markets required to achieve complete-
markets equilibria, relative to the all-at-once market structure. It may be
interesting to know how SSFCC and SRFCC do in this regard. Recall that we had
two ways of measuring things: (1) How many markets must be opened at some
time or other? (2) What is the maximum number of markets that must be open
in any single contingency? And to these I add a third: (3) How many different



securities are necessary? Table 16.1 answers these questions for the t/u/i
structure of Figure 16.1, assuming k = 10. (Rules for how I computed these
numbers are given in the legend of the table.) I hasten to reiterate: The dynamic
market structures may economize on the number of markets needed and,
especially, on the number of markets needed in any single contingency. But
they impose severe demands on the ability of consumers to foresee the future.

As a bit of a converse to Proposition 16.12 and the three sets of securities
SFFCC, SSFCC, and SRFCC, we can ask: Under what circumstances is it
impossible for there to be complete markets? An answer to this question is
given in contrapositive form.

Proposition 16.13. For each ft for t < T, let  (ft) be the number of ft’s
immediate successors. That is, (ft) is the number of ft+1 that have ft as their
immediate predecessor. Fix a set of securities S and their prices q, such that S
and q are viable. Then a necessary condition for M(S, q) to have dimension N
– 1 (and, therefore, for an economy with S to have a complete-market EPPPE)
is that, for each ft (t < T), there are at least (ft) securities that pay at least
one strictly positive dividend in some contingency that follows ft.

Proof. Fix viable S and q. For any contingency ft, call security s defunct at ft if,
in all contingencies that are successors of ft, the security pays zero dividend.
Note, this does not preclude s having just paid a strictly positive dividend in
contingency ft. Note also that once a security is defunct, is remains so. Using
this terminology, we can paraphrase Lemma 16.11a as qsft > 0 if and only if s is

not defunct in contingency ft. And this proposition can be paraphrased as, For
there to be the chance of complete markets in an EPPPE, for each ft, there must
be at least (ft) non-defunct securities.

F ix S and q where M(S, q) has dimension N – 1. Let π denote the
(essentially unique) element of Π(S, q).



Table 16.1. Comparisons of four ways to achieve complete markets. For
the t/u/i structure of Figure 16.1 and assuming there are 10 basic
commodities, this table gives some statistics on how many markets and
securities are needed for each of four ways to get complete markets: all-
markets-at-once, a full set of (financial) contingent claims at the outset,
state-based contingent claims, and rolling contingent claims. In
calculating these numbers, I used the following conventions: For the all-
marketsat-once structure, the 10 f0-commodity markets are counted as spot
markets; the other 320 ft-commodity markets are counted as securities
markets. Any market in which no trading would take place is not counted
as being opened. So, in terms of spot markets in any dynamic market
structure, if there are T periods, I count this as (T + 1)k opened spot
markets, with no more than k needing to be opened at any time. And, in
terms of securities markets, I do not open a market in a security in any
contingency in which it is known that the price of the security will be
zero, because it is known that the security will not pay any further



dividends. Nor do I consider a security having been created, if no market
in it ever comes into existence. (This has bite, obviously, only for rolling
contingent claims.) Note that for the state-contingent claims and rolling-
contingent claims markets, some of the numbers are maxima; depending
on the state, the number could be less.

The rules for trading the securities in S may not allow trading in some
contingencies, but I assert that this can be relaxed without changing the space of
available wealth-transfer vectors: Suppose that we look at S′ and q′ where (1) for
each s ∈ S, there is an s′ ∈ S′ with precisely the same dividend structure as has
s, but s′ trades at every date, and (2) the price q′s′ft is given by (16.4) for the

fixed π, for every contingency ft, t < T. I assert that q′s′ft = qsft for s′ and s

corresponding securities and for ft ∈ F(s); this is true because the formulas for
both terms are given by (16.4). I assert that M(S, q) ⊆ M(S′, q′), since every
trading opportunity under S and q remains. But S′ and q′ are viable, by virtue of
Lemma 16.11b; hence the dimension of M(S′, q′) cannot be larger than N – 1.
And, of course, it cannot be smaller, since M(S′, q′) contains M(S, q). But this
implies immediately that M(S′, q′) = M(S, q). (Or, you can reason as follows:
By Lemma 16.11(b), we know that π ∈ Π(S′, q′). We know that M(S′, q′) has
dimension N – 1, so Π(S′, q′) consists (solely) of scale copies of π. Therefore, ξ
∈ M(S′, q′) if and only if π · ξ = 0, which is precisely the criterion for ξ ∈ M(S,
q).)

Finally, s′ ∈ S′ is defunct at ft if and only if the corresponding s ∈ S is
defunct at ft. So we only need to show that, in S′, for each ft, there are at least 
(ft) nondefunct securities.

Pick some  for t < T. Let the ( ) immediate successors of  be

denoted by  for j = 1, …, (ft). By Lemma 16.10, for markets to be

complete, it must be possible to find  (ft) different trading strategies yj for j =
1, …, (ft) that cost a positive amount of money in contingency f0, generate 1
unit in contingency , and generate 0 in all other contingencies.

Focus on trading plan yj and, in particular, what holdings of securities it



involves at contingency  and then at each of the immediate successor

contingencies to . At contingency , some of the securities may be

defunct. Any nonzero amount of defunct-at-ft securities held at  in any of the

yj is irrelevant: These securities will never again pay a dividend and never again
have a nonzero price, so they will have no further impact on the financial gains
and/or losses from trading plan yj.

Moreover, I assert that whatever yj suggests doing at time t+1 and beyond,
an equivalent outcome is generated if we suppose that yj calls for complete
liquidation of all securities at time t + 1. (This is why we change from S and S′;
so that we know we can sell the securities in yj at each immediate successor to 

.) To see this, note that in contingency , the portfolio consisting of 

 units of security s′ must have a value at current (contingency-

) prices of zero: If this portfolio has any other market value, then either
buying or selling (depending on whether the value is negative or positive) and
then following the prescriptions of yj generates a positive amount of wealth in
contingency  and 0 thereafter, which is an arbitrage opportunity. Hence,

liquidation doesn’t affect time t + 1 wealth, either.
Hence, it is without loss of generality to assume that yj calls for complete

liquidation at time t + 1. This means that

Ranging over the  different j, this means that we have  different linear

combinations of the vectors , giving  linearly

independent outcomes. There must, therefore, be at least  of the vectors whose



linear combinations are being formed.

This proposition establishes a sense in which, if we want to economize on
securities that are actively traded at any one time, we can’t do any better than
the security set SRFCC. At each point in time, in each contingency, this has
precisely the minimum number of active securities needed to get complete
markets, and this set is sure to give complete-markets equilibrium outcomes in
the very strong sense of Proposition 16.12.

Where does the theory of complete-market EPPPE go from here? One
important direction is to look beyond SFFCC, SSFCC, and SRFCC, for other sets of
securities that guarantee complete markets. One version of this concerns
derivative securities, or securities whose “ dividends” depend on the prices
and/or dividends of other securities.

A second direction specializes to the case where (1) securities trade in every
contingency and (2) only pay dividends at time T. Prices q are given and the
two questions to be answered are: Is the model (that is, the securities and prices
for them) viable? Does it give complete markets? Assumptions (1) and (2)
allow for fairly simple tests of this proposition.

You get to explore both these directions in the problems.

Security price indeterminacy
The analysis we’ve done on complete markets with financial securities has at
least one unsavory aspect, which should be revealed. The starkest way to put
this is the following:

Suppose that (r, q, x, y) is an EPPPE for some dynamic economy,
where the set of securities S is SFFCC. Then for any strictly positive 

∈ RN–1, there is an EPPPE for this economy where the securities
prices are given by  and the consumption allocation is x. In other

words, in this economy and for this equilibrium outcome, equilibrium
security prices are completely indeterminate (except for being strictly
positive).

I’m not going to prove precisely this—you are asked to do it in Problem 16.12



—but I will indicate why it is true. Go back for a moment to the proof of
Proposition 16.12 and, in particular, the step where I said Let π ∈ RN be the
vector (1, 1, 1 …, 1), after which this π was used to compute q via (16.4). This
choice of π is, in some sense, natural; it says that consumers can transfer
numeraire from one contingency to another on a one-to-one basis, which, of
course, is automatically true in the all-markets-at-once economy. But this choice
of π is both arbitrary and irrelevant to the proof. The proof would work for any
choice of strictly positive π, as long as you are careful in moving between spot
prices r and all-markets-at-once prices p. And the required care is established in
part b of Proposition 16.9: pift = πftrift. Of course, changing π will change the

values of y. The point is, though, that I could have chosen any π and proceeded
along with the proof. And, to a large extent, the choice of π is what determines
q. (Now you should have no problem tackling my italicized claim.)

Why does this happen? In all the economics of markets that we’ve seen in
this volume, it is relative prices that matter. You can double all the prices, or
halve them all, and nothing of economic import changes (as long as consumer
wealth is similarly scaled, which it is in a general-equilibrium framework, where
wealth comes from endowments). In these dynamic economies, the N spot
markets establish relative prices for the k spot commodities in each of N
contingencies. But if all that matters are relative prices, then we can double spot
prices in one contingency and halve them in another. The securities markets are
about moving wealth from one contingency to another, and when securities pay
nominal or financial dividends, we gain a lot of degrees of freedom when it
comes to equilibrium prices. If you want to pick the π vector first, you can
always undo this (as far as the economics of the situation are concerned) by
adjusting spot-price levels in the different contingencies.

If one raison d’être for economics is to say what determines equilibrium
prices, this is not a pleasant place to end our analysis.

16.5. EPPPE: III. Complex Securities with Real Dividends and Complete
Markets

One direction in which to go, at this point, is to try to explain connections
between fiat money (numeraire) and real commodities. That is, we could launch
ourselves into the theory of money. Rather than go in that direction, I want to



make the point that the indeterminacy effectively goes away if we go back to
where this chapter began, with securities that pay their dividends in real
commodities.

In fact, this raises two possibilities. The first is to allow for securities that
pay dividends in all manner of real commodities; one security is a wheat futures
contract, another pays off in pork bellies, a third might issue a dividend that
includes both wheat and iced broilers, and so forth. There is a literature on such
things, but it is messy, and this chapter is already lengthy.

So I want to consider an economy in which all dividends are paid in one
distinguished commodity. I’ll assume this is commodity 1, wheat, and we go
back to Assumption 16.1, so that we know that wheat must have a strictly
positive price in every contingency. It is still true that ds ∈ RF, but this now
means that security s pays ds(ft) units of wheat as dividend in contingency ft. In
fact, I’ll assume that ds ∈ ; all wheat-dividends are nonnegative. And the

rest of Assumption 16.5 is maintained.
And, I’ll make one more … not assumption, but normalization. Assume

that spot-market prices rft are normalized so that the spot price of wheat is

always 1, or r1ft = 1, for all ft. In words, we normalize prices in each

contingency so that a unit of wheat becomes the numeraire.6 This really pins
down price levels; the indeterminacy that concerned us at the end of last section
is completely gone. And, to nail things down (a nail being more than a pin),
when we look at prices in all-markets-at-once economies, we’ll assume that
prices are normalized so that the price of wheat in contingency f0 is 1.

This normalization has the wonderful effect, moreover, of making most of
what happened last section continue to be true. The key is that the budget
constraints in an EPPPE, which in the last section was (16.3), doesn’t change
in the least. We can still talk about M(S, q) and arbitrage and viability and Π(S,
q); the propositions and lemmas survive virtually unchanged. What does
change? Here’s the very short list:

1.  In the definition of an EPPPE, Definition 16.6, part a of the definition must
specify that spot-market prices rft should always be normalized so that r1ft =

1. (Without this, the budget constraints (16.3) are wrong.)



2.  While for most uses, it doesn’t really matter which π ∈ Π(S, q) is chosen
(for instance, in Proposition 16.9a), the specific choice of π in which πf0 = 1

has a lot of appeal. Then, at least when M(S, q) has dimension N – 1 (and S
and q are viable), the interpretation of πft is: This is how many units of

wheat must be given up in contingency f0 to get one unit of wheat in ft.
Relative to the all-markets-at-once equilibrium price vector p ∈ ,

normalized so that p1f0 = 1, πft is p1ft.

3.  This particular normalization and choice of π becomes more transparent if
you look at part b of Proposition 16.9 and the assertion that, if (r, q, x, y)
is a complete-market EPPPE, (p, x) is an all-markets-at-once Walrasian
equilibrium for p given by pft = πftrft. If you don’t normalize π so that πf0 =

1, the statement is still true; Walrasian-equilibrium prices are not subject to
any arbitrary normalization. But choosing πf0 = 1 gives a corresponding p

for which p1f0 = 1.

4.  While Proposition 16.12 remains true as stated, the proof needs some
repair. This is where the arbitrary choice of π = (1, 1, …, 1) took place, but
that choice is tied to the next line in the proof, Let rift = pift. We can’t

allow rift = pift, unless we give up on our fixed normalization of spot-market

prices, which means changing the budget constraints (16.3). Instead, given
a Walrasian equilibrium (p, x), we need to define π by πft = p1ft, r by rift =

pift/p1ft, and q by (16.4) applied to this specific choice of π. To be very

pedantic about why these choices are necessary: Proposition 16.9a says that
as long as a S and q are viable and M(S, q) has dimension N – 1, the
consumer’s choices are as if she faced a single budget constraint, where the
“ price” of commodity ift is πftrift. We want this to be pift, and so we require

pift = πftrift. We’re okay with making pft proportional to rft, except for the

forced normalization r1ft = 1, so we can take rft = pft/p1ft, which is p1ftrft =

pft. That is, πft must be p1ft. But if we use this choice of π and (16.4) to



define q, Lemma 16.11b tells us that π ∈ Π(S, q), and everything fits
together very nicely.

And, with this done, security prices have meaning. They are, of course, the
current value of future dividends—that’s what Lemma 16.11 tells us—but now
the contingent discount factors for bringing a contingency-ft dividend “ back” to
an earlier contingency f′t′, which is always πft/πf’t’, is the quite specific p1ft/p1f′t′,

the relative value of ft-labeled wheat to f′t′-labeled wheat. Whatever determines
those relative values in equilibrium is what drives (with complete markets)
security prices.

16.6. Incomplete Markets
The story for complete markets is very nice. But if markets are incomplete, the
possibilities are—well, interesting is a good and neutral adjective.

The literature on EPPPE with incomplete markets (and still without firms)
is sizable, and I will not try to give anything like an organized tour. But to
whet your appetite, I’ll develop a simple example from a seminal paper on the
topic, Hart (1975).

The dynamic economy in question has two consumers (Alice and Bob), two
basic commodities (i = 1, 2), two dates (t = 0, 1), and two states of nature (Ω =
{ω1, ω2}). Therefore, there are three contingencies: f0, the sole time-0
contingency; and two time-1 contingencies,  = {ω1} and  = {ω2}. Both

Bob and Alice have preferences that are additively separable across
contingencies, both taking the form

for h = Alice or Bob, where γAlice = 0.9 and γBob = 0.1. To explicate: Both
Alice and Bob have the same preferences over consumption bundles in
contingency f0. Moreover, their endowments in this contingency are identical,
say  = (1, 1) for h = both Alice and Bob. In the two time-1 contingencies,

each has the same preference as in the other contingency, although Alice’s



preferences and Bob’s may differ. But Alice thinks that state ω1 is very likely to
happen, while Bob thinks ω2 is very likely; they are both expected utility
maximizers, where Alice assesses probability 0.9 for ω1, while Bob assesses
probability 0.1.

Their endowments in the two time-1 states are also identical across the
states: Alice has the endowment (2,0) while Bob has (0,2). As for their
preferences, I’ll use an Edgeworth Box to depict those; if we look only at
contingency  (or, identically, at ), and we do not allow any transfers of

wealth between the different contingencies, the situation is as depicted in
Figure 16.2. There are two (and only two) Walrasian equilibia in the contingent
spot market, the first where the relative prices are (1,2) and the second where
they are (2,1). Note that Alice strictly prefers the second of these (because the
higher-priced good is the one that she is endowed with), while Bob strictly
prefers the first. Suppose in particular that



Figure 16.2. Alice and Bob in either time-1 contingency. If Alice and Bob
cannot transfer wealth between contingencies, then in each time-1
contingency, they trade in their endowments in the spot markets. We
depict the possibilities, including the two possible spot-market equilibria,
with an Edgeworth Box.

And, now for the key to this example: Markets are supposed to be
incomplete, meaning there are some transfers of wealth between contingencies
that are not available to Alice and Bob. We will look at the extreme case where
there are no securities, so Alice and Bob can’t make any transfers of wealth.

This means that the possible EPPPE are arrays of spot-market equilibria;
one for each contingency, based on the endowments in each contingency. The
assumptions that Alice and Bob have the same f0 endowment and the same
preferences means (assuming convexity, which I do) that there is no trade in that
contingency—they stick with their endowments (and prices are set to support
that choice). Suppose that this gives each of them utility-in-the-contingency of
1.5 apiece. And in the two time-1 contingencies, we have a choice of two



possible spot-market equilibria. So, althogether, this economy has four EPPPE.
Of course, Alice likes best of all the EPPPE in which the prices in the two

time-1 spot markets are both (2,1), while Bob likes this least. Bob likes best of
all the EPPPE in which the prices in the two time-1 spot markets are both
(1,2), which is worst for Alice. But now compare their utilities in the two
EPPPE that have different prices in the time-1 spot markets:

•   In the EPPPE in which prices are (2,1) in contingency  and (1,2) in ,

Alice’s overall utility is 1.5 + (0.9)(2) + (0.1)(1) = 3.4, while Bob’s is 1.5
+ (0.1)(1) + (0.9)(2) = 3.4.

•   In the EPPPE in which prices are (1,2) in contingency  and (2,1) in ,

Alice’s overall utility is 1.5 + (0.9)(1) + (0.1)(2) = 2.6, while Bob’s is 1.5
+ (0.1)(2) + (0.9)(1) = 2.6.

That is, this economy has four EPPPE, one of which is Pareto superior to a
second!

You might think that this depends on the assumption that no trade is
possible among contingencies. Or perhaps this is a knife-edge example, one that
would disappear if we perturb the model slightly. But neither of these is true. At
the cost of complicating the story, we can get the same phenomenon if we
assume (1) that there is a single security, which allows wealth to be transfered
between dates 0 and 1, but does not permit the transfer to distinguish between
states (or that allows for transfer from 0 to 1 but only in a set proportion), (2)
Alice and Bob have time-0 preferences where the marginal utilities of the goods
near their endowments change very rapidly, so they will only want to shift a
small amount of wealth, and (3) the Walrasian-equilibrium correspondence for
each time-1 spot market is locally continuous in their endowments. And we’ll
get this phenomenon for all local perturbations of things like the consumers’
endowments.

Incomplete markets, but all at once
Moreover, the phenomenon we’re seeing here is very different from what we’d
see in an incomplete-but-all-markets-at-once economy. To explain this cryptic
remark:



Suppose we have k basic commodities and a t/u/i structure with N
contingencies, so there are kN commodities. And we have H consumers, each
with a utility function uh :  →R and an endowment eh ∈ .

It will be convenient in this discussion to shift attention from the final
consumption bundles allocated to consumers to their net trades. So, for each 

, the set of

feasible net trades for h, and define 
.

Imagine that markets are established for a nontrivial subspace of the goods.
Let M be a subspace of RkN; we imagine that consumers can buy and sell
bundles from M and no others. You can think of some commodities not trading
at all—if m ∈ M, then mift = 0 for some i and ft—or that certain commodities

only trade in preassigned bundles; for instance, if m ∈ M, then mift = 

for all ft, f ’t ∈ Ft. The first case represents a situation in which there is no
market in ft labeled commodity i; the second, a case in which the only market
for commodity i to be consumed at date t involves the same amount of i in all
time-t contingencies. Please note: in this second case, h may consume different
amounts i in different time-t contingencies. But her net trades cannot vary; any
differences across time-t contingencies result from differences in her initial
endowment eh.

The fact that M is a subspace is the start of a “ competitive markets” story: If
the consumer can buy m, she can sell m (assuming she has the resources in her
endowment to do so and can afford these transactions; see below). If she can buy
m, she can buy λm for any λ > 0, and if she can buy m and m′, then she can buy
m + m′ (both subject to budget constraints). Be careful about the word “ buy”
here, as m could mix some positive and some negative components.

The only restriction put on M (besides that it is a subspace) is that there is
some m ≥ 0, m ≠ 0, such that m ∈ M. That is, the opportunity to buy (really
buy) some goods without having to sell others exists.

Definition 16.14.

a.  An M-constrained Walrasian equilibrium consists of a linear function p



: M → R and, for each consumer h, a net trade ςh ∈ M ∩ Xh, such that:
p(ςh) ≤ 0 for each h; for each h, if  ∈ M ∩ Xh and p( ) ≤ 0, then

vh(ςh) ≥ vh( ); and Σhςh ≤ 0.

b.  A linear functional p : M → R is nonnegative if p(m) ≥ 0 for all m ≥ 0.

c.  Consumer h is locally insatiable constrained to M if, for every ς ∈ M ∩
Xh and for every  > 0, there exists some ς′ ∈ M ∩ Xh such that ||ς – ς′||
≤  and vh(ξ′) > vh(ς). (Given our assumption that M contains some m ≥ 0,
the easiest way to guarantee this is to assume that each uh, and hence vh,
is strictly increasing.)

Proposition 16.15 (The First Theorem of Constrained Welfare Economics).
Suppose that p and (ςh)h∈H constitute an M-constrained Walrasian
equilibrium, where p is nonnegative, and where each consumer is locally
insatiable constrained to M. If ( )h∈H is any other set of net trades for the

consumers where each  ∈ M ∩ Xh and such that Σh  ≤0, then ( )

does not Pareto dominate (ςh).

Or, in other words, if consumers are constrained to net trades lying in some
fixed M, then M-constrained-Walrasian-equilibrium net trades are (constrained)
Pareto efficient. In particular, no economy with incomplete markets M ≠ RkN

will admit two M-constained-Walrasian-equilibrium allocations, one of which
Pareto dominates the other.

The proof of Proposition 16.15 is left to you. If you remember the proof of
the First Theorem of Welfare Economics, it should not be a challenge.

All-at-once versus dynamic market structures
With complete markets, EPPPE are more or less equivalent to the Walrasian
equilibria of a corresponding all-markets-at-once economy. The cleanest
statement of this is Proposition 16.12; if the set of securities S is such that any
viable price system for S gives complete markets, then the set of Walrasian-
equilibrium allocations is identical to the set of EPPPE consumption



allocations.
Hart’s example, compared to Proposition 16.15, shows that incomplete

dynamic markets are different from incomplete all-at-once markets. Roughly
speaking, when markets are complete, the many budget constraints of an EPPPE
can be boiled together into a single budget constraint that works for all markets
at once. But when markets are incomplete, the multiple budget constraints, one
for each contingency, cannot generally be reduced to a single budget constraint
with subspace restrictions on allowed net trades. In Hart’s example, you can
make trades in a subspace of RkN, but you must satisfy three different budget
constraints on those trades, which is mathematically a very different thing than
satisfying a single budget constraint while choosing from a subspace.

And this is only the beginning of the … interesting phenomena brought
about by incomplete markets. In the incomplete-but-all-markets-at-once world,
the existence results of Chapter 14 adapt very nicely. Obtaining existence results
when markets are incomplete and dynamic is not at all easy and, in fact, very
well behaved dynamic economies can fail to have any EPPPE (although such
examples tend to be knife-edge cases). Hart (1975) provides an example of
nonexistence.

Suppose we have a dynamic market economy and an EPPPE for it with
incomplete markets. If we complete markets (say, by adding one of the SFFCC or
SSFCC or SRFCC), we know that any EPPPE for the market with augmented
securities will not be Pareto dominated by the original EPPPE outcome. But
Hart also provides an example where, starting with a set of securities S and an
EPPPE, if securities are added to S that do not complete the markets, then the
new economy can have an EPPPE whose outcome in terms of consumption is
Pareto inferior to the original. Adding markets, if you don’t add enough, can
make everyone worse off.

If you want to study incomplete markets systematically, you should begin
with Hart’s paper; I’ll supply further references in the bibliographic notes.

16.7. Firms
We come back, finally, to firms. What does it take to bring them back into the
story? What problems arise?

In the basic general equilibrium model of Chapter 14, firms are formalized in



three pieces: (1) Their ability to transform commodities is specified by a
production-possibility set Z. (2) Their objective is to maximize their profits,
taking prices as given. (3) Their connection with consumers is specified by
exogenously given shareholdings. None of these need to change in the all-
markets-at-once economy and, indeed and as we observed at the start of this
chapter, by contingency-stamping commodities, our ability to model production
more realistically (as taking time, as having uncertain outputs) is enormously
enhanced.

When we move to markets with securities, however, a number of questions
arise. These don’t concern production possibilities for the firms; that part of the
model of a firm continues to be enhanced. But:

•   What is the profit of a firm, if there is no single market in which all
transactions can be reckoned in a single numeraire?

•   If a firm requires inputs for its chosen production plan early and only
produces outputs late, how does it finance the purchase of those inputs?

•   Securities that are tied to the fortunes of a firm are among the most
important securities traded in the real world. So, presumably, in a model of
a dynamic economy with securities and firms, we would want among the
securities to be things like equity in the firm and debt issued by the firm.
About these:
In the real world, debt securities issued by firms—corporate bonds,
commercial paper—carry the possibility of default, because limited-liability
firms can and do go bankrupt. Bankruptcy is a not allowed in the models we
have built so far; unless and until it is put into our models, there is no
reason to distinguish one firm’s “ riskless” debt from another’s, or from debt
taken on by a consumer. However, there is no reason, if we allow firms to
issue securities, to preclude a firm from issuing a security that, say, pays
1000 units of numeraire in some subset of the time-t contingencies,
something less than 1000 units in other time-t contingencies, and 0 in still
others. In other words, we can conceive of securities within the framework
we’ve created that mimic risky debt.
As for equity, this is generally what determines ownership of a firm. If
equity in a firm trades in securities markets, then ownership is not some



exogenously given (and fixed) vector of shareholdings, but instead
something that changes as securities are traded among consumers (and,
perhaps, between consumers and firms, or among firms). Also, to this point,
all securities have been in zero net supply. But equity in a firm is meant to
total 100% of the firm. So equity as a security needs some new and special
treatment. And, as we give it that treatment, who are the intial holders of the
firm’s equity?
In our models of securities so far, the set of securities is exogenously given,
with the dividends issued by the security part of the exogenous specification
of each security, along with a specification of when the security trades. The
phrase “ securities issued by a firm” immediately suggests something
entirely more complex: The set of securities is endogenously determined by
the actions of a single firm (with what as the objective function?). And even
if we preclude this—we say that equity in every firm is traded and all other
securities are exogneously specified—equity is a claim on the profit of the
firm, which, admittedly, is a very vague concept, at this point. That being
so, as the firm changes, or contemplates changing, its production plan, it
will presumably be implicitly changing, or contemplating a change in, the
dividends its equity pays. So even if the list of securities is fixed
exogenously, it would seem that the dividends paid by at least some
securities will have to be endogenously determined.
Back in Chapter 9, we never really rationalized profit maximization as an
objective for the firm, but we did mention that many rationales that are
offered begin with the contention that shareholders in a firm unanimously
prefer profit maximization (and go on to offer reasons why managers of the
firm act on behalf of its shareholders). How good is this rationale, when the
shareholders in a firm may be a shifting lot of individuals?

These are all good questions. And they have tidy answers if markets are
complete in a strong sense. The following meta-proposition applies:

Almost every reasonable way to answer questions about “what can/do firms do
about securities” is fine, as long as (a) there are enough securities around so
that markets are complete, (b) if firms’ decisions affect the set of securities or
the dividends paid by a security, these effects don’t change the completeness of



markets, and (c) firms, along with consumers, are price takers: The actions of
firms don’t change spot prices in any market, and they don’t change the trade-
offs in moving wealth from one contingency to another, which are given by the
(essentially unique) vector π ∈ Π(S, q). Moreover, when markets are complete,
there is no ambiguity as to what profit maximization means for firms: Firms
choose their production plans to maximize the net present value of all their
activities, with the net present value defined as the value computed in
contingency-f0 prices, with cash flows in each ft brought back to f0 through the
complete securities markets and their prices. This objective function is in the
best interests of initial shareholders in the firm, and—subject to a reasonable
assumption about the nature of production technologies7—remains in the
continued best interest of subsequent shareholders, if trading in equity is
allowed so that shareholdings change.

This is a meta-proposition, which means that I’m not going to offer a proof.
Before we can contemplate a proof, we have to specify answers to a lot of the
questions asked; once that is done, then the proposition can be proved, and the
proof runs along the lines of Proposition 16.12; if a, b, and c hold, then
equilibrium outcomes will be the same as equilibrium outcomes in the all-
markets-at-once economy. Just to give a for-instance, suppose we say

•   In the model, F firms are given, each specified by a production-possibility
set Zf ⊆ RkN and an intial vector of shareholdings (σhf), where σhf ≥ 0 for all
h and f and Σh σhf = 1 for each f.8 Assume that each Zf is closed and
contains 0.

•   In the model, besides securities connected to firms, there is a set S of non-
firmrelated securities, rich enough so that for any viable prices q for S, we
know that markets will be complete. (So, for instance, S could be SFFCC or
SSFCC or SRFCC.)

•   Besides the securities in S, the shares in the firms trade in securities markets
that are open each contingency (prior to T). (Dividends are specified below.)

•   Suppose firm f contemplates production plan z ∈ Zf. It must
simultaneously formulate a “ financing and dividend payment plan,” which
involves it borrowing in the securities markets S in contingencies for which



it needs cash to finance immediate operations and paying out dividends in
contingencies where its operations (including discharging any debts it has
contracted) leave it with a positive net cash flow. Dividends are paid, of
course, to whoever are the shareholders of record as the particular
contingency begins. (Or, if you prefer, you can have the firm finance
operations where cash is needed by issuing debt. Or you can have it levy its
shareholders.)

•   In all this, each firm takes prices r and q as given, and it conducts its
operations to maximize its profit, which is defined as

where ξ is selected from Π(S, q).9

With these assumptions in place, an EPPPE can be defined in fairly
obvious fashion: The price portion consists of spot prices r for each contingency
and securities prices q for the exogeously given S, with the securities prices for
equity in the firms (and, if allowed, other securities the firm might issue)
determined by the formula analogous to (16.4). Consumers have consumption
and trading plans, where they are allowed to trade in the securities in S and in
other securities firms may issue; their budget constraints are much as before,
except for contingency f0, where you need to take into account their initial
shareholdings in equity in the firms. Firms have production plans and
“ financing and dividend plans,” which are required to clear the books in each
contingency (the firm is left with neither a numeraire debt nor numeraire surplus
in any contingency). Firms maximize profits as defined above, given r and q,
and given the belief that their own securities will be priced by analogs to (16.4).
Consumers maximize utility subject to budget constraints. And markets must
clear; here you have to be careful about market clearing in the equity markets;
the sum of shareholdings in each firm’s equity must always total 1, instead of 0.

And, then, you prove that all equilibrium outcomes (in terms of
consumption plans by consumers and production plans by the firms) for the all-



markets-at-once economy are EPPPE outcomes for some trading plans, financing
and dividend plans, and the corresponding spot and securities prices. And the
EPPPE consumption and production plans are Walrasian-equilibrium plans in
the all-markets-at-once economy. (Problem 16.15 asks you to continue along
these lines.) For readers who know some financial market theory, you can also
prove a general-equilibrium version of the famous Modigliani-Miller
Theorem:10 As long as the firm can finance its operations and clears its books in
every contingency, the “ financing and dividend” plan that it chooses is entirely
irrelevant, fixing equilibrium prices.

Everything ties together, very nicely.

And if markets are not complete?
Which is not true at all, without the assumption that markets are complete
irrespective of what firms do, and that their actions do not change prices. Then
we aren’t sure what profit is and, whatever we decide is the objective of the firm,
it isn’t clear that shareholders want the firm to maximize “ it.” An example that
is even more of a caricature of reality than was Hart’s example illustrates what
can happen. Again there are two consumers, Alice and Bob, two states of nature,
and two dates (hence, three contingencies), t = 0, 1. There is a single basic
commodity (k = 1); I’ll abbreviate contingency-stamped commodity bundles
(elements of R3) by  (in place of ,

which is more consistent with previous notation). Alice and Bob have identical
utility functions, given by

Alice’s endowment vector is (10, 20, 0), while Bob’s is (10,0,20).
There is one firm, which is essentially useless: Its production possibility set

is .

The key to the example is that only two securities are traded. The first is a
“ savings” security, which pays a dividend of 1 at time 1, in either contingency.
The other is equity in the firm. The savings security is in zero net supply; there
is 1 unit of the firm’s equity. Bob and Alice each are initially endowed with half



the firm’s equity.
It may seem obvious that the firm should simply shut down, rather than

engage in free disposal. Because both consumers have strictly increasing
preferences, the one basic good will have strictly positive price in every
contingency. In fact, we can immediately normalize the spot-market prices so
that the price of the basic good in each contingency is 1. Therefore, any
production will consist solely of destroying valuable goods.

So, going with the this obvious conclusion, if the firm contemplates the
production plan z = 0, its shares are worthless, and Alice and Bob are left doing
the best they can by trading in the savings security. They wish most of all to
balance their endowments in the two time-1 contingencies; if markets were
complete, they each would wind up with the consumption bundle (10, 10, 10),
which gives each one utility 4.79579055. But there is no way for them to do
this. Depending on the price q of the savings security, they might want to
transfer some of their contingency f0 wealth into the two time-1 contingencies.
But since they share this desire, there is no one to take the other side of the
transaction. In an EPPPE, the price of the savings instrument must be set at the
price q that makes this marginally undesirable, which is the solution to

So, in equilibrium, q = 5.76190476, and Alice and Bob both consume their
endowment, which gives each of them utility 3.92015649.

Suppose, however, that Alice and Bob convene a meeting of the
shareholders of the firm and advance the proposition that the firm should throw
away 0.01 in contingency . To “ clear its books,” the firm will finance this

with a levy of 0.01 units of the one good if the contingency is , the levy

being imposed on shareholders based on their shareholdings coming into this
contingency.11

Suppose the firm fixes this production plan (“ destruction plan” is more
descriptive), in consequence of which the price of a full share of the firm at time
0 is some q′ < 0. (The price is strictly negative because if Alice or Bob holds a



share of the firm, they may have to fulfill the levy next period.) Alice must
choose whether to demand any shares of the firm and, simultaneously, whether
to use the savings instrument, whose price is q. If her trading plan is (αA, βA),
where αA is her position in the savings instrument and βA, her position in
shares of the firm, her consumption bundle will be

(Note that in contingency , holding position βA in shares of the firm doesn’t

hurt her at all.) And, similarly, for Bob, we get

We want to find prices q and q′ so that when Alice maximizes her utility of
xA(αA, βA) and Bob his utility of xB(αB, βB), we find that the optimizing choices
satisfy αA + αB = 0 and βA + βB = 1. Doing this numerically, I obtained the
approximate solution shown in Table 16.2.



Table 16.2. Alice and Bob destroy to create. The values in this table are
the (approximate) equilibrium values for the Alice-and-Bob example with
firms and incomplete markets. To give them the ability to trade
endowments across time-1 contingencies, they unanimously prefer that the
sole firm, which can produce nothing, destroy a bit of commodity in one
contingency. This provides trading opportunities that Alice and Bob
otherwise wouldn’t have and leaves both much better off than if the firm
“ maximizes profit” and nearly as well off as they would be with complete
securities markets from the beginning. (The text gives more detail.)

The equilibrium price of the savings instrument is a bit more than 1, while
the price of the equity in the firm is approximately 0.005. Alice buys 2000
shares in the firm (where each share represents 100% of the firm), to give her a
net position of 2000.5; Bob sells his 0.5 share and shorts an additional 1999.5
shares. Since the price of the firm’s equity is negative, Bob’s short position is
costly to him, and he generates the resources required to take this short position
by shorting the savings instrument (in effect, borrowing). Alice’s purchases of
equity generate time-0 funds for her, and she buys the savings instrument (in
effect, loans her resources to Bob). In contingency , Bob has to pay back the

loan from Alice, but he has endowment 20 with which to do this; Alice gets
back her loan (via the dividends of the savings instrument)—in equilibrium,
Alice winds up with a bit more than 10 units of consumption and Bob a bit less
than 10. Both of their initial positions leave their time-0 endowments virtually
untouched; Alice’s time-0 consumption is a bit more than 10 and Bob’s a bit
less.

The key is what happens in contingency . Bob owes Alice about 10

units of consumption and has no endowment. But because he is short around
2000 units of the equity of the firm, and the firm is about to destroy 0.01 units
of the good, the firm levies its shareholders this amount. Alice, who is long
2000 units, has to pay the 0.01 levy to the firm, and must pay Bob around 20
units, since his short position entitles him the minus the amount of levy.12 So,
in equilibrium, Alice winds up with a bit more than half of what remains of the
social endowment, after the 0.01 units are destroyed, and Bob winds up with a
bit less than half. Note that their utilities are much greater than if the firm



“ maximizes profit” and chooses z = 0, and nearly as high as in the outcome that
would result if markets were complete. So, compared to the firm “ maximizing
profit,” both Alice and Bob like this a lot more.

Why does Alice come out ever so slightly ahead? The firm, by destroying
commodity in the first state, increases the value of what remains in that state.
And Alice is the person whose endowment is larger in the first state.

Note that, after time-0 trade is done, Alice owns 100% of the firm. In fact,
she owns 200,000% of the firm, in a manner of speaking. Imagine she convenes
another shareholders meeting. Bob no longer has a vote, and Alice, being long
in the shares of the firm, prefers that the firm change its production plan and not
destroy any good in contingency . Of course, if she could get the firm to do

this, and if contingency  comes about, Bob has a problem: He owes Alice 10

or so units to pay off her loan, and he has no endowment for doing so. Be that
as it may, you can see here that the preferences of shareholders can change in this
sort of situation.

It should also be noted that trying to replace “ profit maximization” (which,
with incomplete markets, is anyway ambiguous) with “ maximize the value of
initial equity” won’t work in this example. If the firm chooses z = 0, its equity
is worthless. If it destroys the 0.01 unit in contingency , its equity has

negative value. And that’s unanimously preferred, ex ante, by both Alice and
Bob.

If you think about it, none of this is too surprising. The meme that
shareholders unanimously prefer profit maximization works for competitive firms
and only for competitive firms. It works because the only impact a competitive
firm has on its shareholders is to change the right-hand side of their budget
constraint, and a firm, by maximizing its profit, makes that right-hand side (that
is, shareholder wealth) as large as possible. The profits of other firms aren’t
affected (assuming no other externalities), and the prices faced by consumers on
the left-hand side of their budget constraint are unchanged. To reduce this to its
essence, two oneshare shareholders in General Motors who do not want GM to
maximize its profit are (1) someone who holds 10,000 shares of Ford Motor
Company, if GM profit maximizing will reduce the profit of Ford, and (2)
someone who buys a brand-new Cadillac every year; this individual would
prefer that GM set the price of Cadillacs at $10 each, even if that reduces profit.



In dynamic economies, the backbone in the meta-theorem is that firms are
competitive in every sense of the word: they don’t affect prices, but more than
that, they in no way affect the left-hand side(s) of consumer optimization
problems. If by changing their production plans, they change the space of what
consumers can buy, they affect that left-hand side profoundly, and the sort of
weirdness seen in this second Alice-and-Bob example can ensue.

This does not mean that there isn’t a literature on firms in incomplete
markets. There is a large literature, which moreover is organized on the theme of
“ What should be the objectives of the firm?” (References will be supplied
momentarily.) But the answers provided are bound to be strained; even without
the complications of time and uncertainty, there is no solid answer to the
question What should be the objectives of the firm? for firms that are not price
takers or that can create new goods or take products “ off the shelves.” That’s the
issue here, although time and uncertainty may obscure this fact.

Moving beyond the microeconomics of this volume
And this begs the question, If markets are incomplete (before we start worrying
about equity in firms), why is that? In our example, why don’t Alice and Bob
create the “ missing” security (or otherwise contractually agree to mutually
ensure one another)? The methods developed in this volume are not well suited
to answer this question, or to deal with imperfectly competitive firms, or to deal
with the realities of consumers and firms that have no hope of undertaking
successfully the complex decision and assessment problems that they have been
facing in this chapter. There is more that can be done with the models and
methods we’ve explored, but it is probably more important to bring to the table
models and methods better suited to some of the questions this chapter (as well
as others) has raised. But that’s material for another volume or two.

Bibliographic Notes
The idea of contingency-stamping commodities in general equilibrium models
first appears in the literature in Arrow (1953) and Debreu (1959). Arrow (1953)
pioneers the idea of using securities markets to transfer wealth among
contingencies, with contingent spot markets then available to allocate wealth
among commodities.

Arrow (1953) deals with a two-period model only. The basic structure of an



EPPPE for more complex market structures is due to Radner (1968, 1972), and
EPPPE are often called Radner equilibria, in consequence. Merton (1973)
contemporaneously develops essentially the same concept (albeit in continuous
time models). Guesnerie and Jaffray (1974) then redo Arrow’s analysis for
rolling sets of contingent claims and multiple time periods.

Assuming all securities are financial or that they pay dividends in a single
commodity whose spot price is normalized to be 1 in all contingencies, the
connections between no-arbitrage, viability, and the existence of strictly positive
pricing vectors π can be attributed to several authors. I’m con?icted on this,
being in the set of authors. But, with the caveat that I am con?icted, I list Ross
(1978) and Harrison and Kreps (1979) as early general statements.

The analysis of the (in)efficiency of incomplete markets was spurred by Hart
(1975). Problems with the objectives of firms in incomplete markets were
analyzed around the same time; see in particular the symposium on the subject
in the Bell Journal of Economics and Management Science (1974). A large
literature on incomplete markets (with and without production) ensued; surveys
of the literature at various points in time include Kreps (1979b), Marimon
(1987), and Geanakoplos (1990).

Problems

 16.1. (a) Prove Proposition 16.2. You should mostly be citing previous
results.

(b) In the definition of an EPPPE (for any dynamic economy with a full set of
spot markets in each contingency), I assumed that spot-market prices were
nonnegative. Suppose I hadn’t restricted their sign. Prove: In any EPPPE for
any dynamic economy (with a full set of spot markets in each contingency) in
which Assumption 16.1’ is satisfied, all spot market prices must be
nonnegative.

(c) Prove: In any EPPPE for any dynamic economy (with a full set of spot
markets in each contingency) in which Assumption 16.1 is satisfied, the price of
ft-commodity 1 is strictly positive. Also prove: In the specific dynamic
economy of Section 16.3 (with contingency futures markets), the price at time 0
of the futures will all be strictly positive.



 *16.2. Concerning contingent financial versus contingent futures markets:

(a) What is the logical relationship between Assumptions 16.1 and 16.1’?
(Does either imply the other?)

(b) Give a statement of Proposition 16.4, but for contingent financial markets
instead of contingent futures markets.

(c) If we assume Assumption 16.1’ instead of 16.1 and work with contingent
financial markets instead of contingent futures markets, where does the proof of
Proposition 16.4 need amendment? Provide the needed amendments.

 16.3. Alice is a subjective expected-utility maximizer: For some
nondecreasing function U :  and probability distribution µ

on Ω, if her consumption bundle through time is (x0(ω), x1(ω), …, xT (ω)) in
state ω, where each xt(ω) ∈ , her overall utility is

Under what conditions is Alice globally insatiable in every contingency ft?

 16.4. We know that, in an all-markets-at-once economy, if Assumption 16.1’
holds, every consumer will satisfy her budget constraint with equality in any
Walrasian equilibrium. But what about in an EPPPE? If (r, q , x, y) is an
EPPPE for some dynamic economy in which Assumption 16.1’ holds, is it true
that the budget constraints (16.3) all hold with equality (for xh and yh)? Show
by example that the answer is no. Can you provide conditions under which the
answer would be yes?

 *16.5. Prove Lemma 16.11. Note that the second half of part a implies the
first half, so you might content yourself with (only) proving the second half. But
to understand the notion of an arbitrage opportunity, you might try to prove the
first half directly, using arbitrage. For part b, you want to show that if ξ is a
wealth-transfer vector generated from S given these prices, then π · ξ = 0. (Why



is this enough?) To do so takes some cleverness in changing the order of
summations.

*16.6. Prove that SSFCC and SRFCC have the property that, with any viable
price system, markets are complete. (Hint: Use Lemma 16.10.)

 16.7. Recall that for each ft, t < T, we let (ft) be the number of immediate
successors of ft. Suppose S consists of  securities. Each

one trades in only one contingency; precisely (ft) trade in contingency ft. Each
security that trades in contingency ft pays dividends (only) at time t + 1 and
only in contingencies that are immediate successors to ft; the dividends paid are
arbitrary except that the (ft) patterns of dividends form a linearly independent

set. (Hence, SRFCC is a special case of this situation.) Prove that for such a set of
securities S, if S and q are viable, then the dimension of M(S, q) is N – 1.

 *16.8. This problem employs the following mathematical fact. (You can try
to prove this, if you wish. It isn’t hard if you know some linear algebra and
multivariate calculus. But you can also just take the fact and use it.) Suppose 

 is an M × N matrix in ,

where each component xmn of the matrix is drawn randomly from a uniform
distribution on [0, 1] (or any other probability distribution that is absolutely
continuous with respect to Lebesgue measure on R+). Moreover, these MN
numbers are drawn independently. Suppose the set {1, …, N} is partitioned
into K nonempty pieces, {1, …, n1}, {n1 + 1, …, n2}, …, {nK – 1 + 1, …, nK}
(where nK = N), and we form the MK-dimensional matrix whose mk th element
i s . Then with probability 1 (with respect to the

original random draw of the components of the matrix (xmn)), every J × J square

submatrix of this M × K matrix (where J ≤ min{M, K}) has full rank.13

Use this fact to prove: Suppose we have a dynamic economy with L financial
securities, in which L ≥ (ft) for all ft. Each of these securities trades at each



contingency ft for t < T, and each one pays a strictly positive dividend in each
final contingency {ωT}. The dividends ds({ω}) are all drawn at random, in
independent and identically distributed fashion, according to a uniform
distribution on [0, 1] (or any probability distribution on R+ that is absolutely
continuous with respect to Lebesgue measure). Then for this economy, if (p, x)
is a Walrasian equilibrium for the all-markets-at-once economy (with these
consumers and commodity space), there is an EPPPE in which x is the
consumption allocation portion with probability 1 (concerning the choice of
dividends).

How does this result relate to Proposition 16.13? What would happen if the
securities paid real dividends?

 16.9. Consider the following pure-trade economy. There are two consumers,
Alice and Bob. There are three dates, t = 0, 1, 2. There are four states of nature,
and the t/u/i structure is such that, at date 1, Alice and Bob know that the state
is in either {ω1, ω 2} =  or {ω3, ω 4} = . This implies that there are

seven contingencies, f0 at time 0,  and  at time 1, and {ωi} for i = 1, 2,

3, 4 at time 2. There is a single basic commodity, and hence, since there are
seven contingencies, the consumption space is R7. Both Alice and Bob are
expected utility maximizers; both attach probability 1/4 to each of the four
states, and they share the same von Neumann–Morgenstern utility function (on
consumption vectors (x0, x1, x2) at the three dates) U(x0, x1, x2) = ln(x0) + ln(x1)
+ ln(x2). Both Alice and Bob have endowments of 1 unit of the good in
contingency f0 and 9 units of the good in each of the four time-2 contingencies.
But their endowments are different in the two time-1 contingencies: Alice is
endowed with ∈ units of the good in  and 6 units in , while Bob is

endowed with 6 units in  and ∈ units in .

(a) There is a single Walrasian equilibrium of this economy, with an all-
markets-at-once economy. Identify this equilibrium, and prove that it is the only
one.



(b) This is not an all-markets-at-once economy but, instead, an economy with
two financial securities and dynamic trading. Each security trades in each of the
three before-time-2 contingencies. Each pays dividends in each of the four time-2
contingencies. The first pays the dividend ∈ if the state of nature is ω1, 7 if ω2,
3 if ω3, and 5 if ω4. The second pays, in the same order, 12, 2, 4, and 4. Is
there an EPPPE corresponding to π = (1, 1, …, 1)? If so, what is it? (It is not
necessary for you to produce the equilibrium trading plans of Alice and Bob; it
is enough to identify r, q, and x.)

(c) Suppose the securities paid their dividends in the consumption good, rather
than in numeraire. Is the Walrasian-equilibrium allocation an EPPPE
allocation?

(d) Go back to the case where the securities are financial. Is there an EPPPE
corresponding to π given by

If so, what is it? Warning: This is harder than part b.

 16.10. Suppose that S contains one primary security s0, which trades at every
contingency (before time T) and pays a dividend in every time-T contingency
{ω} and that, moreover, pays a different dividend in each time-T contingency.
Ennumerate Ω as {ω1, ω2, …, ωJ}, where J is the cardinality of Ω, and
abbreviate ds0 ({ωj}) as d(j). Arrange the indices so that d(J) > d(j) for all j < J.
Suppose S also contains J – 1 “ European call options” on the primary security:
For j = 1, …, J – 1, the jth of these, which is denoted sj, trades at every
contingency (before time T) and pays a dividend at time T given by

(If you know about call options, sj is, effectively, a European call option on the



primary security with striking price d(j) and exercise date T. If you don’t know
about call options, ignore what you just read.) Prove that for this set of J
securities, one primary and J – 1 derivative, if S and q are viable, then the
dimension of M(S, q) is N – 1. (The idea that markets are complete if there are
one primitive security that distinguishes among states of nature and enough call
options on that security is due to Ross, 1976.)

 *16.11. Suppose the set of securities S has the following properties. All
securities pay dividends only at time T. Security 1 pays $1 in each and every
terminal contingency {ω}. Suppose prices q are advanced for these securities,
and (through a choice of numeraire) the price of security 1 is 1 in each
contingency prior to T.

I assert two propositions. First, S and q are viable if and only if probabilities
can be assigned to the states of nature so that, at each time t < T and for each
security s, the price of s in contingency ft is the conditional expected value
(under those probabilities) of the price of security s at time t + 1, conditional on
the state of nature lying in ft. For those who know some theory of stochastic
processes, we can paraphrase this as: S and q are viable if and only if we can find
a probability distribution that makes the stochastic process of the price of each
security a martingale relative to the filtration of the Ft, where for the case of t =
T 1, qsft will be the conditional expectation of the dividend to be paid.

And, second, markets are complete if there is a unique probability distribution
that does this.

Prove these two statements.

(In the literature, you’ll find this result in somewhat more complicated form,
where the probability distribution is called an equivalent martingale measure.
Things are more complicated because this is done with infinite state spaces; see
Harrison and Kreps (1979) for the orignal paper on these things.)

 16.12. In the discussion of security price indeterminacy with financial
securities (starting on page 417), I never justified the italicized claim. Please
finish justifying this.



 *16.13. Prove Proposition 16.15. If you would like more of challenge, state
and prove a version of this proposition with firms included in the story.

16.14. Hart’s example (from the start of Section 16.6) involves two
consumers, two commodities, two dates, and two states of nature. Replicate his
phenomenon, but with only one state of nature.

 *16.15. Suppose we wanted to state and prove a precise version of the meta-
proposition that, if markets are complete without involving equity in firms as
securities, and if firms are price takers, then the set of EPPPE consumption (and
production) allocations is the same as the set of Walrasian-equilibrium
allocations. To do this, you must give an exact specification of the general idea
that a firm’s plans will include both a production plan z ∈ Z and a financial
plan that enables the firm to carry out this production plan while meeting a
contingency-by-contingency constraint that the firm always balances it books.
The text gets you started on this, and this problem asks you to continue.
Warning: The solution given in the Guide goes on for over five pages and,
while it states propositions formally, it fails to do all the tedious work of a
formal proof. If you tackle this problem and push all the way to the end, it will
take considerable time and effort. Also, in the statement of the meta-proposition
in the text, a mysterious caveat is inserted to the (meta-)result that subsequent
shareholders will not try to convince the firm to change its production plans.
The answer in the Guide explains (somewhat informally) what that is all about.

 16.16. With regard to the Alice-and-Bob example with a firm, provide a fully
fleshed-out example along the lines outlined in footnote 12. That is, rewrite the
text from the start of the subsection And if markets are not complete? until the
end of the example, without unhappy phenomena such as negative prices for the
equity of the firm and the firm imposing a levy on shareholders at date 1 in
certain contingencies. You may find it helpful, in doing this, to change
endowments a bit: Begin with Alice having endowment (10.5, 18, 0), Bob
having (10.5, 0, 18), and both Alice and Bob beginning with a 1/2 share of the
firm.

 



1 The second way to envision what is traded will be discussed near the end of
this section.

2 This is a bit of an abuse of the adjective financial. It might be more
accurate to call these nominal dividends and (so) nominal securities. But I’ll
continue to use financial.

3 The N-element index set F is used here, since M(S, q) ⊆ RN has F as its
index set.

4 I reiterate an earlier admonition: If this seems like magic to you, think
harder about it. It isn’t magic. It’s very simple bookkeeping.

5 We need both parts of the premise; M(S, q) must have dimension N – 1 and
S and q must be viable. It is possible the M(S, q) has dimension N – 1 and
arbitrage opportunities exist. Can you see how?

6 This story would become almost realistic, at least in terms of economies a
few centuries ago, if instead of wheat, commodity 1 was gold, and the units of
gold were “ gold coins.” Then the spot price of, say, an orange in contingency ft
would be so many gold coins. We might even give gold coins a name, such as
“ doubloons.” But this doesn’t quite work in the framework of this chapter,
because one doesn’t consume gold; one might get utility from its use (as
jewelry or in dental applications), but it isn’t destroyed by the consumption of
its services. This, of course, is one reason why gold became a medium of
exchange. This takes us to the theory of money, which I want to avoid, so I’ll
stick with wheat.

7 If you want an explanation of this mysterious caveat, see the solution to
Problem 16.15 in the Student’s Guide

8 Since s is being used in this chapter for securities, is used for initial
shareholdings. And for readers who might be interested in general equilibrium
with entrepreneurs, nothing precludes the initial shareholdings in a firm f from
being entirely concentrated in one consumer’s hands (that is, σhf = 1 for some
h), who is the founder or entrepreneur of f.

9 I apologize for the double use of f, for firms and contingencies. It won’t
happen again.

10 Modigliani and Miller (1958).



11 Recall that we never have trading in securities at the final time T, which is
1. So there is no real distinction between shareholders coming into time 1 and
those leaving time 1. But if you don’t like the idea of a levy imposed on time-1
shareholders—or if you become unhappy with the fact that, in the example, the
value of this firm’s equity will be negative—the same point can be made in a
more complicated model where the firm’s equity has positive value: Suppose
that the firm’s technology allows it to input up to 1 unit of the good at time 0
and receive two times its input as output at time 1, regardless of the
contingency. This output is paid as a dividend to the shareholders. This will
make the firm profitable; the point will be that, ex ante shareholders would be
better off if, in one of the two contingencies, the firm discarded a bit of its
output. (This final conclusion will make sense in a paragraph or so.)

12 I reiterate from last footnote; if you find aspects of this example hard to
swallow, switch to the alternative formulation described there, and these
oddities will disappear.

13 Why? Because, roughly, linear dependence is a property that holds on
lower dimensional subspaces of the space looked at, and the probabilities being
considered put zero weight on lower dimensional subspaces.
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About the Appendices

Economic theory, and in particular the theory that makes up this volume, is
mathematical in character. Formal definitions that make use of concepts from
mathematics (sets, binary relations, functions) are followed by lemmas,
propositions, and corollaries. Your ability to make it through this book depends
crucially on your level of comfort with the various pieces of mathematics that are
used and in particular with your level of comfort with theorem-proof exposition.

These appendices present two types of material. In some cases, they review
mathematical concepts, tools, and results that I hope and expect you have
learned elsewhere. I assume that most readers of this book are graduate students
(or perhaps advanced undergraduates) in economics and related fields, who have
a solid background in mathematics in general and in the specific types of
mathematics (analysis, probability) that are employed in particular. If your
background is both solid and recent, you will find yourself able to read through
many of the appendices with little problem.

But in some cases, and this is particularly true of Appendix 4 (on the
mathematics of correspondences) and Appendix 6 (on dynamic programming), it
is likely that much of the material will be new to you.

In either case, these appendices are not substitutes for good courses on the
subjects they cover. They do not, for the most part, provide problem sets for
you to do, and what is true for economic theory is even more true for
mathematics: You learn the subject not so much by reading about it as by doing
it and, in particular, by doing the problem sets. (Where problems are provided,
you should take advantage and do them, especially if the material is new to
you.) If you find yourself struggling with the material in any appendix, or if the
material is entirely new to you, I urge you to find and consume a good textbook
that covers the material thoroughly. I asked colleagues and economics Ph.D.
students at the Stanford Graduate School of Business for textbooks that they
would recommend for such study, and I was surprised to find that books that I
studied as a student (a long, long time ago) are still regarded as good sources:
Rudin’s Principles of Mathematical Analysis (3rd ed.), McGraw-Hill, 1976;
Royden, Real Analysis (3rd ed.), Prentice-Hall, 1988; and Rockafellar, Convex
Analysis, Princeton University Press, 1970. One more recent book that was
strongly recommended by some students and that covers a wide variety of



subjects is Ok, Real Analysis with Economic Applications, Princeton
University Press, 2007. Concerning dynamic programming, Bertsekas, Dynamic
Programming and Optimal Control, vols. 1 and 2 (3rd edition), Athena
Scientific, 2005 and 2007, was recommended. I personally like Whittle,
Optimization Over Time: Dynamic Programming and Stochastic Control, vols.
1 and 2. But this is out of print, I fear. Perhaps copies can be found in your
library.

I have not included in the appendices mathematics that is truly basic. In
particular, basic (multivariate) calculus, linear algebra, set theory, and simple
probability theory are for the most part omitted.

When writing the appendices, I struggled with the question, Which results
should I prove and which should I simply state? For the most part, I omit
proofs where the proof is straightforward, and I omit proofs where the proof is so
difficult that giving the proof would derail the exposition. But I do give proofs,
or sometimes sketches of proofs, whenever I think your comprehension of the
result will benefit by going through the details.
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Mathematical Induction

Mathematical induction (or just, induction) is a technique for proving that a
given statement is true for any positive (or nonnegative) integer. For those
readers who are unfamiliar with this very useful technique, or who need a quick
refresher, I will illustrate with a very silly example: For my statement, I will
use Every nonnegative integer n is either even or odd, where n is even if n = 2m
for some integer m, and n is odd if n = 2m +1 for some m. (You probably
think, and correctly, this is petty obvious. But did you ever think how such a
thing is proved? Here is one way.)

Step 1: First, you prove the statement is true for n = 0 if you want to prove it is
true for all nonnegative integers, or you prove it is true for n = 1, if you want to
prove it is true for all strictly positive integers.

In this case, we’ll begin with n = 0. Zero is even, since 0 = 2 × 0.

Step 2: The induction step. Second, you assume or hypothesize that the
statement is true for all nonnegative/positive integers less than or equal to n,
and, using this hypothesis, you prove the statement is true for n + 1. The
assumption is called the induction hypothesis, and this step is called the
induction step.

So assume inductively that every nonnegative integer n or less is either even
or odd. Then, in particular, either n = 2m (n is even) or n = 2m +1 (n is odd).
Consider n+1. If n is even, so n = 2m for some m, then n+1 = 2m+1, hence n+1
is odd. If n is odd, so n = 2m+1 for some m, then n+1 = 2m+1+1 = 2m+2 =
2(m+1), and n + 1 is even. Therefore, we have shown that n + 1 is either even
or odd, completing the induction step.

Step 3: Write end of proof; you are done.

You should have a pretty good intuitive understanding of why this is a
valid technique of logical proof. Basically, this is a “ domino” technique. The
positive integers are the dominos, and domino n is considered to be knocked
over if the statement is true for integer n. In step 1 you prove that the first
domino is knocked over. In step 2, you prove that if all the dominos up to n are
knocked over, then so is n + 1. And then, because the integers are like an
infinite sequence of dominos, this shows that the statement is true for every



integer; every domino is knocked down.
Suppose I want to prove some statement is true for all the integers, positive

and negative. I can use the technique of induction by, for example, showing that
the statement is true for zero, and then showing that if it is true for all positive
integers from 0 to n > 0, it is true for n + 1, while if it is true for all negative
integers from 0 down to to m < 0, then it is true for m – 1.

Although it is probably overdoing things, let me close by noting that this
involves in particular the idea that there is always a “ next” integer. Statements
about all the real numbers are not amenable to this technique. For example,
suppose I wanted to prove that All nonnegative real numbers are rational. I
could carry out, in each case, step 1: Zero is rational. But then the logic in step
2 is that I assume that the statement is true for all the numbers less than or
equal to n and prove it is true for the “ next” number. There is no next real
number after 0, so the proof technique doesn’t work.
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Some Simple Real Analysis

This appendix reviews basic concepts and results from real analysis that are used
in the text. As mentioned in the overall introduction to the appendices, if you
are able to read through this appendix at a healthy clip, with most of the
material coming back to you from some previous course you took, you are ready
to proceed to the text and most problems. If it is familiar, but only vaguely so,
you may need to review seriously. And if your have never seen this material
before, it may be dangerous to rely on this as your sole resource; study a good
textbook on real analysis. The overall introduction to the appendices gives
some recommendations.

A2.1.  The Setting
The explicit setting is finite-dimensional Euclidean space, which is fancy math-
talk for the space of k-dimensional vectors with real numbers for components, for
some positive integer k. Most of what is discussed here extends to real vector
spaces and even to various metric and topological spaces, but I do not comment
further on those extensions. Euclidean space of dimension k is denoted by Rk,
with x = (x1, …, xk) denoting a typical element of Rk. The positive orthant is
denoted ; that is, . The strict positive

orthant, vectors with all components strictly positive, is denoted . The

letters f, g, and h usually denote functions on subsets of Rk with range Rj, for
some (possibly other) integer j. The function f is called real valued if its range
is R (that is, R1).

A2.2.  Distance, Neighborhoods, and Open and Closed Sets

Definition A.2.1.  For two points x and y from Rk, the Euclidean distance
between them is



(We always take the positive root.) This is the length of the line segment that
joins these points, measured in the usual fashion. The notation | |x – y| |
implicitly recognizes that the distance between the vectors x and y is the same as
the distance between the vector x – y = (x1 – y1, …, xk – yk) and 0 = (0, … 0);

distance is translation invariant.1 Also, the double vertical lines in | | ·| |  may
remind you of single vertical lines used to denote absolute value in R1; in the
case of k = 1, the Euclidean distance between numbers x and y is just the
absolute value of their difference, or |x – y| . Euclidean distance has some
standard properties:

1.  | |x – y| |  ≥ 0, and x – y = 0 if and only if x = y.

2.  | |x – y| |  = | |y – x| |

3.  For a scalar α, | |αx – αy| |  = |α|  | |x – y| | .

4 .  The triangle inequality: For every x, y, and z, | |x – y| |  + | |y – z| |  ≥ | |x –
z| | , which is paraphrased: The shortest path between x and z is the straight
line between them; going via a third point y will never shorten the distance.

Definition A2.2.  For every point x ∈ Rk and for every  > 0, t he -open-
neighborhood around x is the set of points

Definition A2.3. A set X ⊆ Rk is open if for every x ∈ X, there exists some 
> 0 such that N  (x) ⊆ X. A set X ⊆ R is closed if it is the complement of an
open set. Per careful application of these definitions, both the empty set and
the entire space Rk are open and, hence, both are closed.



The picture is a simple one: A set is open if, around every point, you can draw
some “ ball” of postive radius that is completely contained within the original
set.2 The mental picture of a closed set will be developed momentarily. Many
sets in Rk are neither open nor closed; for instance, in R1, the set (0, 1] = {x ∈
R : 0 < x ≤ 1} is neither.

Proposition A2.4.  The union of any number of open sets is open. The
intersection of a finite number of open sets is open. The union of a finite
number of closed sets is closed, and the intersection of any number of closed
sets is closed.3

Relatively open and closed sets
In many contexts, we talk about functions defined not on all of Rk but instead
on a subset of Rk or conduct analysis in such a subset. Perhaps most
importantly, we often look at functions defined on the positive orthant of Rk. To
deal with such cases, we say that a subset Y of a set X is relatively open in X if
Y = Z ∩ X for some set Z that is open in all of Rk and Y is relatively closed if Y
= Z ∩ X for some set Z that is closed in all of Rk. Note that if X is closed, then
Y is relatively closed in X if and only if it is closed, and if X is open, then Y is
relatively open in X if and only if it is open. When conducting analysis in some
particular domain, authors will sometimes drop the modifier relatively and
speak of open and closed sets, implicitly meaning relatively open and relatively
closed.

Closure and interior

Definition A2.5. For X ⊆ Rk, the closure of X is the smallest closed subset of
Rk containing X, and the interior of X is the largest open subset of Rk

contained within X.

How do we know that for a given set X, there is a smallest closed set containing
X and a largest open set contained in X? We use Proposition A2.4: To define
the closure of X, note that Rk is closed and contains X. Now take the
intersection of every closed set that contains X. Proposition A2.4 tells us that



this is necessarily a closed set. Of course, X is entirely contained in this
intersection (since X is in each set in the intersection). And this must be the
smallest closed set containing X; anything smaller would have been in the
intersection, and hence would have reduced the intersection to itself (at least).
Similarly, the interior of X is the union of all open sets entirely contained
within X. Note that the interior of X can be empty.

Please note as well that if x is in the interior of X, then there is some  > 0
such that N (x) ⊆ X. In words, there is a ball around x contained in X. Why?
Because if x is in the interior of X, since the interior of X is open, there is an
open ball around x in the interior of X, which (perforce) is entirely contained
within X. Conversely, if for x ∈ X we can find an  > 0 such that N  (x) ⊆ X,
we are certain that x is in the interior of X : The interior of X is the union of all
open sets contained within X, and N  (x) is one such open set. Hence the
interior of X is equivalently defined as the set of points in X such that we can
put some open ball around x and stay entirely within X. (A corresponding
equivalent definition of closure follows in a few pages.)

If you desire some finger exercises on this material, a good one at this point
is to show that the closure of a set X is the complement of the interior of its
complement, and vice versa.

Note that the relative interior of a set X, relative to another set Y, defined as
the largest relatively open set (relative to Y) contained in X is not, in general,
the relative interior of X intersected with Y; for instance, the relative interior of X
relative to itself is itself. On the other hand, the relative closure of X, relative to
Y, which is the smallest relatively closed set containing X, is the closure of X
intersected with Y (prove this!).

Other measures of distance
The Euclidean distance between x and y, given above, can be mathematically
cumbersome to work with. There are many other ways to measure distance in
Rk, two of which can be more tractable in proofs. These two are based on the so-
called sup or ∞ norm (read ∞ as “ ell-infinity”) and the sum-of-absolute-
values or 1 (read “ ell-one”) norm. In the first, the distance between x and y is



in the second, the distance between x and y is

(In this parlance, Euclidean distance is based on the 2 norm, and there is an 
p norm for every p from 1 to ∞.) Thinking in terms of R2, | |x – y| |1 is the
distance from x to y if you can only move north-south or east-west at a time; it
counts the number of “ city blocks” that must be walked to get from x to y, if the
city is laid out like Manhattan; | |x – y| |  (without a subscript, meaning
Euclidean distance) is the distance from x to y as the crow flies; and | |x – y| |∞ is
the larger of the north-south or east-west distance between x and y.

Hence if x = (1, 3) and y = (5, 0), | |x – y| |1 = 4+3 = 7, | |x – y| |  = 
 = , and | |x – y| |∞ = max{4, 3} = 4. In fact, it is

generally true that

for all x and y. But it is also true that

where k is the dimension of the Euclidean space. For this reason, when it comes
to defining open and closed sets, the three different ways of measuring distance
are equivalent. If a set is open with respect to one way of measuring distance, it
is open with respect to the other two. This last statement is not meant to be
obvious, although it is not hard to prove. And this has the following
consequence: Many of the concepts we are about to define—and in particular,



continuity of functions and boundedness and compactness of sets—don’t depend
on which of these measures of distance are used. (In mathematical terms,
continuity and compactness are topological properties, and since the different
ways of measuring distance don’t change which sets are open, they induce the
same topologies.) Therefore, in the text, when I want to prove that some
function is continuous or a some set is bounded or (after Appendix 4) some
correspondence is locally bounded, I can and will use whichever of the three
distance measures is most convenient mathematically. If you have never studied
these ideas in detail before, when this happens I will be pulling the proverbial
rabbit out of a hat; I hope this dicussion will at least indicate the nature of the
rabbit and the hat, although to tranform the argument from magic to transparent
logic, you must study the issue rather more deeply than is possible in this
appendix.

A2.3.  Sequences and Limits

A sequence in Rk is, formally, a function from the positive integers {1, 2, 3,
…} to Rk. Being somewhat less formal, it is a countably infinite list of points
x1, x2, … from Rk. The connection between the formal and informal definitions
is that xi is the value of the function at the argument i. We write  as

shorthand for a sequence, and {xi} as short shorthand.4

Note the use of superscripts here; we are reserving subscripts for components
of the vector, so that (for example)  will mean the jth component of the ith

vector in the sequence {xi}. In math books, subscripts are most often used for
sequence indices; indeed, in several places in the text we revert to this practice
(announcing the fact when this happens).

Definition A2.6. The sequence {xi} has limit x if for every  > 0 there is some
integer I such that for all i ≥ I, ||xi – x|| ≤ . When this happens, we write
limi→∞ xi = x, lim xi = x, or xi → x.

In words, the sequence has limit x if the points in the sequence get and stay
arbitrarily close to x.



Proposition A2.7. The set X ⊆ Rk is open if and only if, for every point x ∈
X and sequence {xi} with limit x, there is some large enough integer I such that
xi ∈ X for all i ≥ I.

Proposition A2.8. The set X ⊆ Rk is closed if and only if, for every sequence
{xi} with limit x, if xi ∈ X for all i, then x ∈ X.

Proposition A2.8 gives the most useful mental picture of closedness of a set; X
is closed means that whenever we take a sequence from X with a limit, that
limit is also in X. In other words, X contains all its limit points.

The phrase “ whenever we take a sequence from X with a limit…” implicitly
makes the important point that some sequences do not have a limit. For
example, in R1, the sequence {xi} where xi = 10i—the sequence {10, 20, 30,
…}—has no limit. A more intriguing example is the sequence {1.1, 2.1, 1.01,
2.01, 1.001, 2.001, …}. This also has no limit. It might be said that both 1
and 2 are limits of this sequence, but that is not quite right, since the sequence
gets arbitrarily close to both, arbitrarily late in the sequence, but does not stay
arbitrarily close to either. The points 1 and 2 are not limits of this sequence;
instead they are its accumulation points:

Definition A2.9.  For {xi} a sequence in Rk, the point x ∈ Rk is an
accumulation point of the sequence if for every  > 0 and for every positive
integer I, there is some i ≥ I such that ||xi – x|| ≤ .

In words, the sequence has x as an accumulation point if arbitrarily late in the
sequence, we get arbitrarily close to the point, even if we don’t stay close
forever after. That is, we return to every neighborhood of x over and over again,
but we might leave that neighborhood repeatedly as well.

Definition A2.10.  For a sequence {xi} , a subsequence of this sequence is a
sequence {yi} where yi = xni for some infinite increasing sequence of integers
{n1, n2, …}.

If the definition confuses you, two simple examples should clarify matters: For a
given sequence {xi}, two subsequences are {x2, x4, x6, …} and {x1, x10, x100,



x1000, …}. The point of this new terminology is to recast the definition of an
accumulation point: x is an accumulation point of {xi} if and only if there is
some subsequence {xni} of {xi} that has x as its limit. (For more finger
exercises, prove that these two definitions are equivalent.)

Proposition A2.8 is generalized in two steps. First, x is an accumulation
point of the set X ⊆ RK if there is some sequence {xi}, where xi ∈ X for all i,
such that x is an accumulation point of {xi}. (In view of the previous paragraph,
this in turn is equivalent to requiring that x is the limit of {xi}, for some
(possibly different) sequence drawn from X.) And then: A set X ⊆ Rk is closed if
and only if it contains all its accumulation points.

In fact, if we take any set X—open, closed, or neither—and we add to X all
of the accumulation points of X, we get the closure of the set X. (Another
exercise: Definition A2.5 says that the closure of a set X is the smallest closed
set containing X, the intersection of all closed sets containing X. Prove that an
equivalent characterization of the closure of X is X and all its accumulation
points.)

A2.4.  Boundedness, (Completeness), and Compactness
Consider the sequences {10, 20, 30, …} and {1.1, 2.1, 1.01, 2.01, 1.001,
2.001, …}. The second has accumulation points 1 and 2, while the first has no
accumulation points at all. The first has no accumulation points, apparently,
because the numbers “ blow up.” In fact, this is the only way a sequence from Rk

could fail to have an accumulation point.

Definition A2.11. A subset X of Rk is bounded if there exists some M ≥ 0 such
that ||x|| ≤ M for all x ∈ X. Equivalently, the set is bounded if there is some
M′ ≥ 0 such that, for all x = (x1, …, xk) ∈ X, |xi| ≤ M′.

Proposition A2.12.  Every bounded sequence has at least one accumulation
point.
(A sequence is bounded if the set of its points is a bounded set; that is, if for
some large-enough scalar M, | |xi| |  ≤ M for all i.) Proposition A2.12 depends on
very basic and deep properties of the real numbers connected to their
construction and, in particular, to the property of completeness, which is defined



in two steps:

1.  A sequence { xn} from Rk is called a Cauchy sequence if for every  > 0,
there exists an N such that | |xn – xm| |  ≤  for all n and m, both ≥ N.

2.  The space Rk is complete, meaning that every Cauchy sequence {xn} from
Rk has a limit in Rk.

If you are feeling very adventurous mathematically, prove Proposition A2.12
under the assumption that Rk is complete.

Definition A2.13. A subset X of Rk is compact if it is closed and bounded.

Corollary A2.14 to Propositions A2.8 and A2.12.  If {xn} is a sequence
drawn from a compact set X, then {xn} has one or more accumulation points,
all of which lie in X.

I won’t bother making it a formal proposition or corollary, but please note that
every finite subset of Rk is compact. (If this is new to you, prove it.)

In most math books you encounter, A2.13 is not the definition of
compactness. Instead, the definition runs: A set X is compact if it has the
property that every open cover of X—a collection of open sets {Zγ; γ ∈ Γ} such
that X lies within the union of the Zγ—admits a finite subcover, or X is a subset
of the union of finitely many of the Zγ. The Heine-Borel Theorem shows that for
Euclidean spaces (among others), this is equivalent to so-called sequential
compactness, which is essentially the conclusion of the corollary, and then the
definition given here (A2.13) is shown to be an equivalent definition to the
more primitive definitions. But in terms of workaday economic theory, the
characterization given in Definition A2.13 is most often used to verify that a set
is compact, with the conclusion of the corollary the normal harvest, a harvest
that is then turned into any number of other results. In this regard, it may be
worth cross-referencing the answer to Problem 1.12 given in the Student’s
Guide, which uses the first and usually most primitive definition of compactness
to show directly, without recourse to Debreu’s Theorem, that for continuous
preferences, c  (A) is nonempty for nonempty and compact sets A.



A2.5.  Continuous Functions

Definition A2.15. For X ⊆ Rk and a function f : X → Rj, f is continuous at
the point x ∈ X if for every  > 0 there exists δ  > 0 such that | |y – x| |  ≤ δ for
y ∈ X implies | | f(y) – f(x)| |  ≤ . The function is continuous on X if it is
continuous for each x ∈ X.

Whenever we say “ the function f is continuous,” we always mean, f is
continuous on its entire domain of definition. The picture is just what you
expect from calculus—if you change the argument of the function by a little bit,
you change the value of the function by a little bit as well.5

Proposition A2.15.

a.  f is continuous at x if and only if, for every sequence {xi} from X such that
lim xi = x, lim f(xi) = f(x).

b.  f is continuous if and only if, for every open subset O of Rj, the set {x ∈ X
: f(x) ∈ O} is relatively open in X, if and only if, for every closed subset C
of Rj, the set {x ∈ X : f(x) ∈ C} is relatively closed in X.

Proposition A2.16.

a.  If f and g are continuous functions from X to Rj (for X ⊆ Rk), then f + g
is as well, where f + g is shorthand for the function whose value at x ∈ X
is f(x)+ g(x).

b.  If f and g are continuous functions from Rk to R, then fg is as well, where
fg is shorthand for the function whose value at x is f(x)g(x).

c.  If f and g are continuous functions from X to R and g(x0) ≠ 0 for x0 ∈ X,
then f/g (shorthand for the function whose value at x is f(x)/g(x)) is
continuous at x0.

d.  If f is a continuous function from X → Rj, and if g is a continuous

function from Rj → R , then g  f is a continuous function from X to R ,
where g  f is shorthand for the function whose value at x ∈ X is g(f(x)).



A2.6.  Simply Connected Sets and the Intermediate-Value Theorem

Definition A2.17.  The set X ⊆ Rk is simply connected if for every pair of
points x and y from X, a continuous path from x to y lies entirely in X. More
formally, X is simply connected if, for each x and y, there is a continuous
function φ : [0, 1] → Rk such that φ(0) = x, φ(1) = y, and φ(t) ∈ X for all t ∈
[0, 1].

Proposition A2.18 (The Intermediate-Value Theorem) . If f is a continuous
function from X to R, for some simply connected X ⊆ Rk, then for all pairs x
and y from X such that f(x) ≤ f(y) and real numbers r such that f(x) ≤ r ≤ f(y),
there is some z ∈ X with f(z) = r.

A2.7.  Suprema and Infima; Maxes and Mins
Definition A2.19.

a.  A set X ⊆ Rk is bounded above if there is some  ∈Rk such that  ≥ x
for all x ∈ X. X is unbounded above if it is not bounded above. Similar
terms and definitions are used for (un)bounded below.

b.  For any set X ⊆ R that is bounded above, the supremum of X, denoted
sup X, is the smallest z ∈ R such that z ≥ x for every x ∈ X. If X is
unbounded above, we write sup X = ∞.

c.  For any set X ⊆ R that is bounded below, the infimum of X, denoted inf
X, is the largest number z ∈ R such that z ≤ x for every x ∈ X. If the set X
is unbounded below, we write inf X = –∞.

d.  For a set X ⊆ R, when sup X ∈ X, we write max X for this value, calling
this the maximum in (or of) X. When sup X ∉ X, we say that the
maximum in X does not exist. Similarly, when inf X ∈ X, we write min X
for this value, calling it the minimum in (or of) X.

Part b of the definition implicitly assumes that any bounded-above set of real
numbers has a finite supremum; part c makes a similar assumption about
bounded-below sets and their infima. These things are true and are part of the
deep structure of the real numbers, connected (as with Cauchy sequences) to the



fact that the real numbers are complete. Although it will cause mathematicians
to wince (because it is stating as a proposition something that is really an
axiom of the real numbers), I state this result in the form of a proposition.

Proposition A2.20.

a.  If X is a nonempty subset of R, then inf X ≤ sup X.

b.  Every nonempty subset X ⊆ R that is bounded above has a finite
supremum and every subset X ⊆ R that is bounded below has a finite
infimum.

c.  Every nonempty compact subset of R has a maximum and a minimum.

Note in this proposition that X is assumed to be nonempty. We will encounter
constructions in which the supremum and/or infimum of a set in R is taken,
where the set (in some cases) is empty. It is conventional to regard the infimum
of the empty set as ∞ and the supremum of the empty set as –∞ . In several
propositions to follow, you’ll find the formulation “ for every nonempty and
compact set X.” In most cases that you find this formulation, the “ nonempty”
part is there to guard against suprema that are (1) –∞  and (2) therefore, not in X.

A2.8.  The Maximum of a Continuous Function on a Compact Set
Proposition A2.21.  Suppose f : X → R is continuous for some compact and
nonempty X ⊆ Rk. Then sup{f(x) : x ∈ X} is finite and, for some x0 ∈ X, f(x0)
equals this supremum. In short, maxx∈X f(x) exists; said differently, every
continuous function f achieves its maximum over any compact nonempty domain
X.6

This result is, in many ways, the climax of this appendix, and it is the reason
we work so hard in Chapter 2 to ensure that preferences can be represented by a
continuous utility function. Because it is the climax, I give two proofs, the
second of which is very slick but requires a bit more mathematical
sophistication.

Proof 1. If {f(x) : x ∈ X} is unbounded above, there exists xi ∈ X such that



f(xi) > i for i = 1, 2, …. Because X is compact, the sequence {xi} has an
accumulation point x* ∈ X; that is, along some subsequence {xin} of the
sequence {xi}, limn xin = x*. By the continuity of f, lim f(xin) = f(x*); the right-
hand side is finite while the left-hand side is infinity by construction, a
contradiction. So {f(x) : x ∈ X} is bounded above. Let f* = supx∈X f(x). Since
f* is the smallest number greater than f(x) for all x ∈ X, for each i = 1, 2, …
there is some xi ∈ X with f(xi)+1/i > f*. Use compactness again to show that,
along some subsequence, limn xin = x*, and thus limn f(xin) = f(x*) ≤ f*. But if
f(x*) < f*, we contradict f(xin) > f* – 1/in for all n. Thus f(x*) = f*.

Proof 2. For each x, define W (x) = {z ∈ X : f(z) < f(x)}. By continuity of f,
each W (x) is relatively open in X, and hence is the intersection of some open set
W ′  (x) and X. Now suppose that f does not attain its supremum on the set X, for
some compact set X. This means that for each x ∈ X, f(x) < f(y) for some other
y ∈ X, and hence x ∈ W ′  (y). This in turn implies that X is contained in the
union of the W (y) as y ranges over all of X; that is, {W ′  (y) : y ∈ X} is an open
cover of X. Since X is compact, this open cover has a finite subcover: for some
finite set {y1, y2, …, yn}, . The set of real numbers

{f(y1), …, f(yn)} has a maximum; suppose it is f(yi*). Then f(yi*) ≥ f(yi) for all
the i; hence yi* ∉ W ′  (yi) for any i, which contradicts the statement that the {W ′
(yi)} cover X.

A2.9.  Lims Sup and Inf

Definition A.22. For a sequence {xi} from R, lim supi x
i = limi→∞ supn≥i{xn},

and lim infi x
i = limi→∞ infn≥i{xn}.

To explain, given a sequence of numbers {xi}, for each i you find the supremum
of the set {xi, xi+1, xi+2, …}, and then take the limit of those suprema, to find
the limit supremum (or lim sup) of the sequence. Note that sup{xi, xi+1, xi+2,
…} ≥ sup{xi+1, xi+2, xi+3, …}; that is, the sequence of suprema is a



nonincreasing sequence of numbers. Therefore, the limit of these suprema exists
(see the caveats immediately following); the lim sup and lim inf of any sequence
are always well defined. There are two caveats for the lim sup and two for the
lim inf: If {xn} is unbounded above, then each supremum is ∞, thus the lim sup
of the sequence is ∞. And if the sequence has limit –∞—if for each integer N, xi

< –N for all i > N′ , for some N′—then the lim sup is –∞ . Similar caveats hold
for the lim inf.

An equivalent characterization of the lim sup of a sequence is, Given the
sequence {xn}, let Acc{xn} be the set of accumulation points of the sequence.
Then lim sup xn is the maximum of the set Acc{xn} (and lim inf xn is the
minimum of this set). Implicit in this statement is the assertion that Acc{xn}
contains its supremum and infimum, but this can be proved. (It makes a nice
exercise.)

Proposition A2.23. For a given sequence of real numbers {xi}, limi x
i exists if

and only if lim supi x
i = lim infi x

i, in which case limi x
i = lim supi x

i = lim infi
xi.

A2.10.  Upper and Lower Semi-continuous Functions

Definition A2.24.  A function f : X → R, where X ⊆ Rk, is upper semi-
continuous at x ∈ X if for every  > 0 there exists a δ  > 0 such that for all y
∈ X with | |y – x| |  < δ, f(x) ≥ f(y) – . The function is lower semi-continuous
at x ∈ X if for every  > 0 there exists a δ  > 0 such that for all y ∈ X with
| |y – x| |  < δ, f(x) ≤ f(y)+ . The function is upper semi-continuous on X if it
upper semi-continuous at every x ∈ X, and similarly for lower semi-continuity.

Proposition A2.25. A function f : X → R (for X ⊆ Rk for some k) is upper
semi-continuous at x ∈ X if and only if f(x) ≥ lim supi f(xi) for every sequence
{xi} drawn from X with limit x. It is lower semi-continuous at x if and only if
f(x) ≤ lim infi f(x

i) for all such sequences.

Proposition A2.26. If f : X → R is upper semi-continuous and X is nonempty
and compact, then f attains its maximum over X. That is, f(x0) = supx∈X f(x)



for some x0 ∈ X.

Therefore, as long as we produce an upper semi-continuous utility function, we
know utility maximization leads to a choice on every (nonempty) compact set of
alternatives.

In case you feel fairly comfortable reading all this and want to give yourself a
final diagnostic, see if you can prove the following: Let X1, X2, … be a
countable collection of closed subsets of Rk, and let a1, a2, … be a sequence of
numbers such that . For each x ∈ X, define

Then U is an upper semi-continuous function. (What is the connection between
this and Chapter 1?)

 

1   A mathematician would say, Rk is a normed linear space, and the distance
between x and y is the norm of their difference.

2   Exercise: Show that for  > 0, N  (x) is an open set. Hint: Use the
triangle inequality.

3   If all this is brand new to you, you should go through the proof of these
things. Proving the first should be easy, and the second only a bit harder. For
the two statements about closed sets, you must learn De Morgan’s laws: The
complement of a union of sets is the intersection of their complements, the
complement of an intersection of sets is the union of their complements. (You
can even prove this, if you are feeling fanatical.) You should also develop or be
shown the standard examples of a (non-finite) intersection of open sets that is
not open.

4   This use of curly brackets to set off a sequence may cause confusion, since



curly brackets are also used to delineate a set. Suppose, for instance, for a
sequence {xi}, we want to indicate the countable set of values taken on by the
sequence. Following standard notational usage, this would be {xi; i = 1, …}.
The first means an ordered sequence of points; the second an unordered
countable set of points. As long as you are aware of the distinction, the context
should indicate which is meant.

5   The “ rate” at which changes in the argument translate into changes in
value can be quite different from one point x to another. It is a bit more than we
will need, but: a function is uniformly continuous when for every  there is a
single δ , independent of the base point x; f is Lipschitz continuous at x if there
exists some K > 0 such that for every  > 0, δ  = K  “ works”; and it is
uniformly Lipschitz continuous on X if K can be picked independently of x.

6   Since we have defined the maximum of a set, we ought to write the
maximum of f(x) as x ranges over X as max{f(x) : x ∈ X}. The typographic
construction maxx∈X f(x) is shorthand for this.



Appendix Three



Convexity

Notions of convexity—both convexity of sets and of functions—play an
extraordinarily important role in microeconomic theory.

As in Appendix 2, the setting is finite-dimensional Euclidean space, Rk. All
the functions we consider are from subsets (nearly always convex subsets) X of
Rk to the real line R. A crucial notion, which does not rate a formal definition,
is a convex combination of two points: If x and y are from Rk and a is a scalar (a
real number) between 0 and 1, the point ax +(1 – a)y is a convex combination of
x and y. The set of all such points, fixing x and y and allowing a to vary from 0
to 1, is the set of convex combinations of x and y. Geometrically, this is the line
segment that joins x and y. Strict convex combinations are points ax +(1 – a)y
for a ∈ (0, 1), the open interval from 0 to 1, as long as x ≠ y; geometrically this
is the line segment less its endpoints.

A3.1.  Convex Sets

Definition A3.1. A set X ⊆ Rk is convex if, for every pair of points x and y
from X and a ∈ [0, 1], ax +(1 – a)y ∈ X. In words, every convex combination
of every pair of points from X is in X.

This rules out sets with holes, sets with borders that “ bend in,” and sets that
are composed of several unconnected pieces. In Figure A3.1a, I draw a typical
convex set, while the sets in A3.1b, c, and d illustrate three ways convexity can
fail.



Figure A3.1. Convex and nonconvex sets

By a strict reading of the definition (or, if you prefer, by convention), the
empty set is a convex set.

It is perhaps overly pedantic, but let me state as a formal proposition the
following:

Proposition A3.2.  If X is a convex set, {α ;  =1, …, n} is a set of n
nonnegative scalars such that  and 

 are n points selected from X, then 

 is also an element of X.

In words, convex combinations of finitely many elements from X are in X, if X
is a convex set. This is proven by a standard induction argument from the
definition of convexity (where n = 2), inducting on the number n. Another
completely straightforward result is:

Proposition A3.3. The intersection of any number of convex sets is convex.

I n Appendix 2, we discussed the notion of the closure of any set, the
smallest closed set containing the original set. In similar fashion, we have:



Definition A3.4.  The convex hull of a set X ⊆ Rk, denoted CH(X) is the
smallest convex set containing X. The closed convex hull of a set X ⊆ Rk,
denoted  is the smallest closed-and-convex set containing X.

Propositions A3.3 and A2.4 together guarantee the existence of CH( X) and 
 for any X : As in the definition of the closure, we simply take the

intersection of all convex or closed-and-convex sets that contain X, noting that
Rk is one such.

We have defined CH(X) as the smallest convex set containing X or,
equivalently, as the intersection of all convex sets that contain X. But there is
another way to characterize CH(X).

Proposition A3.4. For any set X,

In words, the convex hull of X consists of all points that can be written as finite
convex combinations of points in X.

Proof. As an instant corollary of Proposition A3.2, we know that for any
convex set Y that contains X, every finite convex combination of elements
contained in X is an element of Y. So the set on the right-hand side of the
equation in the proposition is certainly in the intersection of all convex sets
containing X; that is, it is a subset of CH(X). But it is easy to see that the set
on the right-hand side is itself a convex set: The convex combination of any two
(finite) convex combinations of members of X is itself a convex combination of
members of X. Hence the set on the right-hand side of the equation is a convex
set containing X, and as CH(X) is the intersection of all such sets, it contains
CH(X).



Carathéodory’s Theorem
The following extension of Proposition A3.4 is quite useful.

Proposition A3.5 (Carathéodory’s Theorem). If X ⊆ Rk, any point in CH(X)
can written as a convex combination of no more than k +1 elements of X.

A mental picture is easy to construct for k = 2. Take any number of points
scattered in the plane. Their convex hull forms a convex polygon. Think of
labeling the vertices (moving clockwise, say, around the polygon) as v0, v1, …,
vn. Now picture the triangles formed by v0, v1, and v2; by v0, v2, and v3; by v0,
v3, and v4, and so forth. We take v0 and each pair of (other) adjacent vertices.
These triangles cover the polygon; each point in the polygon, being in one of
the triangles, can be written as a convex combination of the vertices of “ its”
triangle. That, for k = 2, is the content of Carathéodory’s Theorem.

Proof. Fix a set X and a point y ∈ CH(X). By Proposition A3.4, we know that
y can be written as a (finite) convex combination of points in X. It may take 100
points from X, or 1000, but some number n of points from X suffices. Therefore,
there is some least number of points from X that suffices. That is, there is some
n such that y can be written as a convex combination of n points from X but not
as a convex combination of fewer than n.

Fix n and fix one of the convex-combination representations of y,

where the αi are all strictly greater than zero (or else we could reduce n), less or
equal to one, and sum to one, and the xi are elements of X.

Suppose that n > k + 1. The set of vectors x  – x1 for  = 2, …, n is a set
of at least k + 1 vectors in Rk, so it is a linearly dependent set; we can find

scalars γ ,  = 2, …, n, not all zero, such that



Define  and this can be rewritten

where . Since the γ  sum to zero and they are not all

zero, at least one is strictly positive. But now

for any λ > 0, because the second summation is zero. Rewrite this as

And now, increase λ, starting from zero. At λ = 0, the coefficients are all strictly
positive and sum to one, and as you increase λ, the coefficients still sum to one
(since the γ sum to zero). As λ increases, some of the coefficients increase (when

γ  < 0) and some decrease, but since at least one γ  is strictly positive, there

is a minimum value of λ where some α – λγ  hits zero. For that value of λ, we

have written y as a convex combination of n – 1 of the x s (or fewer, if two or



more α  – λγ  hit zero simultaneously), contradicting the minimality of n.
Hence every y ∈ CH(X) can be written as a convex combination of no more

than k + 1 of the members of X, which is the result sought.

Convexity and closedness combined
We put Carathéodory’s Theorem to work to prove the following result.

Proposition A3.6. If X ⊆ Rk is a compact set, then CH(X) is compact.

Proof. The boundedness of CH(X) is easy: The characterization of CH(X) given
in Proposition A3.4 shows that any bounding set for X effectively bounds
CH(X). (You need to work out how a uniform bound on, say, the norm of
elements of a set bounds the norm of convex combinations of elements of that
set.) To show that CH(X) is closed, we use Carathéodory: Suppose {xn} is a
sequence of points in CH(X) with limit x. Each xn can be written as a convex
combination of no more than k + 1 elements out of X. Let me write this as

Since X is compact (and so is the unit interval, from which all the scalars are

drawn), we can extract a subsequence along which αn,  → α*,  ∈ [0, 1] and

xn,  → x*,  ∈ X for  =1, …, k + 1, and then

Of course, as we pass to the limit,  so we conclude that

x is indeed in CH(X).

In this proof, the argument that the convex hull of a bounded set is bounded
doesn’t require that the set is closed. But the argument that the convex hull is
closed relied on the compactness of the set X, to extract those convergent
subsequences. It is not true, in general, that the convex hull of a closed (and



unbounded) set is closed. For example, consider the set {x =(x1, x2) ∈ R2 : x1 ≠
0, x2 ≥ 1/|x1|}. Draw the picture if you don’t see this in your mind’s eye; we
have two hyperbolae, one in the positive orthant and the other in the quadrant
where x1 < 0 and x2 > 0. This is indeed a closed set. But its convex hull is the

set {x =(x1, x2) ∈ R2 : x2 > 0}, which is not closed.
This means that in constructing (X), it doesn’t work (always) to take

the convex hull of the closure of X. For X as in the example just given, 

(X) is the set of points where x2 ≥ 0, whereas the convex hull of the closure of X
omits the x-axis. However:

Proposition A3.7. The closure of a convex set X is convex. Hence, the closure
of CH(X) is (X).

Proof. Suppose X is convex. Suppose x and y are in the closure of X. That is, x
= limn xn and y = lim yn for some sequences {xn} and {yn} from X. Take any α
∈ [0, 1]: For each n, zn = αxn +(1 – α)yn ∈ X, because X is convex and,
passing to the limit, we see that lim zn = limn (αxn +(1 – α)yn)= αx +(1 – α)y is
in the closure of X. The closure of X is indeed convex.

Since CH(X) is the intersection of all convex sets containing X, CH(X)is in
any convex set that contains X; hence it is in the intersection of all closed and
convex sets that contain X. That is, CH(X) ⊆ (X). Since (X) is a

closed set, it is one of the sets whose intersection forms the closure of CH(x),
and hence (X) contains the closure of CH(x). But the closure of CH(X) is

closed (of course) and convex (by the first part of this proposition), so the
closure of CH(X) is one of the sets over which an intersection is taken, to form 

(X). That is (x) is a subset of the closure of CH(X). The two halves

of this paragraph together show that (X) is the closure of CH(X).

If mixing together convex hulls and closures makes your head spin, just
wait for Chapter 9, where another layer of complication is added.



Extreme points and the Krein-Milman Theorem

Definition A3.8. For a set X, x ∈ X is an extreme point of X if x cannot be
written as the convex combination of some other points from X.

Theorem A3.9 (The Krein-Milman Theorem). A compact and convex set X is
the convex hull of its extreme points.

Krein-Milman holds, in fact, for well-behaved, infinite-dimensional spaces. Its
proof requires the heavy machinery of the axiom of choice, so I won’t give a
proof. (See, for instance, Royden, Real Analysis, 1968)

While I will not give the proof, I do want to point out a corollary to the
combination of Carathéodory and Krein-Milman. Suppose X ⊆ Rk is compact.
Then CH(X) is compact (Proposition A3.6) and convex, so every point can be
written as a convex combination of its extreme points. But it is easy to see that
no point in CH(X) that is not in X is an extreme point, so we can amend this to
read: Every point in CH(X) can be written as a convex combination of the
extreme points of X. That is, if X is compact, CH(X) is the convex hull of the
extreme points of X. And then Carathéodory tells us: If X is compact, every
point in CH(X) can be written as a convex combination of no more than k +1
extreme points in X.

A3.2.  The Separating- and Supporting-Hyperplane Theorems
The Separating- and Supporting-Hyperplane Theorems are some of the most
important mathematical hammers in microeconomic theory. The term
hyperplane may need a definition: We are working in Rk, and a hyperplane in
Rk is, for a ∈ Rk, a ≠ 0, and a scalar b, the set of points {x ∈ Rk : a · x = b}.
In words, it is almost a subspace of dimension k – 1, where I say “ almost”
because it is translated away from the origin by the scalar term b.

Proposition A3.10 (The Separating-Hyperplane Theorem).  Suppose X and
Y are two disjoint and nonempty1 convex subsets of Rk; that is, X ∩ Y = .
Then there exist a nonzero vector a ∈ Rk and a scalar b ∈ R such that



We could equivalently have written the consequent as There exist a (nonzero)
linear function φ : Rk → R and a constant b such that φ(x) ≥ b for all x ∈ X
and φ(y) ≤ b for all y ∈ Y. Or, also equivalently, There exists a (nonzero)
affine function φ : Rk → R such that φ(x) ≥ 0 for all x ∈ X and φ(y) ≤ 0 for
all y ∈ Y.2 (We mention these alternatives, because sometimes you will see the
Separating-Hyperplane Theorem written these ways.)3

I will not prove this result (or the two variations to follow). But I briefly
discuss proofs after stating all three.

For k = 2, hyperplanes are straight lines, and then Figure A3.2 captures
what is going on.

Proposition A3.10 is squishy on one point. The theorem only guarantees
the weak inequalities a·x ≥ b for x ∈ X and a·y ≤ b for y ∈ Y. The sets X and Y
can both intersect the hyperplane. Indeed, in special cases both sets could lie
entirely within the same “ separating” hyperplane. We’d like to do better,
sharpening the result so that a · x > b for all x ∈ X and a · y < b for all y ∈ Y.

Figure A3.2. Separating hyperplanes. In panel a, the two disjoint convex
sets are separated by a hyperplane. In panel b, the two sets are disjoint,



but one is not convex, and there is no hyperplane that will separate them.

This may not be possible: For general convex disjoint sets X and Y, it may
be necessary that both inequalities are allowed to be weak. Suppose, for
example, that k =2, X = {(x1, x2): x1 < 0 or x1 = 0 and x2 ≥ 0}, and let Y be the
complement of X. (Draw the picture, if this isn’t clear to you.) And even if the
sets are both closed, it may be necessary that at least one of the inequalities is
weak. For instance, let k =2, X = {(x1, x2): x1 ≤ 0}, and Y = {(x1, x2): x2 ≥ 1/x1,
x1 > 0}.) However:

Proposition A3.11 (The Strict-Separation Theorem).  Suppose X and Y are
closed, nonempty, and disjoint convex subsets of Rk. If either X or Y is
compact, then we can find a nonzero vector a ∈ Rk and a scalar b such that a
· x > b for all x ∈ X and a · y < b for all y ∈ Y.

For a third variation, we need a definition.

Definition A3.12. A point x ∈ Rk is a boundary point of X ⊆ Rk if x is in
both the closure of X and the closure of the complement of X.

Note that we do not require that x is an element of X. An alternative definition
would be that x is a boundary point of X if we can find sequences {xi} and {yi},
where xi ∈ X and yi ∉ X for all i, such that both sequences have x as limit. Of
course, the trivial sequence x, x, … serves as either the first or the second of
these, depending on whether or not x ∈ X.

Proposition A3.13 (The Supporting-Hyperplane Theorem).  Suppose X is a
convex subset of Rk and x0 is a boundary point of X. Then there exist nonzero a
∈ Rk and b ∈ R such that a · x0 = b and a · x ≤ b for all x ∈ X.

This is called the Supporting-Hyperplane Theorem because of pictures such as
Figure A3.3: The hyperplane through x0 “ supports” (roughly, is tangent to) X
at x0.

We do not provide proofs of any of these results, but a few remarks about
proofs may be helpful.



Figure A3.3. A supporting hyperplane. The point x0, on the boundary of
the convex set, is supported by the hyperplane shown.

1.  Separating one convex set from another is really no harder than separating a
convex set that doesn’t contain the origin from the origin with a linear
function; if X and Y are disjoint convex sets that we wish to separate, we can
recast the problem as requiring the separation of 0 from the set X – Y: = {z
∈ Rk : z = x – y, x ∈ X, y ∈ Y}.For if a ∈ Rk is such that a · z ≥ 0 for all
z ∈ X – Y, then infx∈X a · x must be greater or equal to supy∈Y a · y.

2.  Moreover, if X and Y are both closed, and one is compact, it is not hard to
show that X – Y is closed, so strict separation comes down to strict
separation of the origin from a closed convex set Z that doesn’t contain the
origin. Put a ball of radius around the origin, where is chosen so that the
ball doesn’t intersect Z. Such balls are convex (why?), so apply the
Separating-Hyperplane Theorem to the ball and Z.

3.  And in the Supporting-Hyperplane Theorem, two cases need to be
considered. If x ∉ X, then this involves separating x from X; it is immediate
from the Separating-Hyperplane Theorem. While if x ∈ X, we separate X
from each in a sequence of points that approaches x from outside of X and
pass to a limit along a subsequence.

A3.3.  The Support-Function Theorem

A hyperplane {x ∈ Rk : a·x = b} defines two closed half-spaces, {x ∈ Rk : a·x



≥ b} and {x ∈ Rk : a · x ≤ b}. The Strict-Separation Theorem then tells us the
following.

Proposition A3.14. Every closed and convex set X except for Rk itself consists
of the intersection of all the closed half-spaces that contain it.

Proof. Fix X. If X ≠ Rk, some point y0 lies in Rk \ X. The Strict-Separation
Theorem tells us that there is some a ∈ Rk and b such that a · x > b for all x
∈ X and a · y0 < b. Therefore, at least one closed half-space contains X. Of
course, the intersection of all closed half-spaces that contain X contains X. And if
y is not in X, the Strict-Separation Theorem can be used once again to find a
closed half-space that contains X but not y. So the intersection of all the closed
half-spaces containing X contains no point not in X. (The proposition is true for
the case of X = , but the proof just given doesn’t quite work. Why not? And
can you create a special argument for this special case?)

Since the intersection of closed and convex sets is closed and convex, this
provides us with another characterization of a closed and convex set (albeit not
one that is useful): A set in Rk is closed and convex if and only if it is Rk itself
or is the intersection of a collection of closed half-spaces. Also, this tells us that
for any set X, (X) is either Rk or the intersection of all the closed half-

spaces that contain X. (If it is not Rk, (X) is the intersection of all the

closed half-spaces that contain (X), but each of these perforce also contains

X. And no closed half-space that contains X omits any point from (X),

since a closed half-space is closed and convex, and (X) is the intersection

of all closed and convex sets containing X.)
One way to restate Proposition A3.14 begins with the following definition.

For each closed and convex set X and for each a ∈ Rk, define

where we define φX(a)= ∞ if supx∈X a · x is infinite.4 I claim that



where the infimum equals ∞ if the set of such b’s is empty. To show that these
two are the same, first look at the case where the supremum is unbounded. This
means that for every b, there is some x ∈ X such that a · x > b, and so the set
over which the infimum is taken is empty. On the other hand, if the supremum
is finite, then for any b that is greater than or equal to the supremum, a · x ≤ b
for all x ∈ X, and hence b makes it into the set over which we are taking the
infimum, while if b is less than the supremum, then there is some x ∈ X with a
· x > b, and b is not in the set of the infimum. Therefore, the infimum is
precisely the supremum.

Proposition A3.15 (The Support-Function Theorem).  For the function φ
defined as above for closed and convex sets X and a ∈ Rk,

where for given a, the set is interpreted as Rk when φX(a)= ∞.

Proof. We know from Proposition A3.14 that X is either Rk or it is the
intersection of all the closed half-spaces that contain it. If X = Rk, then it is easy
to see that φX(a)= ∞ for all a ≠ 0, and so the intersection gives back Rk. (A
special argument is needed for a = 0.)

Suppose {x : a · x ≤ b} is a closed half-space containing X. That is, a · x ≤
b for all x ∈ X. Then b is in the set over which the infinum is taken for a, and
so φX(a) ≤ b. Therefore, the half-space {x : a · x ≤ φX(a)} is a subset of the half-
space {x : a · x ≤ b}, and the intersection given in the proposition encompasses
an intersection over {x : a · x ≤ b}. And if {x : a · x ≥ b} is a closed half-space
containing X, then (by a similar argument) the term in the intersection {x : –a·x
≤ φX(–a)} encompasses the intersection over {x : a · x ≥ b}.

Therefore, we know that the intersection in the proposition encompasses the
intersection of all closed half-spaces containing X, which yields X, and this



intersection can only be smaller than X. To finish, we must show that for x ∈
X, x is in the intersection in the proposition, which means we must show that a
· x ≤ φX(a) for all a ∈ Rk. But using the original definition of φX(a), this is
evident.

The function φX(·) is called the support function for the set X, and hence the
name the Support-Function Theorem. You’ll meet it (actually, variations on it)
in Chapters 9 and 10, where (more or less) it will be called the profit function of
a profit-maximizing firm and the expenditure function of a utility-maximizing
consumer.

We haven’t yet given the definition of a convex function—that is about to
happen—and when we do, we won’t define it for functions taking on the value
∞. But if you want a leg up on developments connected to the variations we’ll
see in the book, you can prove that the support function as defined here is
convex and homogeneous in a, making due allowance for the possibility of
infinite values of φ.

A3.4.  Concave and Convex Functions

Definition A3.16. Consider a function f : X → R for X a convex subset of Rk.

a.  The function f is concave if for all x, y ∈ X and a ∈ [0, 1], f(ax +(1 –
a)y) ≥ af(x)+(1 – a)f(y). The function is strictly concave if for all such x
and y, x ≠ y, and for all a ∈ (0, 1), f(ax +(1 – a)y) > af(x)+(1 – a)f(y).

b.  The function f is convex if for all x, y ∈ X and a ∈ [0, 1], f(ax +(1 – a)y)
≤ af(x)+(1 – a)f(y). This function is strictly convex if for all such x and y, x
≠ y, and for all a ∈ (0, 1), f(ax + (1 – a)y) < af(x)+(1 – a)f(y).

In pictures, the functions in Figure A3.4 are, respectively, concave (panel a),
strictly concave (panel b), and strictly convex (panel c). Note that the function in
panel a fails to be strictly concave by virtue of the “ linear” piece.

Some simple facts about convex and concave functions are recorded in the
following proposition.

Proposition A3.17.  Assume throughout that the domains of functions in this
proposition are convex.



a.  An affine function is both convex and concave.

Figure A3.4. Concave and convex functions

b.  If f1 through fn is a finite collection of concave functions, all with domain
X ⊆ Rk, then the function g = min {f1,…, fn} defined by

is concave. For nonnegative scalars a1, a2,…, an and scalars k1 through

kn and 1 through n of any sign, the function h : X → R defined by



is concave.

c.  If f1 through fn is a finite collection of convex functions, all with domain
X ⊆ Rk, then the function g = max {f1,…, fn} (defined pointwise, like the
min in part b) is convex. For nonnegative scalars a1 through an and
scalars k1 through kn of any sign, the function h defined by 

 is convex.

d.  If f is concave, then for all r ∈ R, the set {x ∈ X : f(x) ≥ r} is a convex
set.

e.  If f is convex, then for all r ∈ R, the set {x ∈ X : f(x) ≤ r} is a convex set.

f.  The function f is concave if and only if –f is convex.

g.  If f is concave (or convex), f is continuous on the interior of its domain X.

Proof of part g. It isn’t hard to prove parts a through f of this proposition;
those are left to you. Part g, however, is less than trivial; here is a proof: First,
without loss of generality, we can assume that 0 is in the interior of X ⊆ Rk and
it is at 0 that we wish to show continuity. Since 0 is in the interior of X, for
some > 0, all points x =(x1, …, xk) satisfying |xi| ≤ for all i are in X. By
rescaling all the coordinates, we can (also without loss of generality) assume
that  = 1. Let ei be the vector whose ith coordinate is 1 and all the rest are
zero.

We want to show that limn f(xn)= f(0) for any sequence {xn} that approaches
0. Therefore, we will be looking at xn that are close to zero; in particular, for any
sequence approaching zero, consider xn far enough out the sequence so that 

 for all i, where k is the dimension of the host space Rk. Write

xn as a convex combination of 0 and, for each i, either ei or –ei, depending on
the sign of xni; specifically, let sgn(xni) = +1 if  ≥ 0 and = –1 is  < 0

and then write



As long as , this is a legitimate convex combination of points

in X, so as f is concave, we have

Note that there are 2k possible values for the terms f(sgn( )ei), so these terms

are uniformly bounded. Therefore, as xn → 0, the right-hand side approaches
f(0), and f must be lower semi-continuous at 0.

And to show that f must be upper semi-continuous at zero, we write 0 as a
convex combination of xn and the ei or –ei for all sufficiently large n.
Specifically, we have

where Mn is the normalizing constant . Concavity of f yields

As n → ∞ , the coefficients on the terms in the sum converge to zero, so the
sum converges to zero, while Mn → 1. Therefore, f(0) ≥ lim supn f(xn). Done.



A3.5.  Quasi-concavity and Quasi-convexity
In microeconomic theory, the property of concavity given in Proposition
A3.17(d), that sets {x ∈ X : f(x) ≥ r} are convex for r ∈ R, is very important.
This property comes up in at least two places, as a property of consumer’s
preferences (leading to nicely behaved utility representations), and for its
consequences in terms of constrained-maximization problems. To see the first,
you should consult Chapter 2 in the text; the second is given (soon) in
Proposition A3.21. But granting the significance of this property, it is natural to
ask, Does this property characterize concave functions, or is there a broader
class of functions with this property? The latter is true.

Definition A3.18. Suppose f : X → R where X is a convex subset of Rk.

a.  The function f is quasi-concave if f(ax +(1 – a)y) ≥ f(y) for all x, y ∈ X
such that f(x) ≥ f(y) and for all a ∈ [0, 1].

b.  The function f is strictly quasi-concave if f(ax+(1–a)y) > f(y) for all x, y
∈ X, x ≠ y, such that f(x) ≥ f(y) and for all a ∈ (0, 1).

c.  The function f is semi-strictly quasi-concave if it is quasi-concave and if
f(ax + (1 – a)y) > f(y), for all x and y with f(x) > f(y) and for all a ∈ (0,
1).

d.  The function f is quasi-convex if f(ax +(1 – a)y) ≤ f(x) for all x, y ∈ X
such that f(x) ≥ f(y) and for all a ∈ [0, 1].

e.  The function f is strictly quasi-convex if f(ax +(1 – a)y) < f(x) for x and y,
x ≠ y, such that f(x) ≥ f(y) and for all a ∈ (0, 1).5

In pictures, Figure 3.5a, shows a strictly quasi-concave function that is not
concave, panel b shows a semi-strictly quasi-concave function that is not strictly
quasi-concave, and panel c shows a quasi-concave function that is not semi-
strictly quasi-concave. (See the caption for further remarks.)



Figure A3.5. Quasi-concavity. The function in panel a is strictly quasi-
concave. Note that it is neither concave nor, where it is concave, is it
strictly concave. The function in panel b is semi-strictly quasi-concave.
Note the flat spot at the maximum. The function in panel c is quasi-
concave; the dashed portion is not part of the function, and the open and
closed circles indicate that the value of the function at its point of
discontinuity is the “ lower” value.

The reason for this definition is that quasi-concavity is equivalent to the
property in Proposition A3.17d.

Proposition A3.19. A function f with convex domain X and range R is quasi-
concave if and only if the sets {x ∈ X: f(x) ≥ r} are convex for every r ∈ R.6

Proof. Suppose f is quasi-concave. Fix r ∈ R, and suppose x′  and x″ are both
elements of {x ∈ X : f(x) ≥ r}. For all a ∈ [0, 1], f(ax′  +(1 – a)x″) ≥ min{f(x′),
f(x″)} ≥ r, where the first of these inequalities uses the quasi-concavity of f. Thus
ax′  +(1 – a)x″ ∈ {x ∈ X : f(x) ≥ r}, and {x ∈ X : f(x) ≥ r} is necessarily
convex. Conversely, suppose {x ∈ X : f(x) ≥ r} is a convex set for every r ∈
R. Choose any x′ and x″, and suppose that f(x′) ≥ f(x″). (If f(x″) ≥ f(x′), the
argument is symmetrical.) Then x′  ∈ {x ∈ X : f(x) ≥ f(x″)} and x″ ∈ {x ∈ X :
f(x) ≥ f(x″)}. Convexity of the set {x ∈ X : f(x) ≥ f(x″)} implies that, for all a ∈
[0, 1], ax′  +(1 – a)x ∈ {x″ ∈ X : f(x) ≥ f(x″)}, and thus f(ax′ +(1 – a)x″) ≥
f(x″).



Proposition A3.20.  If f : X → R is quasi-concave and h : R → R is a
nondecreasing function, then h  f (defined as, h  f(x) = h(f(x))) is quasi-
concave. If f is strictly quasi-concave and h is strictly increasing, then h  f is
strictly quasi-concave.

Note that this would not be true if we tried to replace quasi-concave with
concave in this proposition. For more on this point, see Chapter 2.

The major reason for all the hoopla concerning quasi-concavity is the
following proposition.

Proposition A3.21.  Suppose f : X → R is a quasi-concave function, for X a
convex subset of Rk. The set of maximizers of f (over X) is a convex set. In
symbols,

is convex (admitting the possibility that this set is empty, if f doesn’t attain its
supremum on X). And if f is strictly quasi-concave, the set of maximizers of f
on X is either empty or consists of a single element.

Proof. The first part of this is virtually a corollary to Proposition A3.19. Let r*
= supy∈X f(y). Then we know that {x ∈ X : f(x) ≥ r*} must be convex. By
definition, there can be no x ∈ X such that f(x) > r*. Hence {x ∈ X : f(x) ≥ r*}
is {x ∈ X : f(x)= r*}; that is, the set of maximizers of f on X (if there are any).
For the second part, suppose x′  and x″ are distinct elements of {x ∈ X : f(x)=
r*}. Then if f is strictly quasi-concave, we know that f(0.5x + 0.5x″) >
0.5f(x′)+0.5f(x″) = 0.5r* + 0.5r* = r*, which contradicts the definition of r* as
the sup of f(x) over X.

The following results are easy to prove and left for you as exercises.

Proposition A3.22. A concave function f is semi-strictly quasi-concave (hence
quasi-concave). A strictly concave function f is strictly quasi-concave.



3.6.  Supergradients and Subgradients
While quasi-concavity (and quasi-convexity) of a function to be maximized
(minimized) is the “ right” property in terms of Proposition A3.21, concavity
gives us one nice property that quasi-concavity lacks. This begins with a simple
proposition.

Proposition A3.23. For a convex domain X, the function f : X → R is concave
if and only if the set {(x, r) ∈ X ×R : r ≤ f(x)} (which is called the hypograph
of f) is convex.

Proof. Suppose f is concave, and (x, r) and (x′, r′) are two points in the
hypograph of f, so that r ≤ f(x) and r′ ≤ f(x′). For all α ∈ [0, 1], αr +(1 – α)r′ ≤
αf(x)+(1 – α)f(x′) ≤ f(αx +(1 – α)x′) and, therefore, (αx + (1 – α)x′, αr +(1 – α)r′)
is in the hypograph of f.

Conversely, suppose the hypograph of f is convex. Take any x, x′ ∈ X and
α ∈ [0, 1]. By definition (x, f(x)) and (x′, f(x′)) are both in the hypograph of f
and, therefore, so is α(x, f(x)) + (1 – α)(x′, f(x′)) = (αx +(1 – α)x′, αf(x)+(1 –
α)f(x′)), which means that f(αx +(1 – α)x′) ≥ αf(x)+(1 – α)f(x′); therefore f is
concave.

Why do we care about the convexity of the hypograph of f?

Definitions A3.24. For a function f : X → R, a subgradient of f at y ∈ X is
an affine function φ : X → R such that φ(y)= f(y) and φ(x) ≤ f(x) for all x ∈ X.
A supergradient of f at y ∈ X is an affine function φ : X → R such that φ(y)=
f(y) and φ(x) ≥ f(x) for all x ∈ X.

In Figure A3.6, you see a function f : R → R and a point y at which there are
several supergradients; two are drawn in. The fact that f is kinked (not
differentiable) at y should come as no surprise: If f is differentiable at y (for y in
the interior of X), its derivative there gives the only possible candidate for a
sub/supergradient. For an arbitrary function f and point x ∈ X, there may be
neither a subgradient nor a supergradient; see the point y′  and function f in
Figure A3.6.



Figure A3.6. Supergradients. The function depicted has more than one
supergradient at y and none at y′ .

Proposition A3.25. If f : X → R is concave (where X is a convex subset of Rk),
then f has at least one supergradient at each point x in the interior of X.
Therefore, f on the interior of X is the lower envelope of its supergradients.
That is, if we let x denote the set of supergradients of f at the point x, then
for each y in the interior of X,

Proof. There is less to the second part of this proposition than you may think.
Since every f(y) ≤ φx(y) for all y ∈ X and φx ∈ x for any x, it is clear that
f(y) ≤ infx∈X,φx∈ x φx(y). That the infimum is attained (is a minimum) and

equals f(y) follows once we note that, for y in the interior of the domain of f , 

y is nonempty.
The real content of the proposition is the existence of a supergradient at each

point y in the interior of the domain of f. Fix such a point y. Then I assert that



the point (y, f(y)) ∈ Rk+1 is a boundary point of the hypograph of f. It is in the
hypograph, of course, and it is approached from outside the hypograph by the
sequence (y, f(y)+1/n). Because f is concave, its hypograph is convex, so there is
a supporting hyperplane to the hypograph at (y, f(y)); that is, there exist (a, b)
∈ Rk × R and c ∈ R such that

(a, b) · (y, f(y)) = c and (a, b) · (x, r) ≥ c for all (x, r) in the hypograph of f.

Moreover, (a, b) is nonzero.
I assert that b ≤ 0. Because if b > 0, then in the hypograph of f I can take r

very, very large and negative, and (a, b) · (x, r) will get as small (large negative)
as I want, violating the ≥ c condition. (The hypograph is all (x, r) such that r ≤
f(x), so there is no lower bound to r for any x.)

And I assert that b ≠ 0. (Here is where y being interior comes in.) Suppose
by way of contradiction that b = 0. Because y is interior, we can choose x in the
domain of f to be y plus a small perturbation whose sign in the ith component
is the reverse of the sign of a—for such an x, (a, b) · (x, f(x)) would be strictly
less than (a, b) · (y, f(y)) = c; the contribution of a · x is strictly less than a · y
by construction (if b = 0, a cannot be 0, and so in at least one component, we
have a strictly negative contribution), and as b = 0, bf(x)= bf(y) = 0. But for
such an x, (x, f(x)) is in the hypograph of f, contradicting the hypothesis that (a,
b) · (x, r) ≥ c for all (x, r) in the hypograph of f.

Therefore, b < 0. Normalize the supporting hyperplane so that b = –1, and
(a, b)·(y, f(y)) = c becomes a·y–c = f(y), while the statement that (a, b)·(x, r) ≥ c
for all (x, r) in the hypograph of f, when specialized to r = f(x), becomes a·x–c ≥
f(x) for all x in the domain of f. The vector a ∈ Rk and the scalar –c ∈ R
provide a supergradient to f at y.

The obvious parallel result holds for a convex function f, the epigraph of f
(the set {(x, r) ∈ X × R : r ≥ f(x)}), and subgradients of f.

Proposition A3.26.  Suppose f : X → R is homogeneous of degree 1, for a
domain X ⊆ Rk that is a cone (possibly lacking the vertex 0). If φ is a
supergradient (or subgradient) of f at the point y, then φ is a linear function.



That is, φ(x)= a · x for some a ∈ Rk.

Proof. We know that φ(x)= a · x + b for a ∈ Rk and b ∈ R; we need to show
that b = 0. We know, of course, that a · y + b = f(y) and, since 2y ∈ X, a · 2y
+ b ≥ f(2y)=2f(y) = 2(a · y + b)= a · 2y +2b. Hence 0 ≥ b. Repeat the argument
with 0.5y in place of 2y, and you get .5b ≥ 0. This implies b = 0. The same
argument works (with signs reversed) for subgradients.

3.7.  Concave and Convex Functions and Calculus
In Chapter 12, the following result will be needed:

Proposition A3.27. Suppose f is a concave (respectively, convex) function of
one real variable, with domain the open interval (a, b). Then f has a left- and
right-hand derivative at every point x ∈ (a, b) . The left- and right-hand
derivatives of f are both nonincreasing (resp., nondecreasing) functions, the
left-hand derivative at x is greater or equal (resp., less or equal) to the right-
hand derivative at x, and if x > x′, the right-hand derivative at x′ is greater or
equal (resp., less or equal) to the left-hand derivative at x. The left- and right-
hand derivatives are equal to one another at all but (at most) a countable
number of points in (a, b). And, over any closed subinterval of (a, b), f(b) –
f(a) is the integral of the “derivative” of f, where one can use for the integrand
any value desired at the (at most) countable number of points at which the
right- and left-hand derivatives do not agree.

In other words, f has a derivative at all but a countable number of points, and
the Fundamental Theorem of Calculus holds for f: It is the integral of its
derivative. Most of this proposition is relatively straightforward to prove, if you
know about the concept of absolute continuity and its connection to indefinite
integration. See, for instance, Royden (1968).7

Finally, in several places in the book we use the following characterization
of concavity (and convexity).

Proposition A3.28.  Suppose f is a twice-continuously differentiable function
from a convex and open domain of Rk to R. Then f is concave if and only if the
matrix of its mixed second partial derivatives (its Hessian matrix) is negative



semi-definite, when evaluated at all points in domain of f. It is strictly concave
if and only if its Hessian matrix is negative definite everywhere. For the case k
=1, this is: f is concave if and only if f″, its second derivative, is nonpositive,
and it is strictly concave if and only if f″ is strictly negative. (For convex
functions, change negative to positive and nonpositive to nonegative.)

 

1   As in Appendix 2, we have a qualifier about sets being nonempty. In this
case, we are guarding against the possibility that X = Rk and Y = .

2   A function φ : Rk → R is linear if it satisfies φ(x + y)= φ(x)+ φ(y). As you
doubtless know from linear algebra, in Rk, every linear function has the form
φ(x)= a · x for some a ∈ Rk. A function is affine if it has the form a · x + b, for
a ∈ Rk and b ∈ R.

3   Indeed, if you ever see this generalized to infinite-dimensional spaces, the
version that concerns linear functions is the most often observed form, and there
will be some concern over whether the linear function in question can be
assumed to be continuous. In this context, the Separating-Hyperplane Theorem
is typically derived as a corollary to the Hahn-Banach Theorem.

4   I have not been careful about the possibility that X = , in which case φX
(a) ≡ –∞ . The fastidious reader may wish to go back to the start of this section
and see whether it all works for the case where X =  or if we need to qualify
any of the results to rule out that case.

5   Semi-strictly quasi-convexity would be defined analogously to c, but it
never comes up in the text, so we do not bother with it here.

6   And the function f is quasi-convex if and only if {x ∈ R : f(x) ≤ r} is
convex for every r ∈ R.

7   I am told that the third edition (and perhaps subsequent editions) of
Royden doesn’t give this result in its entirety. I’m relying on the second
edition here.



Appendix Four



Correspondences

In economics, problems frequently have more than one “ answer” at a time. This
“ answer” can be the solution of a constrained optimization problem or the
equilibrium of an economy, a market, or a game. Whatever it is, we need
mathematical language for sets of answers/solutions/equilibria that change with
changes in the parameters of the situation. The mathematical concept used in
this case is a correspondence. This appendix introduces you to this concept and
to important associated concepts, definitions, and results.

Marshallian demand
For purposes of illustration, we carry along two examples. The first comes from
Chapter 3. A consumer’s preferences are given by a continuous utility function 

, and for strictly positive prices  and a

nonnegative income level y, the consumer’s problem is

Per Proposition 3.1, continuity of u ensures that the problem has a solution
(you are maximizing a continuous function over a compact set), the set of
solutions is convex if u is quasi-concave, and the problem has a single solution
if u is strictly quasi-concave. We do not generally assume strict quasi-concavity;
hence there may be more than one solution. For given p and y, we write D(p, y)
for the set of solutions of the problem, and we write ν(p, y) for the value of the
optimal solution; that is, if x ∈ D(p, y), then ν(p, y) = u(x). As you learn in
Chapter 3, D(p, y) is called Marshallian demand at the prices p and income
level y, and ν(p, y) is called the indirect utility at that point.

Nash equilibria of a finite game
The second example comes from Volume 2, but it is simple and basic enough
so that many readers will have seen it already. (If you’ve never seen anything
like this, you may wish to skip this example.) Fix positive integers m and n,
and imagine two m×n matrices of real numbers, A and B. Let em denote the m-
dimensional vector all of whose components are 1, and let en be the n-



dimensional vector of this sort. Let S = {s ∈ Rm : s ≥ 0, s·em = 1}, and let T =
{t ∈ Rn : t·en = 1}. That is, S is the space of probability distributions with m
components or outcomes, and T is the space of probability distributions with n
components or outcomes. We write sAt and sBt for the obvious scalar-vector-
scalar products, thinking of t as a column vector for this purpose. Note that the
dimensions are such that sAt and sBt are both scalars. Then for given A and B,
we say that (s, t) is a Nash equilibrium for the bimatrix game (A, B) if sAt =
sup {s′ At : s′ ∈ S} and sBt = sup {sBt′  : t′ ∈ T}. For a given (A, B), there is
no obvious reason to suppose that some pair (s, t) forms a Nash equilibrium for
(A, B), but in fact a very nice application of fixed-point theory shows that this is
so. For for any (A, B), let E(A, B) be the set of (s, t) that are Nash equilibria for
(A, B).

A4.1.  Functions and Correspondences
A function is a mathematical object that associates to every point in one set (the
domain of the function) a single point in a second set (the range). The definition
of a function specifies that each point in the domain is mapped into a single
point in the range. (This is, two points in the domain may be mapped into the
same point in the range; but a single point in the domain can’t take on two
different range values.)

A correspondence generalizes the idea of a function, allowing a point in the
domain to be associated with more (or less) than one point in the range. Given
sets X and Y, which are called the domain and range of the correspondence, a
correspondence φ is a map that associates to every point x ∈ X a subset φ(x) of
Y.

In general, the domain X and range Y of a correspondence can be very general
mathematical objects. In our work, however, X will always be a subset of Rn for
some n, and Y will always be a closed subset of Rm, for some m. Accordingly,
for all the applications we discuss, we can take limits of sequences of points in
X or in Y, measure (Euclidean) distances between points in either set, and so on.

Note that a correspondence is nothing more than a fancy function, in the
following sense. Let Y denote the set of all subsets of Y, then the
correspondence φ is a function with domain X and range Y. But to emphasize
that the targets are sets, the terminology correspondence is used. To write



symbolically that φ is a correspondence from X to Y—that is, φ(x) ⊆ Y for each
x ∈ X—we write φ : X ⇒ Y and x ⇒ φ(x), using a double arrow. (In
comparison, φ : X → Y is used to indicate that φ is a function from X to Y.)

In the example of Marshallian demand, two correspondences are worthy of
attention. The more obvious, perhaps, is the correspondence that maps price–
income pairs (p, y) into the consumer’s Marshallian demand, or 

. But there is also the budget set

correspondence that defines, for each p and y, the consumer’s feasible set: If B(p,
y) denotes {x ∈  : p · x ≤ y}, then  is a

second correspondence.
In the example of equilibria of bimatrix games, E : Rm×n ×Rm×n ⇒ 

 is the equilibrium correspondence; E(A, B) is the set of (s, t)

that are Nash equilibria for (A, B). Note that (s, t) actually come from a smaller
space than the range  written here; they are probability

distributions, whose components are both nonnegative (which is indicated) and
sum to 1 (which is not).

Language commonly used concerning correspondences includes:

1.  If the correspondence φ never maps a point in the domain into the empty
set, we say that φ is nonempty valued. So, for example, because u is
continuous and the budget sets are compact, D is nonempty valued; because
of a fixed-point theorem, E is nonempty valued.

2.  If φ(x) is convex for every x ∈ X, we say that φ is convex valued. So, if u
is quasi-concave, D is convex valued. But (for those who know a smattering
of game theory), because of games such as the Battle of the Sexes, E is
most definitely not convex valued.

3.  If the correspondence φ maps every point in the domain into a set
containing a single element, we say that φ is singleton valued. Therefore, if
u is strictly quasi-concave, the Marshallian demand correspondence is
singleton valued.

4.  If φ(x) is closed for every x ∈ X, we say that φ is closed valued. If φ(x) is



compact for every x ∈ X, we say that φ is compact valued. As in: as part of
the proof that D is nonempty valued, one must prove that B is a compact-
valued correspondence. Or, since one can prove that the set of equilibria for
any game is a closed set, and since equilibria (being pairs of probability
distributions) are clearly bounded, E is compact valued.

5.  The graph of the correspondence φ : X ⇒ Y is the set of points {(x, y) ∈ X
× Y : y ∈ φ(x)}.

A property of correspondences that we should spell out more formally is
given in the following definition.

Definition A4.1. The correspondence φ is locally bounded if for every x ∈ X,
there exists an  (x) > 0 and a bounded set Y (x) ⊆ Y such that φ(x′) ⊆ Y (x)
for all x′ that are less than  distant from x.

To paraphrase, the range Y may be unbounded but, for every point x in the
domain, we can simultaneously bound φ(x′) for all x′  in some (small)
neighborhood of x.

Exercise 1. Construct a correspondence that is singleton-valued, and hence
compact-and convex-valued, and whose graph is a closed set, but that is not
locally bounded. (Hint: Consider the function f(x) = 1/x around x = 0.)

A4.2. Continuity of Correspondences
In parallel with the idea of continuity of a function, correspondences have
continuity properties. Specifically, three notions of continuity are important:
upper semi-continuity, lower semi-continuity, and (full) continuity. Definitions
vary from book to book, but for our purposes, the following will do.

Definition A4.2.

a.  The correspondence φ : X ⇒ Y is upper semi-continuous if, whenever
{xn} is a sequence in X with limit x ∈ X, and {yn} is a sequence in Y such
that yn ∈ φ(xn) for all n and limn yn exists, then this limit point is an
element of φ(x).



b.  The correspondence φ : X ⇒ Y is lower semi-continuous if for every x ∈
X, sequence {xn} from X with limit x, and y ∈ φ(x), we can find, for all n
> N for some sufficiently large N, yn ∈ φ(xn) such that limn yn = y.

c.  The correspondence φ : X ⇒ Y is continuous if it is both upper and
lower semi-continuous.

The meaning of upper semi-continuity can be partially divined from the
following alternative characterization.

Proposition A4.3. The correspondence φ : X ⇒ Y is upper semi-continuous if
and only if the graph of φ is (relatively) closed in X × Y.

Proof. This is less of a proposition than a remark, since it is just a matter of
recalling the “ sequential convergence” definition of a (relatively) closed set. φ is
upper semi-continuous per Definition A4.2a, and {(xn,yn)} is a sequence from
the graph of φ with limit (x, y). Since {xn} has limit x, Definition A4.2a
implies that y ∈ φ(x), holds. This is just another way of saying that (x, y) is in
the graph of φ. Therefore, the graph of φ is a closed set. On the other hand,
suppose the graph of φ is a closed set and that limn xn = x, limn yn = y, and yn
∈ φ(xn) for each n. Then {(xn,yn)} is a sequence from the graph of φ with limit
point (x, y), and since the graph of φ is closed, this means that (x, y) is in the
graph, which is just to say that y ∈ φ(x).

The only part of this that requires more than a moment’s thought concerns
the parenthetical relatively in the statement of the proposition. Because X is not
necessarily a closed set, when we say that the graph of φ is closed, we can’t
mean closed in the full Euclidean space that contains X × Y, but instead we
must mean that it is relatively closed within X × Y. That characterization of a
relatively closed set that we’ve used—that it contains all its limit points within
the space—shows this.

Here is another very simple result.

Proposition A4.4. If a correspondence φ is upper semi-continuous, then φ(x) is



closed for each x. Therefore, if a correspondence φ is upper semi-continuous
and locally bounded, it is compact valued.

Proof. If φ is upper semi-continuous, its graph is closed. Since the intersection
of two closed sets is closed, and {x} × Y is a closed set, the intersection of the
graph of φ and {x} × Y, or {x} × φ(x), is closed. Therefore, φ(x) is closed.1 And
if the correspondence is, in addition, locally bounded, then it is bounded at each
x and, therefore, compact valued.

Some examples with pictures may help you understand these definitions.

1 .  Figure A4.1(a) shows the correspondence φ defined for X = Y = R as
follows:

That is, φ(x) contains two points for x < 2, an entire interval of points for 2
≤ x ≤ 3, and a single point for x > 3.



Figure A4.1. Two correspondences

This correspondence is upper semi-continuous. Perhaps the easiest way
to see this is that its graph is a closed set. But it is not at all lower semi-
continuous. It fails at x = 2 and at x = 3. For instance, 1 ∈ φ(2). But as
you approach x = 1 from below, say along the sequence in which xn = 2 –
1/n, you can’t get “ close” to the value 1; you can find a sequence
approaching the value y = 2 and another approaching y = 0, but y = 1 can’t
be approached.

2.  Now consider the correspondence φ : R ⇒ R defined by

This is graphed for you in Figure A4.1b; the open circle indicates a point
that is not part of the correspondence. This is just like the previous
example, except that for domain values x ∈ [2, 3], the correspondence has
been “ shifted up.” This is not an upper semi-continuous correspondence: It
should be clear to you that the graph is not closed; it lacks the
accumulation point (2, 0). (If it had that point, the graph would be closed
and the correspondence would be upper semi-continuous.) It also fails to be
lower semi-continuous, both at x = 2 and at x = 3. But imagine changing it
at x = 2 and x = 3 as follows: Suppose the correspondence had φ(2) = 
and φ(3) = {0}. Then it would be lower semi-continuous. It is lower semi-
continuous at x = 2 trivially; since φ(2) = , the definition has no bite
there. And at x = 3, no matter how you approach x, there are values in the
correspondence along the sequence that approach the one point, 0, in the
correspondence at the limit.

Exercise 2. Are either the following correspondences upper semi-continuous?
Why or why not? (You should begin by graphing them.)



If either (or both) is not upper semi-continuous, what is the smallest change you
can make to make it upper semi-continuous? And is either lower semi-
continuous? If not, are there simple changes you can make at the values x = 2
and x = 3 to make them lower semi-continuous?

A4.3. Singleton-valued Correspondences and Continuity
For reasons that will become apparent next section, the case of singleton-valued
correspondences is of special interest. Throughout this section, we deal with a
function f : X → Y and a correspondence φ : X ⇒ Y where φ(x) = {f(x)}. We
say that φ describes the function f, f is the function associated with the
correspondence φ, and φ is the (singleton-valued) correspondence associated
with the function f.

Proposition A4.5.  A singleton-valued correspondence φ is lower semi-
continuous if and only if it describes a continuous function, in which case it is
also upper semi-continuous.

Proof. Suppose φ is lower semi-continuous. Take any x ∈ X and sequence



{xn} with limit x. Since f(x) ∈ φ(x), lower semi-continuity says that, for some
sequences {yn} with yn ∈ φ(xn), limn yn = f(x). But the only choice for yn is
f(xn). Therefore, f is continuous. Conversely, for x ∈ X and {xn} with limit x,
continuity of f ensures that limn f(xn) = f(x). Therefore, for all y ∈ φ(x), and
there is but one such y, namely f(x), we can find yn ∈ φ(xn), namely f(xn), with
limit f(x). This is lower semi-continuity. And, in either case, for any { xn} with
limit x,if yn ∈ φ(xn), then yn = f(xn), and the (only) accumulation point of yn =
limn f(xn) = f(x) ∈ φ(x), which is upper semi-continuity.

On the other hand, in this special case of singleton-valued correspondences,
upper semi-continuity does not ensure continuity of the corresponding function.
Consider X = [0, ∞) and f(x) = 1/x for x > 0 and f(0) = 0. This function is very
discontinuous at x = 0, but the singleton-valued correspondence associated with
this function is upper semi-continuous.

This example shows a sort of behavior we will want to avoid in
applications, namely, where the function/correspondence “ disappears” over the
horizon as you get close to some value of x and then pops up at that x
somewhere completely different. The definition we gave earlier of a locally
bounded correspondence is just what is needed.

Proposition A4.6.  A singleton-valued correspondence φ that is locally
bounded is upper semi-continuous if and only if it is lower semi-continuous if
and only if the function it describes is continuous.

Proof. Suppose φ is locally bounded and singleton valued. Let f(x) denote the
single element of φ(x), for each x. If f is continuous, then φ is clearly upper
semi-continuous: If xn → x, yn ∈ φ(xn) for each n, and yn → y, then yn = f(xn)
and by continuity of f, y = limn yn = limn f(xn) = f(x), so y ∈ φ(x) = {f(x)}.

On the other hand, suppose φ is upper semi-continuous. Take any sequence
xn → x. Since φ is locally bounded, there is a bounded set y and an  > 0 such
that f(x′) ∈ Y if | |x′ – x| |  < . But | |xn – x| |  <  for all by finitely many xn
(since xn → x), which implies that the set {f(xn); n = 1, 2,…} is a bounded set.



This implies that every subsequence of the sequence {f(xn)} has a further
subsequence that converges to some y. But this y must be in φ(x) by the upper
semi-continuity of φ. That is, y = f(x). So, every subsequence of {f(xn)} has a
further subsequence that converges to f(x), which implies that the original
sequence {f(xn)} converges to f(x). This makes f continuous.

This shows that if φ is locally bounded and singleton valued, upper semi-
continuity of φ is equivalent to continuity of the corresponding function f.
Proposition A4.5 shows then that upper semi-continuity is equivalent to lower
semi-continuity, since lower semi-continuity is equivalent to continuity of f.

A4.4.  Parametric Constrained Optimization Problems and Berge’s
Theorem

A constrained optimization problem takes the form

Maximize [or minimize] some objective function, subject to some
constraints.

A parametric constrained optimization problem is a family of constrained
optimization problems, where either the objective function or the constraint set
(or both) varies parametrically. In what follows, we deal with maximization
problems; everything we say works for minimization problems.2

We imagine that the parameter, denoted by θ, comes from a subset of Rn for
some n, and the variables that are optimized, denoted by z, come from a subset
of Rm for some m. The objective function is written F (z, θ), and for each θ, the
set of feasible z values is denoted by A(θ). In notation, then, a parametric
constrained maximization problem is written

For each θ, maximize (in z) F (z, θ), subject to z ∈ A(θ).

For a parametric constrained maximization problem of this form, we let Z(θ) be
the set of solutions of the problem for parameter value θ—that is, Z(·) is a
correspondence with argument θ, giving (as values) sets of z—and we let f(θ) =
sup {F (z, θ); z ∈ A(θ)}.3

An excellent example of a parametric constrained maximization problem is
the consumer’s problem (CP). The parameter θ is the vector of prices and



income (p, Y), and the (vector) variable z is the consumption bundle x chosen
by the consumer. The correspondence of solutions is the Marshallian demand
correspondence, and the function f is the indirect utility function. Note that in
this case, the objective function u(x) is independent of the parameters (p, y), but
the constraint set for x, B(p, y), does change with changes in (p, y).

Economic theory repeatedly uses the following proposition. The version
given here is a bit “ fancier” than is standard; see the comments following the
statement of the corollary.

Proposition A4.7 (Berge’s Theorem, also known as the Theorem of the
Maximum).
Consider the parametric constrained-maximization problem

Maximize F (z, θ), subject to z ∈ A(θ).

Let Z(θ) be the set of solutions of this problem for the parameter θ, and let f(θ)
= sup {F (z, θ); z ∈ A(θ)}. If

a.  F is a continuous function in (z, θ),

b.  θ ⇒ A(θ) is lower semi-continuous, and

c.  there exists for each θ a set B(θ) ⊆ A(θ) such that Z(θ) ⊆ B(θ), sup{F (z,
θ) : z ∈ B(θ)} = sup{F (z, θ) : z ∈ A(θ)}, and θ ⇒ B(θ) is an upper semi-
continuous and locally bounded correspondence.4

Then:

d.  Z(θ) is nonempty for all θ, and θ ⇒ Z(θ) is an upper semi-continuous and
locally bounded correspondence; and

e.  the function θ → f(θ) is continuous.

Identical conclusions hold if the optimization problem calls for minimizing F
rather than maximizing F.

Before giving the proof of Berge’s Theorem, we give a corollary that shows
why we were interested last section in singleton-valued correspondences.

Corollary A4.8. In the situation of Proposition A4.7, if in addition you know



that Z(θ) is a singleton set {z(θ)} for all θ in some (relatively) open set of
parameter values, then z(θ) is a continuous function over that set of parameter
values.

Proof of the corollary. Berge’s Theorem establishes that the solution
correspondence Z is upper semi-continuous and locally bounded. Apply
Proposition A4.6.

In standard statements of this theorem, B(θ) doesn’t appear; it is assumed
that A(θ) is continuous. But the more general version of the result given here
permits smoother application of the result in some cases encountered in the text.

Proof of Berge’s Theorem . Since B is upper semi-continuous and locally
bounded, it is compact valued (Proposition A4.4). Nonemptiness of Z(θ) for all
θ then follows directly from Proposition A2.21, because F is continuous in z
and B(θ) is nonempty and compact for each θ. This also implies that f(θ) < ∞
for all θ.

Next we establish continuity of f. Suppose {θn} is a sequence of parameter
values with limit θ. Let {zn} be a sequence of corresponding solutions; that is,
zn ∈ Z(θn) for each n. Therefore, zn ∈ B(θn) for each n. Because B is locally
bounded, by looking along a subsequence if necessary, we can assume that zn
converges to some z, which by the upper semi-continuity of B lies in B(θ).
Therefore, f(θ) ≥ F (z, θ) = limn F (zn,θn) (by continuity of F) = limn f(θn). On
the other hand, suppose z′ ∈ Z(θ). Because A is lower semi-continuous, there
exists a sequence { } such that  ∈ A(θn) and limn  = z′. Therefore,

limn f(θn) ≥ limn F (z′n,θn) = F (z,θ) = f(θ). (The first limit exists by the
preceding argument, and the second exists by continuity.) Therefore, f(θ) = limn
f(θn), and f is continuous.

Now we show that Z is upper semi-continuous and locally bounded. By
assumption, B is locally bounded. Since Z(θ) ⊆ B(θ) by assumption, Z is
locally bounded. Suppose {θn} and {zn} are sequences of parameters and
variables such that limn θn = θ, limn zn = z, and zn ∈ Z(θn) for all n. Of course,



zn ∈ B(θn). Since limn zn = z and limn θn = θ, it follows that limn F (zn,θn) =
F (z, θ) by the continuity of F. But since zn ∈ Z(θn), F (zn,θn) = f(θn), and
since (as we just showed) f is continuous, limn f(θn) = f(θ). Therefore, F (z, θ)
= f(θ), and z ∈ Z(θ).

A4.5.  Why This Terminology?
Why do we use the terminology upper and lower semi-continuity in Definition
A4.2? What connects these definitions to how these terms are used for
functions?

When we discuss upper and lower semi-continuity of functions, two
mathematical concepts are at work: we need a sense of convergence in the
domain and the range, and we need a sense of order in the range. Order enters
the story when we say stuff like, lim sup f(xn) ≤ f(x), for upper semi-continuity.

In this context, we know perfectly well what we mean by convergence in the
domain space: The domain is a subset of Euclidean space. But the range space
is a space of sets. What works for convergence there? And what works for order?

For order, the appropriate notion is pretty clear: One set is bigger than
another if the first is a superset of the second. This is not a linear order, like ≥ or
≤ for numbers. Instead, it is a partial order. But it is an order.

As for convergence among sets, if the sets are compact (in the subset of
Euclidean space Y), then a well-known metric, the Hausdorff metric, can be
used: The distance between two compact sets A and B is the smallest  ≥ 0
such that, for every a ∈ A, there is some b ∈ B no more than from a, and
conversely. Putting these two ideas together, and assuming that all
correspondences φ that we consider are compact valued, consider the following
definitions:

Definition A4.9. For any x and φ(x), and for any  > 0, let

φ  (x): = {y ∈ Y : y is within of some y′ ∈ φ(x)}.

That is, φ  (x) is φ(x) “fattened” by . (It doesn’t matter if you use a weak or
a strict inequality in this fattening procedure.) Then



a.  The correspondence φ is upper semi-continuous-alt (for alternative) if
for every x ∈ X and  > 0 there exists δ  > 0 such that for all x′ ∈ X that
are δ  or closer to x, φ(x′) ⊆ φ  (x).

b.  The correspondence φ is lower semi-continuous-alt if for every x ∈ X
and  > 0, there exists δ  > 0 such that for all x′ ∈ X that are δ  or closer
to x, φ(x) ⊆ φ  (x′).

These are obvious parallels to upper and lower semi-continuity of functions.
But how do these two alternative definitions compare with the definitions

we gave previously? The following is left for you to prove.

Proposition A4.10.  A compact-valued correspondence φ that is upper semi-
continuous-alt is upper semi-continuous. A locally bounded, compact-valued
correspondence that is upper semi-continuous is upper semi-continuous-alt. A
compact-valued correspondence is lower semi-continuous-alt if and only if it is
lower semi-continuous.

(I have restricted attention to compact-valued correspondences so that the
Hausdorff metric is both real valued and is a metric; i.e., if the distance between
two sets is zero, then they are the same set. Notwithstanding this, portions of
the proposition hold for more general correspondences.)

 

1   Since Y is always a closed set, we don’t need in this case to worry about
relative closures.

2   Mininimizing f is the same as maximizing –f, so this is almost
immediate.

3   We write sup instead of max in the definition of f to cover the case where
there is no x ∈ A(θ) that is optimal.

4   We could, in theory, consider a parametric constrained-maximization
problem in which, for some values of θ, A(θ) = . For those values of θ, Z(θ)
would be empty and f(θ) would be –∞ . But we have just ruled this out, at least



as far as this result is concerned. Please note that this assumption doesn’t
establish that Z(θ) is nonempty; we’ll need to prove this. (It isn’t hard.) But it
does establish that f(θ) ≠ –∞ , because it tells us that A(θ) is nonempty.



Appendix Five



Constrained Optimization

This appendix concerns the solution of constrained optimization problems using
calculus. We will not strive for complete generality, but will (instead) give
results in medium-level generality; enough for the applications of this book, but
still special enough so that the proofs of the two basic propositions are fairly
simple.

The problem is posed in Rk and involves an objective function f : Rk → R,
constraint functions gi : Rk → R for i = 1,…, I, and so-called right-hand-side
values yi ∈ R for i = 1,…, I. The problem is

Maximize f(x), subject to gi(x) ≤ yi,i = 1,…, I.

It is assumed throughout that the functions f and all the gi are continuously
differentiable.

Note that this includes as a special case nonnegativity constraints, or
constraints of the form xj ≥ 0. (The trick is to write the constraint as –xj ≤ 0.)
But the case of nonnegativity constraints is so prevalent that they are covered in
a separate section following.

Note also that this includes the case of equality constraints; constraints of
the form gi(x) = yi. Equality constraints are (implicitly) included because we can
write gi(x) = yi as the intersection of two inequality constraints, gi(x) ≤ yi and
–gi(x) ≤ –yi. (But see the discussion under the heading Equality constraints
following.)

To give the basic results about this problem, we need some notation: For
any differentiable function h : Rk → R, Dh is used to denote the gradient of h,
the vector function Dh : Rk → Rk given by

and D(h)|x and D(h)(x) are used interchangeably to denote the gradient evaluated



at the point x; that is, D(h)|x = D(h)(x) is a point in Rk.

The constraint qualification
Definition A5.1.

a.  Fix a point x that satisfies all the constraints, or gi(x) ≤ yi for i = 1,…, I.
We say that constraint i is binding or binds at x if gi(x) = yi, and we write
I(x) for the index set of constraints that bind at x. (That is, i ∈ I(x) if gi(x)
= yi.) If constraint i is not binding at x, we say that it is slack at x.

b.   Suppose x satisfies all the constraints. We say that the constraint
qualification holds at x if the set of k -dimensional vectors {Dgi(x) : i ∈

I(x)} is a linearly independent set of vectors.1

The optimality conditions
Definition A5.2. Given our constrained maximization problem, we say that the
optimality conditions hold at x if there exists a nonnegative I -dimensional
vector λ = (λ1,…, λI) such that

a.  gi(x) ≤ yi for all y,

b.  

for each j = 1, …, k, and

c.  λ i(yi – gi(x)) = 0 for i = 1,…, I.

Proposition A5.3 (Necessity of the optimality conditions). Suppose the point x
solves the constrained optimization problem, and the constraint qualification
holds at x. Then the optimality conditions hold at x.

Proposition A5.4 (Sufficiency of the optimality conditions).  Suppose f is
concave and each gi is quasi-convex. If the optimality conditions hold at x, x



solves the constrained maximization problem.

Proofs will be given after discussion.

Discussion
It is commonplace to refer to the variables λ i as the multipliers on the
constraints.

The optimality conditions have many names. They are often referred to as
the Kuhn-Tucker conditions, after Harold Kuhn and Albert Tucker,
mathematicians who were pioneers in this field. They are also referred to as joint
first-order, complementary-slackness conditions , where (roughly) part b of the
optimality conditions is the first-order conditions, and part c is complementary
slackness.

One also often hears mention of Lagrangians and Langrange multipliers.
Given the constrained maximization problem, some textbooks instruct you to
construct the so-called Lagrangian

and the first-order conditions (roughly) are that ∂ L/∂ xj = 0 for j = 1,…, k. The
language of Lagrangians fits better when all the constraints are equality
constraints; in which case the sign of the multipliers λ i are not constrained, and
complementary-slackness conditions do not intrude. Notwithstanding this, the
language of Lagrangians gives an inkling as to why these optimality conditions
“ work”: Maximizing f subject to the I constraints is akin to an unconstrained
maximization of the Lagrangian, where a reward λ i(yi –gi(x)) is given if the
chosen x gives us a low value of gi(x). Complementary slackness (condition c)
imposes the requirement that there is no reward if gi(x) < yi—you get no credit
for making a slack constraint more slack (nor are you penalized for making it
less slack), so a better way to say this is that one is penalized for violating the
constraint. In essence, the propositions say that at a solution to the problem, the



right “ penalty weights” or multipliers can be found, so the constrained
optimization problem becomes unconstrained optimization of the penalty-
augmented Lagrangian.

How are these propositions used in practice? The common use runs as
follows. You want to solve the constrained maximization problem, and you
look for x (or, more properly, x and λ) that satisfy the optimality conditions. If
you are very lucky, you’ll have a nice problem with a concave objective and
quasi-convex constraint functions, and you will know that any x (and λ) that
satisfies the optimality conditions is a solution. Even if you aren’t so lucky as
that, if you can identify all x at which the optimality conditions hold, then you
almost have the full set of candidates for the solution to the problem: x that do
not satisfy the constraint qualification need not (according to Proposition A5.3)
satisfy the optimality conditions. If you can show that every feasible x satisfies
the constraint qualification, then the set of x at which the optimality conditions
hold is a full set of candidate solutions to the problem.

Nonnegativity constraints on the variables
In economics the variables are often levels of consumption or levels of
production or of activities, and it is natural to impose nonnegativity constraints.
Hence it may be helpful to give the optimality conditions for this sort of
problem directly.

The problem is

Definition A5.5. The point x ∈  satisfies the optimality conditions for

this problem if there exist λ ∈  and μ ∈  such that

a.  gi(x) ≤ yi for i = 1,…, I,

b.  



for each j = 1,…, k,

c.  μjxj = 0, for each j = 1,…, k, and

d.  λ i(yi – gi(x)) = 0 for i = 1,…, I.

With this as the revised definition of the optimality conditions, the two
propositions hold pari pasu, with one strong warning: In Proposition A5.3, the
constraint qualification must hold for all the binding constraints, including any
nonnegativity constraints that are binding.

Equality constraints
We observed earlier that equality constraints of the form gi(x) = yi can be
“ handled” by writing them as two inequality constraints: gi(x) ≤ yi and –gi(x) ≤
–yi. In terms of Proposition A5.4, things work fairly well if both gi and –gi are

quasi-convex—which happens, for example, if gi is linear. 2 But Proposition
A5.3 seems hopeless. If the constraints gi(x) ≤ yi and –gi(x) ≤ –yi must both
hold, then (of course) they must both bind. And then the constraint qualification
as we have defined it will not hold.

There are, happily, versions of Proposition A5.3 that work directly for
equality constraints. Their proofs are more difficult than the proof of A5.3 that
we are about to give, which is why we are content with the version given here.
But most books on constrained optimization will give the more robust results.3

The multipliers as derivatives of the value function
Suppose we define a function V : RI → R by

That is, we ask how the maximized value changes as a function of the vector y
of right-hand-side variables. Results can be proved in the spirit of, V (y) is
differentiable in y if and only if the problem for y has a unique solution, in



which case ∂V/∂yi = λ i, the multiplier for constraint i that goes with the
solution for the right-hand side. I won’t try to give a precise statement of this
result or prove it in any generality, but the result for the special case of the
consumer’s problem will be given and proved as demand theory unfolds.

Proof of Proposition A5.3
(The following simple proof was shown to me by Elchanan Ben Porath.) We
will need the following result from linear algebra: If α1, …, αj are j linearly
independent vectors from Rn, then for any (b1,…, bj) ∈ Rj, there exists x ∈ Rn

such that

Now to prove the proposition. Suppose x solves the constrained
optimization problem, and the constraint qualification holds there. First we will
show that there exist λ i that satisfy

and then we will show that these λ i are nonnegative.
Suppose, then, that no λ i can be found that satisfy the displayed equation

above. We know that the vectors {Dgi(x) : i ∈ I(x)} are linearly independent
(this is the constraint qualification), and the nonexistence of such λ i means that
this set of vectors, augmented by Df(x), is also a linearly independent set. Thus
we can find a vector z ∈ Rk such that

It follows nearly immediately by Taylor’s Theorem that for  > 0 sufficiently
small, x + z satisfies all the constraints (slack constraints at x are no problem,



and for those that bind at x, the first-order impact of adding z to x is to make
them slack), and f(x + z) > f(x), contradicting the supposed optimality of x.

So λ i can be produced such that

Suppose that one or more of the λ i is negative. In particular, suppose that λ i is
negative. Let M < 0 satisfy 

 be a vector such that

(the constraint qualification again). For small enough , Taylor’s Theorem
shows that x + z is feasible (same argument as before), and

The term of order  is strictly positive by construction, and we again have a
contradiction to the supposed optimality of x.



Proof of Proposition A5.4
Suppose that x satisfies the optimality conditions, with multipliers λ. Let x′  be
any other feasible value; that is, gi(x′) ≤ yi for all y.

I assert that for every constraint i that is binding at x, Dgi(x) · (x′ – x) ≤ 0.
To see why, note that gi(x′) ≤ gi(x) = yi for i that binds at x. Since gi is quasi-
convex, this means that for all x″ on the line segment that joins x to x′, gi(x″) ≤
gi(x). But by standard results in the calculus of several variables, Dgi(x) · (x′ – x)
has the same sign as the directional derivative of gi from x to x′ , which
(immediately) is nonpositive.

Thus if x satisfies the optimality conditions, with multipliers λ,

where the final inequality arises from the fact that λ i is zero for constraints that
don’t bind at x, and it is nonnegative for those that do bind (so the previous
paragraph applies).

But for any concave function f,

and the previous paragraph ensures that f(x′ ) ≤ f(x), since the rest of the right-
hand side in the display is nonpositive.

 

1   The term “ the constaint qualification” means different things in different
references, so you should be careful if you see it in another book.

2   Linearity of gi is not necessary. But cases of nonlinear gi of more than one



variable such that gi and –gi are quasi-convex are not encountered very often in
applications.

3   And graduate students in economics can find statements of them in, for
instance, Mas-Colell, Whinston, and Green (1995).



Appendix Six



Dynamic Programming

This appendix concerns the solution of dynamic choice problems using the
methods of dynamic programming. At nearly 50 pages, this the longest of all
the appendices by far—it isn’t longer than all the other appendices put together,
but it comes close—and for a reason: I anticipate that, for many students of
economics, this will be their first foray into this topic. (Unless macroeconomics
changes direction, it is unlikely to be the last.) Even at this considerable length,
this appendix does not provide a full treatment of the subject, and it is a good
idea to supplement it with further study of a text devoted to the topic.1 But
since I anticipate that many students will not follow this up with further study,
and most students will see the topic for the first time here, I will be much more
pedantic than in other appendices.

Moreover, the treatment of the subject that I provide here is somewhat
nonstandard. In every textbook treatment of which I know, and certainly in the
vast majority of applications, the objective function takes an additive form: The
decision maker chooses actions at a sequence of dates and, after each action,
receives an immediate reward, where her overall objective is to maximize (or
minimize) the expectation of the discounted sum of these rewards. This additive
form obscures the basic mathematics of the key results of dynamic
programming, and so I discuss the additive form as a special case, after
developing the general theory. This approach, while clarifying the mathematics,
adds length.

In the first section and, then, at the end, I provide a few specific problems
that are solved using the techniques of this appendix. Some of these provide
expository fodder for what comes later, but others are not solved here; you will
improve your understanding of this material if you work through them.
Solutions are provided in the Student’s Guide.

A6.1.   Several Examples
In economics, dynamic programming is applied to a wide variety of problems,
some quite simple (at least, conceptually), and some with very complex and
detailed formulations. We will build the tools of dynamic programming in
sufficient generality to apply to complex formulations. But that means
formulating and analyzing the general problem in fairly abstract form, which



may make it hard to digest. So here are several concrete problems to think about
in conjunction with the general formulation.

1. A simple consumption-savings problem

Imagine a consumer with $1000, to be used to finance consumption at four
different times, t = 0, 1, 2, 3. At time t = 0, the consumer must decide how
much to consume c0, with the remainder 1000 –c0 being put into a savings
account. At time 1, the savings account will be worth 1.05(1000 –c0), and the
individual must decide how much to consume c1, with the remainder staying in
the savings account, so that at time t = 2 the consumer will have resources
1.05(1.05(1000 –c0) –c1). And so on; money not spent for consumption is
saved, with interest rate 5% per period.

The consumer seeks to maximize her utility of consumption, which is given
by

(The variable ct is the amount spent on a single consumption good, whose price
is 1 at each date.)

2. A slightly harder consumption-savings problem

This is the same as problem 1, but instead of having four consumption dates,
(a) the consumer must consume at dates t = 0, 1, 2, …; (b) in each period t, any
money that is saved either earns interest rate 5% or 12%, each with probability
1/2, with the rate of return on savings independent among periods; and the
consumer seeks to maximize the expectation of



3. A parking problem

You are trying to park in a long, linear parking lot. The parking spots in the lot
are numbered –100, –99, –98, …, –2, –1, 0, 1, 2, 3, …, where spot 0 is right
in front of the store you wish to enter, and spots whose number has higher
absolute value are further away. You have a general desire to park as close to the
front door as possible; more precisely, you wish to park in a way that
minimizes the expectation of the absolute value of the spot in which you park.

As you proceed in the parking lot, you see whether each spot is occupied or
not. You begin at spot –100: If it is occupied, you must continue to –99; if it is
unoccupied, you can, if you wish, park there, or proceed to spot –98. You are
quite near-sighted; you are only able to see the spot that you are currently
approaching. So when you are deciding whether to park in spot n, if it is
unoccupied, you are unable to perceive whether spots n + 1, n + 2, and so forth,
are occupied or not. You are not allowed to turn around—if you pass an
unoccupied parking spot, you cannot go back to it.

Each spot is occupied with some probability ρ < 1, independent of the
occupancy status of all other spots. So if, for instance, you are at spot –5 and it
is unoccupied, the chance that spots –4 though 0 will all be occupied is ρ5.

If you get to spot 0 and it is unoccupied, of course you should park. If you
get to spot 0 and find it occupied, you must go on to spot 1; you park there if it
is unoccupied, and you must go on to spot 2 if spot 1 is occupied, and so forth.
That is, once you go past the front door of the store, you want to park at the
first unoccupied spot you find. There are a (countably) infinite set of parking
spots following 0, so if you get to spot 0, you will (eventually) find a parking
spot with probability one.

Suppose ρ = 0.9, you are at parking spot –100, and it is unoccupied. What
should be your strategy from here on? What if ρ = 0.7? And suppose you know
that ρ = 0.9 or = 0.7 but you don’t know which, and as you approach spot –
100 (before you see its occupancy status), you assess probability 0.5 that ρ =
0.9.2 What then?

4. A job-hunting problem

You are interviewing for a job at dates t = 0, 1, 2, … You may take the job
offered at any date, but once you take a job, you must keep it forever. The job



offered at date t pays a wage wt for each following period. That is, if you take the
job paying $65 at date 5, you get $65 at dates 5, 6, 7, … Until you take a job,
you get $0. (Whatever payment you get at date t is called your payoff at that
date.) You don’t know the wage you will be offered at date t until date t. The
sequence of wage offers {wt} forms an i.i.d. sequence, with each wt uniformly
distributed between $0 and $100. Once you pass on a job offer, you can’t go
back to it.

You discount payoffs at a rate δ  per period. You want to maximize your
expected total (discounted and summed) net present value of payoffs. What’s the
optimal strategy in terms of accepting a job offer to follow, as a function of δ ?
How, if at all, would your optimal strategy change, if you could go back to take
up an offer made in a previous period?

5. Finding the best price (a variation on the previous problem)

You wish to buy a new flat-screen television (the model is fixed). Once you buy
the television, you will receive a reward of $3000 less the price you pay. You
buy only once. There is an infinite sequence of stores from which you might
purchase the television, indexed by n = 0, 1, …. Store n charges the price pn,

and you can only learn pn by going to store n.3 From your perspective, {pn} is
a sequence of independent and identically distributed random variables, each
having a uniform distribution on the interval [$2000, $3000]. You can visit as
many stores as you wish, and there is no discounting, but each time you visit
another store, you incur a cost of $100. Once you leave a store (without
buying), you cannot go back. You want to maximize the expected value of
$3000 less the price you pay and less the cost of all the visits to stores that you
make; that is, if you visit stores 0, 1, 2, …, n and then purchase at store n, your
net reward is $3000 pn –100(n+1); you seek to maximize the expected value of
this quantity. (If you never purchase a television, your net reward is –∞; you
must keep visiting stores in succession until you buy.)

What is your optimal strategy for buying this television? What would be
your optimal strategy if you could go back to a store you visited earlier, at no
additional cost? What would be your optimal strategy if you could go back to a
store you visited earlier, but at a cost of an additional $100?



6. A button-pushing, letter-flashing machine problem

At dates t = 0, 1, 2, …, a decision maker must push one of two buttons, the
first marked X and the second, Y. Simultaneously, the machine flashes one of
two signals, either A or B. (She doesn’t get to see what the machine will flash
before she chooses her button.) She is paid according to the button she pushes
and the signal flashed by the machine: She gets $10 if she pushes X and the
machine flashes A, $0 for X and B, $15 for Y and A, and $5 for Y and B.

If at date t – 1 the decision maker pushes X and the machine flashes A, then
the chance that the machine flashes A at date t is 0.75. While if at date t – 1
either the decision maker pushes Y or the machine flashes B, then the chance
that the machine flashes A at date t is 0.2. At date 0, the machine flashes A with
probability 0.75 (that is, it behaves as if in the previous round X had been
pushed and A flashed). (The machine’s behavior at date t is otherwise
conditionally independent of the past, conditional on what happened at date t –
1.)

The decision maker wishes to maximize the expectation of the discounted
sum of the payments she receives, discounted at a rate of 0.98 per period. What
should she do?

7. The simplest multi-armed bandit problem

A decision maker must choose, at each date t = 0, 1, …, whether or not to pull
the arm of a very simple slot machine. It costs $1 for each pull of the machine. If
she puts in her $1 and pulls the arm, she either wins back $12 or she wins back
$0. (So her net, if she chooses to play the slot machine, is either $11 or $ – 1.)

There are two types of slot machines in the world. Type 1 pays back $12
with probability 1/3 and $0 otherwise, with each round independent of all other
rounds. Type 2 never pays back $12—it just eats your $1, each and every
round. The decision maker doesn’t know whether the slot machine in front of
her is of type 1 or type 2, but at the outset, she assesses probability 0.8 that it
is of type 1.

The decision maker wishes to maximize the expected value of the
discounted sum of her net winnings, discounting at rate 0.9 per period. (That is,
if she nets r0 at date 0, r1 at date 1, and so on, she evaluates her outcome as the
sum



and she wishes to play in a way that maximizes the expectation of this sum.)
What is the optimal strategy for this decision maker to follow?4

A6.2.   A General Formulation
I reiterate that problems to which dynamic programming is applied range from
the quite simple to the very complex. Giving an absolutely general formulation,
which covers all the applications, is difficult if not impossible. And, if we tried
to cover all the necessary technicalities for applications on the more complex
end of the spectrum, we would quickly become bogged down in techical issues.
I present a fairly general, but not completely general, formulation here, leaving a
discussion of technical issues to the end of this section.

Decision dates or times. Dynamic programming concerns methods for solving
optimization problems where, within the story of the problem, the decision
maker chooses actions at a discrete series of dates. In some cases, the sequence
of dates is finite, as in t = 0, 1, …, T. In such cases, the problem is said to have
a finite horizon. In other cases, the problem has a countably infinite sequence of
dates, t = 0, 1, …, and is said to have an infinite horizon.

•   The distinction between finite- and infinite-horizon problems is clearest if
you contrast the four-period consumption-savings problem (finite horizon)
with the infinite-horizon version of the problem.

•   It is also clear that the two-button-machine problem and the simple multi-
armed bandit problems have infinite horizons: The decision maker never
stops having to decide which button to push or whether to pull the arm or
not.

•   In the take-a-job-offer problem (and the shopping-for-a-television problem),
one assumes the individual will eventually accept an offer, after which no
decisions remain. But the time of job acceptance can be delayed beyond any
finite horizon, so this is an infinite-horizon problem: For a finite-horizon



problem, there must be some finite and definite time T after which no
decisions remain to be taken.

•   The parking problem is perhaps the most subtle along this dimension. If
and when parking spot 0 is reached, the best thing to do is to park at the
first available unoccupied spot. Hence there are “ real” decisions to make
only (at most) at spots –100, –99, –98, …, –1. (No decision needs to be
made at an occupied spot, but there is some chance that a real decision is
necessary at each of those 100 locales.) If a problem is such that, beyond
some certain (finite and definite) time, the optimal strategy is obvious, then
this is effectively a finite-horizon problem.

•   The parking problem illustrates another bit of special formulation. In most
formulations, the time index will begin with t = 0 as the first period, and we
stick to that in the general formulation being built. But in some
applications, and in particular in the parking problem, it is natural to index
time differently; in the parking problem, if the first parking spot encountered
is –100, it is convenient to index time by t = –100, –99, …. For finite-
horizon problems, having time count down to zero (instead of up to some T)
is sometimes used.

Actions, information, histories. At date t, the decision maker chooses an
action at. She does so based on information she possesses. Some of that
information may have arrived just prior to making the decision. For instance, in
the parking problem, whether the currently visited spot is occupied or not has
just been learned; and in the job-acceptance problem, the wage currently on offer
has just been learned. In other problems, information arrives during time period
t but after the action is chosen. For instance, in the multi-armed bandit problem,
if the decision in period t is to play the slot machine, whether it returns $12 or
$0 this period is learned only after (and if) the arm is pulled. One could invent
an abstract symbol it for the information received after the previous action was
taken but before the current action, and you will find formulations in which pre-
action and post-action information are encoded differently. In our general
formulation, we eschew all symbols of this sort and instead encode, at each time
t, everything the decision maker knows when she goes to make her time t
decision: This is called the time t (partial) history, denoted by ht, with Ht the



set of all conceivable time t partial histories. So, for instance, in the multi-
armed bandit problem, the results of the arm-pull at time t, if the arm is pulled
at time t, is first encoded in ht+1. Among the information contained within ht is
the sequence of actions taken previously, (a0, …, at–1).

In most applications of dynamic programming, and in the general
formulation we use here, it is assumed that the decision maker never forgets
anything she once knew. Therefore, the ht “ telescope”; ht contains everything
encoded in ht–1 and (perhaps) more besides.

We use h for a complete history of everything that happens over the course
of the decision problem; H denotes the space of all conceivable complete
histories.

In many applications, the actions available to the decision maker at time t
depend on what has transpired so far. For instance, in the parking problem,
whether the decision maker has the option to park in a particular spot depends
on whether that spot is occupied. We write At(ht) for the set of actions available
at time t, given the history up to this time, and let At be the union of At(ht)
taken over all ht ∈ Ht. We always assume that the decision maker is aware of
the actions available to her.

Note that Ht–1 is not a subset of Ht or of H, but rather can be thought of as a
projected “ subspace” of Ht and H. We sometimes use notation like ht–1(ht),
ht(h), and at(h) to denote these projections. But, in many places, we also write
ht alone when we mean the date-t subhistory of a particular full history h, when
(I hope) this meaning is clear from the context.

Strategies. A strategy for the decision maker is a specification of which action
she will take at every date, as a function of the history to that date. Formally, let
Σt be the subset of , such that, for σt ∈ Σt, σt(ht) ∈ At(ht), and subject to

any technical requirements (e.g., measurability) necessary. Therefore, Σt is the
space of strategies for date-t action. And let Σ be the cross-product of the Σt for
all decision dates; this is the space of full strategies for the decision problem.

For readers who know some game theory, the formulation just given does



not permit a randomized choice of action. In most applications of dynamic
programming, randomization is unnecessary. But where it is, you can formulate
the strategy spaces to permit it, either using mixtures over Σ or using
behaviorally mixed strategies, where each σt(ht) specifies a probability
distribution over At(ht).

Laws of motion, probabilities, and expectations. Most problem
formulations specify a law of motion, which says what will happen from the
time-t action is taken until the next action must be taken; typically this is given
by a transition probability distribution on Ht+1, conditional on ht and the action
taken at. We write pt(·; ht, at) for this transition probability (although we’ll
have little need for this bit of notation). From (a) the laws of motion or
transition probabilities, (b) a starting point ht for time t, and (c) a strategy σ, we

build a conditional probability distribution Pσ[·|ht] on all of H: Starting at ht, σ
provides the action taken σt(ht), which gives the probability distribution on
ht+1, then σ provides the next action taken, and so forth. Note that σ may be
inconsistent with ht here; that is, ht may record an action at–1 = at–1(ht) for time
t–1 and a time-t–1 history ht–1 = ht–1(ht) where at–1 ≠ σt–1(ht–1). That’s okay; in

constructing Pσ[·|ht], ht specifies what happens up to time t, while σ is used to

specify the action choice from time t on. We use Eσ[·|ht] to denote expectation

taken with respect to Pσ[·|ht].

The objective function and optimality.  The final piece of our general
formulation concerns the objective function. Being very general, we imagine a
utility function u: H → R, such that the decision maker’s objective is to
maximize the expectation of u. For each strategy σ, we write

so that  is the expected (utility) value from using strategy σ,

beginning at time t in the history ht.
5 By the law of iterated conditional



expectations,

where in the ht+1, what is random (perhaps) are those portions or components of
ht+1 that are added to ht between the time t and time t + 1. One piece of new
information is at, which is given by σt(ht), but other, random things may take
place, driven by the law of motion that is part of the problem formulation.

(For finite-horizon problems, where decisions are taken at dates t = 0, …, T,
we define hT+1 = h and , for all σ. Then (A6.1) is

valid for all t = 0, …, T.)
Dynamic programming is sometimes used in minimization problems; for

instance, in the parking problem. But I work in this appendix with
maximization problems. The optimal value function is defined at each ht by

And strategy σ is (everywhere) optimal if

We look for strategies that are everywhere optimal. (And, to be clear, we may
not find an optimal strategy for some problems. But the optimal value function
is defined as the supremum over all strategies, nonetheless.)

Please put a big star in the margin at this point. You might think it is
enough to find a strategy that is optimal for some given initial history h0. But
the methods of dynamic programming depend crucially on the idea that we are
searching for strategies that are optimal starting from every time t and in every
starting point for time t, ht. When you go to verify that a strategy is optimal, in
the application of the methods of this appendix, you have to show it is optimal
everywhere, in just this sense.



Technicalities
The formulation just given skirts some technical issues that must be addressed
if we are going to be rigorous. But trying to address the technical issues in
substantial generality (now and later, as we develop the theory) would add many
more pages to an already too-long appendix and would probably obscure the
basic ideas. So in this subsection I will signal the technical issues and offer
some assumptions that make everything to follow legitimate, but that are
limiting in terms of some applications you may meet.

The construction of the Pσ[·|ht]
Most formulations of dynamic programming problems present the laws of
motion in the form of transition probabilities: If the history to time t is this, and
if the action selected is that, then here is the probability distribution over the
new items that, together with the history and action selected, make up the next
partial history. These transition probabilities are then employed to construct
conditional probabilities Pσ[·|ht] on all of h. Moreover, this should be done so
that laws of iterated conditional probabilities of the sort employed in writing
(A6.1) hold. The chief mathematical hammer used here is an extension theorem
(either Kolmogov’s or, a bit more generally, Tulcea’s), which ensures that if
consistent finite-dimensional probabilities are constructed, they can be extended
to an appropriate (countably additive) probability on all of H. But a bit of care—
and some measurability restrictions on the available strategies σ—are required.

Construction of strategies from other strategies
In later developments, we construct “ contingent strategies” from other
strategies; for instance, we might say, “ Let  follow the action choices
mandated by σ up to time t; at time t with history ht, let (ht) prescribe an
action that comes within  of the optimal action in that history; and after time
t, let  be the same as σ′ .” If we are imposing measurability restrictions on
strategies along the way, so that we can construct conditional probabilities as
above, we must be sure that the contingent strategies we blithely define satisfy
those restrictions. Often, this involves knowing whether and when certain
measurable selections are feasible.



Integrating u
Finally, we defined  as Eσ[u(h)|ht]. What guarantees do we have that

this integral is well defined? For one (obvious) thing, the utility function u has
to be measurable. But more than that, u has to be integrable with respect to
Pσ[·|ht], for all σ and ht.

I want to avoid discussions of measurability and worries about whether
various contingent strategies can be constructed, and the easiest way to do so is
to assume that H (and, therefore, each Ht) is countably infinite. Unhappily,
taking this easy path excludes a lot of applications that arise in the economics
literature. Of the seven examples with which we began, problems 1, 2, 4, and 5
would effectively be ruled out. But my desire to avoid discussions of
measurability is strong, so I will engage in a bit of arm-waving: In the proofs
and sketches of proofs to follow, I will eschew all discussion of measurability. If
this worries you, what follows is rigorous for problems where H is countably
infinite. In fact, the general results that follow can be extended to problems such
as 1, 2, 4, and 5 (and I’ll have no compunction about showing you solutions to
those problems in what follows), but there are some issues that must be
attended to, which I will not touch.

Regarding integrability of u, I can do a bit better: I will assume that either u
is uniformly bounded above on H (where here I mean the set of histories that,
per the problem formulation, might happen—formally, u is uniformly bounded
above on a subset of H that has probability 1 under all Pσ[·|ht]), or that u is
uniformly bounded below on H. With either one of these two assumptions (and
with unstipulated measurability assumptions on u), we are assured that u is
always quasi-integrable; if u is uniformly bounded above, integrals of –∞ are
permitted, and if u is uniformly bounded below, integrals of ∞ are permitted,
but in either case, they are well defined. (To be very precise, in cases where u is
uniformly bounded above, I’m willing to have u(h) = –∞ for particular histories
h, and where u is uniformly bounded below, u(h) = ∞ is permitted.)

Note that one or the other of these conditions holds in all seven examples. I
leave it to you to verify this; it is pretty simple except perhaps for Problem 1,
but the fact that this problem has a finite horizon and wealth can grow no more
than 5% per period gives a uniform upper bound. More generally, this



assumption (that is, one of the two assumptions) holds in a wide variety of
problems that arise in economics. Some exceptions are found in the literature:
This is especially true in the context of consumption– investment budgeting
problems in finance, where utility functions are unbounded on both sides, as are
the supports of the distribution of per period returns. For such problems, you
will need (if you are fastidious) to argue that the required integrals are well
enough defined so that the theory to follow still holds. (Almost no one who
writes in the literature is that fastidious.)

Because I am assuming only quasi-integrability, I am opening up the
possibilities that one or more strategies have  (when u is

uniformly bounded below) or that all strategies have 

(when u is uniformly bounded above). In the first case, any strategy that gives
expected utility equal to ∞ is optimal; in the second case, all strategies are
equally optimal. No distinction is made between the rate at which ∞ or –∞ is
reached. The broad theory of dynamic programming looks at finer optimal
criteria for such cases (such as long-run average flow of utility or so-called
overtaking optimality), but we will have nothing to say about them here.

A6.3.   Bellman’s Equation
Equation (A6.1) is “ extended” to the optimal value function  in what is

commonly called Bellman’s equation.

Proposition A6.1.

(For finite-horizon problems, because  for all σ, , which

by definition is supσ , is identically u. This implies that (A6.2) holds for

all t = 0, …, T.) Before discussing how one proves this remarkable equation,
take careful note: The expectation is being taken over ht+1. “ Most” of ht+1 is set
by the conditioning variable ht. All that is not set is the immediate action



taken, at, and any additional information that may be received before the next
action must be taken at time t+1. And the law of motion of that additional
information is determined by at and the history ht. So in place of the σ ∈ Σ in
the supremum, we might just as well think of taking the supremum over at ∈
At(ht). That is all that matters.

Here is a sketch of the proof, for the case where  is finite valued: Fix ht.

Let  be a strategy that is within  of optimal at ht, that is, such that 
.

We know from (A6.1) that

Since  is everywhere less or equal to , and since taking a supremum

only increases the right-hand side, we know that

Since  is arbitrary here, we have this inequality without the .
To go the other way, suppose  comes within  of the supremum on the

right-hand side of (A6.2) for a particular t and ht. That is,

For each ht+1, find some strategy σht+1 that is within  of optimal starting at
ht+1, and we have



Now if we construct the strategy  that, at time t, employs , and from time
t+1 on employs σht+1 depending on ht+1, then (A6.1) can be rewritten

Combine this inequality with the one two displays earlier, and we have

This implies

and since  is arbitrary here, we get what we need.
(If f* is not finite, the argument needs some minor adjustments. Note that

this is one of those places where we are constructing a strategy “ contingently,”
out of pieces of other strategies, so this is a place where, if H is not countable,
rigor demands that we worry about the measurability of the strategy we are
constructing.)

A6.4.   Conserving and Unimprovable Strategies
We come finally to the crux of the theory of dynamic programming. Begin by
putting equations (A6.1) and (A6.2) side by side:

Suppose, on the one hand, that we could find some strategy  that, for all t and



ht, attains the supremum in Bellman’s equation. This calls for a definition:

Definition A6.2.  A strategy  is conserving if it attains the supremum in
Bellman’s equation: For all t and ht,

On the other hand, suppose we had a strategy whose value function satisfied
Bellman’s equation:

Definition A6.3. A strategy  is unimprovable if its value function satisfies
Bellman’s equation: For all t and ht,

The terms conserving and unimprovable merit a moment’s explanation. A
strategy is conserving if using it conserves the optimal value, at least for a
(finite) while. This isn’t quite what the definition says; it says that using a
conserving strategy for one round “ conserves” the optimal value. But it is easy
to show by induction and the law of iterated expectations that a conserving
strategy conserves the optimal value for any finite number of rounds; that is, if 

 is conserving, then for all t, k > 0, and ht

In other words, if σ* is an optimal strategy and  is conserving, then an(other)
optimal strategy is the composite strategy created by employing  for k
periods, where k is a finite integer, and then turning to σ* for the rest of time.

On the other hand, to say that  is unimprovable is to say that it cannot be
improved upon in one step by any other strategy σ. If at any time t and history
ht, you know that you will revert to using  next period, then you do as well



as possible with  this period. Because this is said a little differently from the
definition, let me write it down: Strategy  is unimprovable if and only if, for
every t, ht, and alternative strategy σ,

And, by induction and the law of iterated conditional expectations, this easily
extends to k periods: If  is unimprovable, then for any other strategy δ , t, k,
and ht,

For later purposes, it is worth observing that if, for each t and ht, the set of
available actions At(ht) is finite, then the supremum in Bellman’s equation is

attained by some action for each ht; that is, a conserving strategy exists.6

Bellman’s equation, equation (A6.1), and the definition of an optimal
strategy give the following immediate result:

Proposition A6.4.  If σ* is optimal, then it is both conserving and
unimprovable.

For finite-horizon problems, the implications of Proposition A6.4 run both
ways:

Proposition A6.5. In any finite-horizon problem, every conserving strategy is
optimal, and every unimprovable strategy is optimal.

But in infinite-horizon problems, being either conserving or unimprovable is no
guarantee of optimality of a strategy. Two examples illustrate how this can
happen (and may help you understand the difference between a conserving and an
unimprovable strategy).

The two examples share the following structure. There is no uncertainty.
History to time t records (only) the sequence of actions taken up to that time,



where to get things started we have a single time-0 history, h0 = (wait). There
are three possibilities for ht: it either looks like (wait, wait, …, wait)—a total of
t+ 1 waits—or (wait, wait, …, wait, take)—a sequence of t waits and then
take—or (wait, wait, …, wait, take, took, …, took)—a sequence of waits, then
one take, then a sequence of tooks. As for actions available: If history is of the
first type (all waits), then available actions are take or wait again. In any other
history, the only available action is took. In essence, at the start of the problem,
the decision maker has the opportunity to take a reward or wait. As long as she
waits, she can take the reward sometime in the future. But once she takes the
reward, she is essentially done; she is offered no more choices.7

The examples differ in the specification of u. Suppose first that, if the
decision maker takes in period t, her overall reward is (t + 1)/(t + 2). If she
never takes, her reward is zero. Obviously, the never take strategy gives 0. The
function u is bounded above by 1, so . But if, at date t, the history

is (wait, wait, …, wait), then by continuing to wait and taking in the
(relatively) distant future, you can get a value arbitrarily close to 1. Hence 

(wait, wait, …, wait) = 1. In this case, there is only one conserving strategy,
which is never take. Note both why this is conserving and why it is the only
conserving strategy. It is conserving because, if you wait (from a history of the
form (wait, …,wait), then you have conserved for the next round the optimal
value of 1. If you take, you get something less than 1. Only never take is
conserving, and it is very much sub-optimal.

Note that in this example, never take is certainly not unimprovable. To take
at any time is a one-step improvement on what you get from the strategy never
take. Also note that, in this example, there is no optimal strategy. This is clear
on first principles—by delaying for a long time, you can get arbitrarily close to
a reward of 1, but you can never get 1—or you can reason that it is true: We
know (Proposition A6.4) that every optimal strategy must be conserving. But
we also know that, in this example, the only conserving strategy is not optimal.

For the second example, the function u changes: For any history of the form
(wait, wait, wait, …, wait, take, took, took, …), u has the value –1. And for
the history of all waits, u has value 0. In other words, every strategy in which
you take at some point nets –1, while never take nets 0. Clearly, the optimal
strategy is never take. Of course (per Proposition A6.4), this strategy is both



conserving and unimprovable. But there is another unimprovable strategy: the
strategy that specifies take at every history of the form (wait, wait, …, wait).
This strategy nets –1 from such histories, of course. But it is unimprovable,
since any one-step change (from take to wait) merely delays taking by one
period, and delaying take by one period provides no improvement in the overall
outcome. Needless to say, this other unimprovable strategy (and there are other
unimprovable strategies, besides; can you see what they are?) is not optimal.

The two examples can be explained as follows: A conserving strategy, in
essence, preserves for any finite length of time the possibility that complete
gratification will be realized. As long as delayed gratification is, eventually,
realized, to conserve the optimal value indefinitely means you will realize the
optimal value. In the first example, this fails: Waiting conserves the optimal
value indefinitely, but then it is never obtained. On the other hand, to employ
an unimprovable strategy is, in essence, a bet that, if bad things are put off long
enough, they will never arrive. In the second example, this fails: You can put off
taking the –1 for any finite amount of time, but it is still there and still can
(and, in the unimprovable but nonoptimal strategy, will) hurt you. These two
intuitive explanations suggest the following definitions and results.

Definition A6.6. For each history h in H and for each t, define

The utility function u: H → R is upper convergent if, for each h,

and if there is a uniform upper bound on u. And u is lower convergent if, for
each h ∈ H,



and if there is uniform lower bound on u.

Proposition A6.7.  In an infinite-horizon problem, if the utility function is
upper convergent, then every conserving strategy is optimal. (Therefore, if the
utility function is upper convergent and if, for each ht, the set of actions
available At(ht) is finite, an optimal strategy exists.) If the utility function is
lower convergent, then every unimprovable strategy is optimal.

Before proving the proposition, some discussion of the definitions may help.
Anticipating somewhat developments in the next section, suppose that u(h)
takes the form  for real-valued functions rt. The idea is that

the overall utility of a complete history is the sum of rewards received in each
period, where the reward received at time t is a function of time-t history (at
most). (Readers used to discounting the sequence of rewards should note that
since the reward function has a time subscript, we can absorb any discounting
into the functions rt.) Then if each rt takes on nonpositive values only, u is
upper convergent, while if the rt are nonnegative valued, u is lower convergent.
(Why? Because in both cases, the infinite sum is bounded by and converges to
the partial sums, although the limit may be –∞ if the rt are nonpositive and may
be ∞ if the rt are nonnegative.) Moreover, if the rt have the form δ tr(·) for some
δ  < 1 and bounded function r, then u is both upper and lower convergent. The
theory was initially developed for additive u, so these three subcases are known
in the classic literature of dynamic programming as negative, positive, and
discounted dynamic programming.

And to relate the definition back to the intuition: If u is upper convergent,
then the best that can happen in the far-off future is, asymptotically, what does
happen. Hence conserving the optimal value for arbitrarily but finitely many
stages, which is what a conserving strategy does, pays off with the optimal
value. If you “ stay in the game” (conserve the optimal value), eventually you
win. If u is lower convergent, on the other hand, the worst that can happen in
the far-off future is, asymptotically, no worse than what does happen. So if u is
lower convergent and σ is unimprovable, no strategy σ′  can beat σ in finitely
many periods, and the worst that can happen after those periods, if you revert
back to σ, is asymptotically of no consequence relative what you’d get if you



finished the infinite horizon with σ′ . Hence, an unimprovable strategy beats
everything else, so it is optimal. The proofs of the proposition simply formalize
these intuitive remarks:

Proof of Proposition A6.7. Suppose first that u is upper convergent and  is
conserving. Then for every t, ht, and positive integer k, we have equation
(A6.3), which I’ll repeat here:

Of course, ,8 so (A6.3) implies

But, for each h,  is a nonincreasing sequence in k with limit u(h)

(since u is upper convergent), and so by monotone convergence,9

Therefore,  is optimal.
To prove that every unimprovable strategy is optimal if u is lower

convergent, we employ equation (A6.4): If  is unimprovable, then for every t,
ht, and alternative strategy σ,

Since , (A6.4) implies that



But as k goes to infinity,  converges monotonically (upwards) to

u(h) (since, by assumption, u is lower convergent), so an application of
monotone convergence implies that

Since δ  is any other strategy, this shows that the unimprovable strategy  is as
good as any alternative; that is,  is optimal.

Propositions A6.5 and A6.7 provide the basic tools needed to solve many
specific applications. But “ many” is not “ all”; these tools are inadequate for
some specific applications (the problem of buying a flat-screen television, for
instance), so we aren’t done (yet) with high-level, general theory development.
That said, I want to suspend working at this very high level of generality for a
while, to show how to use the two propositions.

A6.5.   Additive Rewards
Last section, we somewhat demystified the definitions of upper and lower
convergent utility by citing the special case of additive rewards. This special
case accounts for a huge percentage of the applications in the literature, including
all the examples at the start of this appendix. In this section we formalize what
we said last section and then gather further results for this special case.

We fix notation a bit differently than before. The idea is that, after the time
that date-t decision is taken, but before the time that decision t + 1 must be
taken, an immediate reward is received. (When this reward is negative, language
about costs that are incurred become more appropriate.) Overall utility is the
discounted sum of these rewards (the discount factor is the difference), for a
discount factor δ  that is assumed to be nonnegative, but which could be 1 (or
even > 1, although 0 < δ  ≤ 1 is almost always the case). We write rt+1(ht+1) for
the reward received between times t and t + 1, so that



(It would be more precise to write rt+1(ht+1(h)), to show the dependence of the
time-t + 1 partial history on h; cf. fn. 8.) Since the immediate reward function is
subscripted by time, there is no need at this point to have the discount factor—
it could be absorbed into the definition of the reward functions—but it helps
later developments to carry this along from the start.

Now we can repeat formally what we said informally last section.

Proposition A6.8. Suppose that u(h) has an additive form as above. Then

a.   If all rewards are ≥ 0, utility is lower convergent, and so every
unimprovable strategy is optimal.

b.   If all rewards are ≤ 0, utility is upper convergent, and so every
conserving strategy is optimal.

c.   If the functions rt are uniformly bounded (both above and below) and δ  <
1, then utility is both upper and lower convergent, so every unimprovable
strategy is optimal, and every conserving strategy is optimal.

Your focus, for purposes of application, should mainly be on part c: Having a
discount rate strictly less than one is very, very common in applications, and
then part c says that as long as rewards in the various periods are uniformly
bounded, you can verify that a strategy is optimal by verifying either that it is
conserving or that it is unimprovable.10 Proving that utility is both upper and
lower convergent in this case is easy: Let K be the uniform bound on the
absolute value of the functions rt, and for any history h,

with the exact same bound on . Cases a and b require a bit



of mathematical sophistication: In case a, for instance, which is known in the
literature as positive dynamic programming, we allow u(h) = ∞ and, in the
expectations, we only insist on quasi-integrability (since u(h) ≥ 0, the “ negative
part” of any integral is certainly finite). Similar remarks apply to case b, known
as negative dynamic programming.

Go back to the seven examples at the start of this appendix. The first and
third problems have a finite horizon, so for them, both conserving and
unimprovable strategies are automatically optimal. (Formally, they also have
both upper and lower convergent utility.) The rest are infinite-horizon problems;
of those, the fourth, sixth, and seventh have a discount factor less than one and
rewards that are uniformly bounded. The second problem has a discount factor
less than one, but the rt functions are not bounded above; since they are
nonnegative, we (at least) have lower convergent utility. And in the fifth
problem, shopping for a bigscreen television, u is upper convergent, although
that takes an argument that we’ll supply later, when we analyze that problem in
full. (You can probably supply it on your own, now.)

A second use of an additive structure begins with a bit of bookkeeping. Fix
some δ , t, and ht, and write

where in the last line, we are defining a new function . What we’ve done is



to separate, in , the rewards received prior to time t from the (expected)

discounted value of rewards received starting at time t, with history ht, using
strategy σ. The latter is the function , with the proviso that we evaluate 

 in “ current-at-time-t” terms; that is, we also pull out the term δ t that

discounts after-date-t rewards from time-t units to time-0 units. Moreover, since 
 and, for each t and ht the first set of terms

is constant in σ, we can write

We call  the optimal (expected) continuation value function, where

the adjective continuation signals that it refers to the discounted sum of rewards
received after time t. The terminology continuation value function is also used
for the  functions.

Having done this bookkeeping, we can use the functions  and  to

rewrite equations (A6.1) and (A6.2), as

Readers who have studied dynamic programming from other texts will be
familiar with these two equations (and may in fact be relieved to be seeing
them); in particular, (A6.2′) is the common form of Bellman’s equation. Of
course, this common form depends on u having an additive structure.

And, as a final item for this section, we can (in this context of additive
rewards) use this bookkeeping to recast what it means for a strategy σ to be
optimal, conserving, and unimprovable:



•   Strategy σ* is optimal if  for all t and ht,

•    is conserving if 
 for all t

and ht, and

•    is unimprovable if 

for all t and ht.

Note carefully: We haven’t changed the definitions, or any of our results. All we
have done is to recast the old definitions, using the new from-time-t-on value
and optimal (continuation) value functions. This is just bookkeeping.

A6.6.   States of the System
Additive rewards “ separate” the past from the future in terms of value functions.
In many applications, the past and the future are also separated in terms of the
laws of motion or evolution of the overall system, via states of the system.

Assume throughout that the utility function u has an additive structure, as in
the previous section. (One can get by with less than this assumption, but the
notation gets clumsy, and almost all applications are additive, so there is no
point to it.)

Up to now, we have supposed that, at time t, when the partial history is ht,
the set of available actions At and the laws of motion that, depending perhaps on
the action taken, determine (up to a probability distribution) ht+1, are functions
of the full history ht.

But suppose that, for each date t, some state of the system st provides all the
information needed to (a) tell you what actions are available, (b) given the action
chosen at, what is the probability distribution of the next state, st+1, and (c)
given the action chosen at and the next state st+1, what is the reward rt+1. In
view of (a), we would write At(st). In view of (c), we would write rt+1(st, at,



st+1). And, if we were writing transition probabilities, in view of (b), we’d write
the transition probability at time t as the probability distribution over st+1,
given st and at.

The existence of such states of the system depends on the particular
application. For example (drawing on our original examples):

•   In the two consumption-savings problems, only the amount of wealth the
individual has available at time t, to divide between immediate
consumption and savings, is important going forward.

•   In the parking problem, where the decision maker knows the value of ρ (the
probability that any spot is occupied), you need to keep track of (a) whether
you’ve already parked and (b) if not, whether the spot you currently face is
occupied or not. (You also need to keep track of how far you are from the
front door of the store or, in other words, what is the index of the spot you
currently face, but the time parameter keeps a record of this for you.) But in
the final variation described, where you begin uncertain whether ρ is 0.9 or
0.7, with a prior assessment of 0.5 that ρ = 0.9, you must keep track of the
past insofar as it informs your current assessment about the value of ρ. That
is, you might decide, at the outset, that you aren’t going to park before spot
–10, no matter what you learn. So for spots –100 to –11, you don’t need to
make any decision. But if, out of those 90 spots, 82 were occupied
(suggesting that ρ = 0.9), your strategy (and, formally, the laws of motion
concerning whether the next spot is occupied or not) will be quite different
than if, of the first 90 spots, you find that only 55 were occupied. A
sufficient statistic, because it is sufficient to describe the laws of motion, is
the Bayesian posterior on the value of ρ; this, together with the occupancy
status of the current spot, becomes the state of the system

•   In the job-hunting problem, you need to know whether you have already
accepted a job or not and, if so, what was the wage. And if you haven’t
accepted a job, you need to know the wage you have just been offered.

•   In the button-pushing, letter-flashing machine problem, your available
actions never change, and your reward depends on what just happened; i.e.,
what button you pushed and what letter flashed. The button-letter
combination from last time also tells you the odds for what the machine will



flash this time. (From the perspective of the laws of motion, we could get by
with only two states: Was last time XA or was it something else? But to
know the reward, we need four states.)

•   In the multi-armed bandit problem, you need to keep track of your posterior
probability that the machine is of the first (versus the second) type.

Suppose we have this sort of state of the system for each time t. If, and it is
a substantial if, we are looking at a strategy σ whose action choice at each time t
depends on the past only through st, then what happens from time t on depends
on the past only through st, and we can write  in place of .

Of course, some strategies depend on more of history at date t than st; for such
strategies,  is not simply a function of st: To the extent that “ historical

facts” captured in ht that go beyond st are material to the choice of actions,
expected values can and, in general, will depend on those facts.

But notwithstanding the existence of strategies that depend at time t on
more of ht than st, the optimal continuation value functions  will depend on

ht only through st, so we can write . The reason is conceptually

simple, but quite cumbersome to write out formally, so I’ll explain
conceptually why this is true. If it weren’t true, there would be two histories ht
and  that have the same state st but such that . If

these values are not equal, one must be larger: suppose 
. Since  is the supremum over all

strategies of continuing from time t in history ht, there is some strategy  such
that . But now, starting at time t with history ,

imagine adopting the strategy “ pretend that history up to time t was ht instead
of  and proceed from there as prescribed by .” Since ht and  have the

same state st, the same actions are available immediately, and as future states
arise, the same actions (contingent on states) as well. Rewards, period by
period, from this “ pretend history was ht″ strategy are the same as if we had



started with ht, and the probabilistic laws of motion are the same. So the
“ pretend history was ht″ strategy, starting in , generates the same probability

distribution over rewards, current and future, as does , starting in ht, and so it
provides the same expected (continuation) value. This contradicts the
hypothesis that, starting in ht and using  gives you a better continuation
value than the best you can do starting in .

This implies that, assuming an additive structure to u and this sort of state-
of-the-system structure for the rest of the problem, we can rewrite Bellman’s
equation one more time:

The second line recognizes that the choice of action at time t, together with the
state st, determines the law of motion that gives the probability distribution
over the next state st+1. Finally, a strategy will be conserving if, for every, t and
st, the action it prescribes attains this supremum.

A6.7.   Solving Finite-Horizon Problems
The purpose of this appendix is to teach you (or remind you) how to use
dynamic programming to solve the sorts of problems given in the opening
section. We finally have all the machinery in place to take on “ half” of this: We
can discuss the solution of finite-horizon problems.

I n theory, the mechanics of solving a finite-horizon problem are
straightforward. Let T be the horizon. Given each partial history hT, find the
optimal action to take in the final period T. This provides the function 

. Then move back to period T – 1 and, for each hT–1, find a strategy

that is conserving at time T – 1, starting from hT–1. Do this for all hT–1, and



you have . Now go back to time T – 2, again find a

conserving strategy, and so on. Since, in finite-horizon problems, conserving
strategies are always optimal, this produces an optimal strategy.

In practice, if u has an additive structure and the problem otherwise has a
nice state of the system structure, you use those to simplify: For each state of
the system at time T, sT, find the optimal (final) action to take, which gives you
the value-of-continuation function . Use the form of Bellman’s

equation in (A6.2″) to find a strategy that is conserving for time T – 1, and also 
, for each sT–1. And so forth.

T he in-practice recommendation is, in effect, the same as the in-theory
recommendation, but it is computationally a lot “ cheaper.” In typical problems,
the dimension of the state-of-the-system space St for any t will be a lot less than
the dimension of the space of all partial histories Ht and, indeed, in some
problems there may only be a finite number of states. Simply put, you need to
keep track of less stuff. But, effectively, you are doing what is called for in
theory.

The sequence of iterated optimizations, first for the last period T, then for T
– 1, and so forth (which, in consequence, is sometimes referred to as backward
recursion or backward induction), is sometimes done analytically and
sometimes numerically. The finite-horizon consumption-savings problem
illustrates an analytic approach:

Example. Finite horizon consumption-savings

Recall the problem: A consumer has $1000, which must be used to finance
consumption at four different times, t = 0, 1, 2, 3. At time t = 0, the consumer
must decide how much to consume c0, with the remainder 1000 – c0 being put
into a savings account. At time 1, the savings account will be worth 1.05(1000
– c0), and the individual must decide how much to consume c1, with the
remainder stating in the savings account, so that at time t = 2 the consumer will
have resources 1.05(1.05(1000 – c0) – c1). And so on; money not spent for
consumption is saved, with interest rate 5% per period. The consumer seeks to
maximize her utility of consumption, given by



In fact, this problem doesn’t really need dynamic programming: You can tackle
it as a simple multivariate maximization problem, where the budget constraint
on the four consumption variables c0 through c3 is

(It may not be apparent to you that this is the budget constraint, but a little bit
of algebra should be enough to convince you.) Nonetheless, I will solve this
problem using the methods of (finite-horizon) dynamic programming, to
illustrate the technique.

Start from the “ last” period, t = 3. Assume that consumer has w3 in the
bank. Since there is no period 4, it is clearly optimal for her to consume all of
this, or c3 = w3, giving her a optimal value

Now go back to period t = 2, and suppose the consumer has w2 in the bank.
She can eat c2 ∈ [0, w2] of this: If she does, she gets immediate reward ln(c2),
and next period she will have w3 = 1.05(w2 – c2) in the bank, which gives her
the (still to be discounted) continuation value ln(1.05(w2 – c2)). So her choice
of action c2 at time t2 will be conserving (hence optimal) if it maximizes

ln(c2) + 0.9 ln(1.05(w2 – c2)) = ln(c2) + 0.9 ln(w2 – c2) + 0.9 ln(1.05).

The first-order condition for this maximization is



which gives c2 = w2/1.9, and therefore

where K is the constant ln(1/1.9) + 0.9 ln(0.945/1.9). And, continuing in like
fashion, you can easily (if tediously) find the optimal consumption levels at
dates t = 1 and then t = 0.

Example. The parking problem

The parking problem provides a good (if very simple) example of a finite-
horizon problem that is solved numerically. The problem statement is too long
to repeat here, so please go back and reread it before proceeding.

I will use the time index t = –100, –99, …, –1, 0, 1, 2, …, where time t
refers to the index on the parking slot. In this problem, as long as you know the
value of ρ, the state of the system is whether you’ve already parked and, if not,
whether the spot you are at is occupied or not. There are no more decisions once
you’ve parked, so I don’t need to keep track of values in that state. So I’ll use
the following notation:  will be the expected cost of following the optimal

strategy if you are at slot t and it is occupied, and  will be the expected cost

of following the optimal strategy if you are at slot t and it is empty.
As already discussed, when (and if) you get to spot 0, it is obvious that the

optimal thing to do is to park at the first open spot. Hence we know that 
—if slot 0 is empty, you park, and your cost is 0. As for , there

is probability 1 – ρ that the next spot (t = 1) is empty and you park there for a
cost to you of 1; there is probability ρ(1 – ρ) that spot 1 is occupied but 2 is
empty, and the cost to you is 2; probability ρ2(1 – ρ) that spots 1 and 2 are
occupied but 3 is empty, so the cost to you is 3; and so forth. This means that



(The evaluation of the infinite sum may not be obvious to you; if not, let F(ρ) =
1 + ρ + ρ2 + …, which you probably know how to evaluate, and take its
derivative.)

Therefore, we have  and . Now we can

compute  and . If spot –1 is reached and it is occupied, you must

proceed to spot 0, for an expected cost

Taking this slowly: There are no decisions to make, so Bellman’s equation has
no optimization. You merely get the expected value of proceeding optimally
starting in the next stage. (There is no immediate reward, and there is no
discounting in this problem.) With probability ρ, the next spot is occupied, and
the optimal continuation value is . And with probability 1 – ρ, it is empty,

and you get optimal continuation value .

As for , if you get to spot –1 and it is unoccupied, you may either

park, with a total cost to you of 1, or you may drive on and take your chances
with spot 0. Therefore,

We take a minimum because we are minimizing in this problem (and this
problem only, among all the problems in this appendix); the number 1
represents the immediate reward (“ cost” would be a better term) if we park in



spot –1 (and, having parked, we are done); the second term is the expected cost
if we forego the opportunity to park in this spot and try our luck with spot 0,
computed precisely as we computed , where we had no choice.

And, once we carry out these computations and have values for  and 

, we can find  and , and so forth. I leave to you the job of

finishing this problem, but with the following substantial hint: In Table A6.1, I
present the snapshot of an Excel spreadsheet, which gives the “ results” of this
sort of analysis for t = –8 through 0 and for ρ = 0.9, and which implicitly
identifies the optimal strategy for ρ = 0.9 as…, well, you tell me. You should
be able to replicate this spreadsheet, constructing it in a way that allows you to
vary ρ. And there is still the final version of the problem, in which you have a
Bayesian prior over the value of ρ—that’s a lot harder to do, but if you can
figure out how to do it, you understand finite-horizon dynamic programming.

Table A6.1. A spreadsheet for the parking problem



A6.8.   Infinite-Horizon Problems and Stationarity
Solving infinite-horizon problems adds a significant complication: There is no
“ last period” from which you can begin. But they often add a final bit of
structure with which you can overcome the complication: They present a
stationary structure.

Assume that we have an infinite-horizon problem, that u has an additive
form, and the problem otherwise presents a state-of-the-system structure, with st
a typical state for time t. Now add to these assumptions one more: The states of
the system, reward-payment functions, available actions, and laws of motion are
all time homogeneous or time invariant or stationary. The adjectives time
homogeneous, time invariant, and stationary are used more or less
interchangeably in the literature, and in this context, they mean the same thing,
namely:

•   There is a single space S from which states of the system are drawn.

•   Actions available at time t if the state is s, At(s), are the same as actions
available at time t′  if at time t′  the state of the system is s; we write A(s), in
consequence, dropping the subscript t.

•   The reward rt(st, at, st+1) is the same as the reward rt0 (st′, at′, st′+1) if st =
st′, at = at′, and st+1 = st′+1, so that we write r(·, ·, ·) for the time-invariant
reward function.

•   And the probabilistic law of motion that determines st+1, given st and at, is
time invariant.

In such a context, consider a strategy σ in which the action chosen at time t
depends only on the state st, and where by depends only on we mean: It doesn’t
depend on time, either. Such strategies are commonly called stationary
(although calling them time homogeneous or time invariant would make equal
sense). We write σ(s) as the action prescription of stationary strategy σ when the
current state of the system is s. For a stationary strategy σ,

•    if st = st′, in consequence of

which we write υσ for the (now time-invariant) value function,



•   equation (A6.1′) can now be written

(where the symbol s+1 will be explained momentarily, if it isn’t obvious to
you what this means),

•   and, if rewards are bounded and δ  < 1, υσ is the unique bounded solution of
the functional equation (A6.1″).

Equation (A6.1″) can stand some interpretation: We are computing the expected
value of rewards from time t on, discounted back to time t, if the stationary
strategy is employed, and if the state of the system at time t is s. This is the
expected value of the reward about to be received, plus the discounted value of
using the strategy, beginning at the next state, where the random element over
which expectation is being taken is the next state, denoted here by s+1. Note
that, in this expectation, all we need are the transition probabilities governing
s+1, starting from state s, if the action chosen is σ(s). The significance of the last
bullet point will become apparent next section.

The first two bullet points are straightforward to prove. As for the last,
suppose  is another bounded solution to (A6.1″). We are assuming that  is
not identical to υσ, so for some state, they differ, and one is greater than the
other (at that state). Suppose  for some state(s). Let 

, and let s* be any state such that 

. We have

The integrand of the last term is everywhere less or equal to M, so the right-



hand side is no larger than δ M, a contradiction to how s* was selected. (If 
, simply reverse the order, looking at the maximum value of 

.)
Of course, these three bullet points don’t work for strategies that are not

stationary or, even worse, for strategies whose action choice at time t depends
on more of ht than the current state of the system. And the optimal value
functions (both  and ) are defined as the supremum over all strategies,

and not merely the stationary strategies. Even so, we have

•    if st = st′, in consequence of which we write υ*

for the (now time-invariant) optimal continuation value function,

•   Bellman’s equation can now be written as

•   and, if rewards are bounded and δ  < 1, then υ* is the unique bounded
solution of the functional equation (A6.2″′).

Note that in the expectation, we superscript E with the state s and an action a
(from A(s)), because they determine the probability distribution over s+1, the
next state of the system and the only stochastic element on the right-hand side
of the equation. And the supremum is taken over all of A(s).

The real punch in these three bullet points is in the first part; even though
optimal value functions are defined over all manner of strategies, the optimal
value function itself is “ stationary.” If you followed the argument for why 

depends only on st when there is a state-of-the-system structure, back on page
505, you will probably see how to show this result. The second bullet point
follows from the first, and the third involves an argument that is only a little
more complex than the argument given for this third bullet point in the previous
set. (Can you provide it?)

A6.9.   Solving Infinite-Horizon (Stationary) Problems With



Unimprovability
We solved finite-horizon problems by employing backwards induction, to find a
conserving strategy. We can imagine using a similar technique for infinite-
horizon problems or, at least, for an infinite-horizon problem for which
conserving strategies are guaranteed to be optimal. But to do this, we need f*
or, for stationary problems, υ*, and it isn’t a priori obvious how we find those.
The last bullet point of the previous section suggests one possible technique, at
least for stationary problems where δ  < 1 and r is a bounded function: υ* is
characterized as the unique bounded solution to the functional equation (A6.2″′).
Especially if the state space S is finite, finding the solution ought to be possible.
We’ll deal with this line of attack in Section A6.11.

But in this section, we take a different approach. In many cases, the most
efficient way to find an optimal strategy, and in particular to prove that this
strategy is optimal, is

Step 1.   Use the structure of the problem and your intution to guess at the
optimal strategy or, at least, at the form of the optimal strategy.

Step 2.   Compute the “ value of the strategy” function υ for your guess.

Step 3.   Then show that your strategy is optimal by showing that it is
unimprovable.

Of course, this only works if (a) you can guess at the form of the optimal
strategy, (b) you can compute its value function, and (c) you know that you are
dealing with a problem in which unimprovability implies optimality. I can’t
help you with (a), except to wish you and your intuition good luck. So, when I
said that this is the “ most efficient way to find an optimal strategy,” I was
being less than completely honest: You find the optimal strategy, or at least the
form of the optimal strategy, based on your ability to see through the problem;
this technique allows you to verify that your guess is correct.

As in the case of the finite-horizon problems, both analytic and numerical
methods can be employed. I’ll get you started with one example of each.

Example. The job search

Recall the problem: You are interviewing for a job at dates t = 0, 1, 2, … You
may take the job offered at any date, but once you take a job, you must keep it



forever. The job offered at date t pays a wage wt for each following period. That
is, if you take the job offered at date 5, and it pays $65, you get $65 at dates 5,
6, 7, … Until you take a job, you get $0. You don’t know the wage you will
be offered at date t until date t; the sequence of wage offers {wt} forms an i.i.d.
sequence, with wt uniformly distributed between $0 and $100. Once you pass
on a job, you can’t go back to it.

You discount payoffs at a rate δ  ∈ [0, 1) per period. You want to maximize
your expected total (discounted and summed) net present value of payoffs.

We said earlier that the “ state” in this case is whether you’ve taken a job or
not, what is the current offer if not, and what wage you are earning if you have
already taken a job. I’ll simplify this a bit by some clever bookkeeping: If you
take a job in period t that pays a wage wt, I’ll credit you immediately with a
reward rt = wt/(1 – δ ), the net present value of all your future wages. (If you
don’t take a job, you get rt = 0.) This way, I only need to keep track of (a)
whether you’ve taken a job and (b) if not, what wage you are being offered.
Also, once you take a job, there are no further decisions to take, so I only need
to keep track of continuation values in states where you are still in the market
for a job.

Step 1 says to guess at the optimal strategy or, at least, its form. My guess
at this point is about the form of the optimal strategy, namely: For some w*
(which will depend on δ ), take any job offer of w* or more and turn down any
offer less than w*.

I don’t know that the optimal strategy has this form—right now this is just
a guess—but I do know how to compute the value of following this sort of
strategy. I need to know υw*(w), the continuation value of following this w*
strategy if I haven’t taken an offer yet and w is the offer on the table. Clearly

because the strategy calls for me to accept the offer, giving me an immediate
reward of w/(1 – δ ) and (the way I’m doing things) a continuation value of 0,
since I’ve accepted a job. On the other hand, if I turn down the job, which is if



w < w*, then I get another draw next time. My expected value (today, having
just turned down the offer) doesn’t depend on the offer (it has no influence on
future offers), so let me denote this number by ; I know that  solves the
functional equation

That’s a lot to take in, so let me explain: Having rejected the job, I get no
immediate reward, but I do get the discounted value of continuing with this
strategy starting next time, which is what I’m computing: Next time, I’ll get a
fresh draw of a wage offer w. If it is between 0 and w*, I’ll turn it down again,
and I’ll get  for a continuation value. If it is between w* and 100, I’ll take it,
receiving w/(1 – δ ). I have to take the expectation over all possible values of w,
which is uniformly distributed over the interval [0, 100], which gives me the
integrator (and density function) dw/100.

Of course, the first term inside the square brackets simplifies to w* /100.

And the second is (1002 – (w*)2)/(200(1 – δ )). So we have the equation

This gives

I’ve computed the υw* function, for any w*. But, given δ , only one w* will
be best. Which is it? Our criterion for optimality is unimprovability, and
checking unimprovability in this case is easy: For wage offers w > w*, it has to



be that w/(1 – δ ) ≥ ; otherwise, turning down the offer is better than
accepting. While for offers w < w*, we need  ≥ w/(1 – δ ). So, apparently, we
will require

If you carry through all the algebra, you will find that this gives

where I’ve now written the wage w* that is optimal as a function of the discount
rate δ . Note that if δ  is close to 0, w*(δ ) is close to zero (use L’Hôpital’s
Rule); if you discount the future heavily, you accept virtually any wage offer.
While as δ  approaches 1, w*(δ ) approaches 100; you become very picky as you
become very patient.

Is this truly the optimal strategy? If you think through what we’ve done, the
way we learned the value of w*(δ ) was to verify the unimprovability of using it
as the cutoff to determine whether to take a job offer or not. Rewards are
bounded, and δ  < 1, so this strategy is optimal.

Example. The button-pushing, letter-flashing machine problem

Now for an example solved numerically. Recall the problem: At dates t = 0, 1,
2, …, a decision maker must push one of two buttons, the first marked X and
the second Y. Simultaneously, the machine flashes one of two signals, either A
or B. (She doesn’t get to see what the machine will flash before she chooses her
button.) She is paid according to the button she pushes and the signal flashed
by the machine: She gets $10 if she pushes X and the machine flashes A, $0 for
X and B, $15 for Y and A, and $5 for Y and B.

If at date t – 1 the decision maker pushed X and the machine flashed A, then
the chance that the machine flashes A at date t is 0.75. While if at date t – 1



either the decision maker pushed Y or the machine flashed B, then the chance
that the machine flashes A at date t is 0.2. At date 0, the machine flashes A with
probability 0.75 (that is, it behaves as if in the previous round X had been
pushed and A flashed). (The machine’s behavior at date t is otherwise
conditionally independent of the past, conditional on what happened at date t –
1.)

The decision maker wishes to maximize the expectation of the discounted
sum of her rewards, discounted at a rate of 0.98 per period.

The problem has everything we want, namely additive rewards and a time-
homogeneous state-of-the-system structure. So we go looking for a stationary
optimal strategy. We know that one exists: Since the problem has a time-
homogenous state-of-the-system structure, Bellman’s equation (A6.2″′) has a
time-homogeneous structure. There are finitely many actions available in each
state, so the supremum in Bellman’s equation is a max; that is, the supremum
is achieved. This means that a stationary and conserving strategy exists, and
every conserving strategy is optimal.

There are four states of the system, AX, AY, BX , and BY (recording what
happened last time, which drives what will happen this time), and there are two
possible actions in each state, so there are 16 possible stationary strategies. But
it seems likely that whatever action is optimal in state AY, the same action will
be optimal in states BX and BY, because the influence of the past on the future
depends only on whether the state is AX or not. We keep track of all four states
because we want the reward to be a function of the current and next state, as well
as the action. But in terms of future values, only AX or not is of consequence.

So, having no particular feel for this problem, I’ll take a random guess that
always push X is optimal. Step 2 requires me to find the value function for
following this strategy, and equation (A6.1″) tells me that, if I use υ(·) for the
value function, I have



Taking this a step at a time, if last time we saw AX, there is 0.75 chance of A
this time and 0.25 chance of B. We are pushing X, so we get 10 immediately
and a discounted υ(AX) next time, with probability 0.75, and get 0 today and a
discounted υ(BX) next time, with probability 0.25. Whereas if we saw BX, or
AY, or BY last time, we get A this time with probability 0.2 and B with
probability 0.8.

“ Why,” you may be asking, “ do we need to compute υ(BY)? If we are
playing the strategy of always picking X, we’ll never find ourselves in state
BY.” But, when we go to check unimprovability of this strategy, we have to ask
what will happen if we deviate and play Y. And then we’ll need to have a
continuation value for state BY (as well as AY).

We have four linear equations in four unknowns to solve, although since it
is evident now that υ(BX) = υ(BY) = υ(AY), it is really two equations in two
unknowns. Working numerically, I get υ(AX) = 228.85 and υ(BX) = υ(BY) =
υ(AY) = 216.92, to two decimal places. (It is worth pointing out that there is
nothing special in this problem in this regard: In a stationary problem with a
finite state space, solving for υσ for any stationary strategy σ, involves as many
unknowns as there are states—namely υσ(s) for each state s—and the same
number of linear equations, given by (A6.1″). Uniqueness of the solution is
guaranteed, essentially, if the discount factor δ  is less than one.)

Is this strategy unimprovable? Suppose I’m in state AX. I’m meant to
choose X, which will net for me 0.75(10 + 0.98 · υ(AX)) + 0.25(0 + 0.98 ·
υ(BX)) = 228.85. Alternatively, I could push Y, which gives me an expected
value of 0.75(15 + 0.98 · υ(AY)) + 0.25(5 + 0.98 · υ(BY)) = 225 or so. That’s
good news. And if I’m in state AY (or BY, or BX), I’m meant to choose X, with
a net of 216.92. The alternative is to choose Y, which will net 0.2(15 + 0.98 ·



υ(AY)) + 0.8(5 + 0.98 · υ(BY)) = 219.58, or so. Too bad; this strategy is not
unimprovable.

So what next? Back to the drawing board. Maybe the optimal strategy is to
choose X in state AX and to choose Y in the other three states. Maybe it is to
pick Y always. We must compute the value functions for whatever strategy we
decide to test next, check if it passes the unimprovability test and, if not, move
on to another strategy. Tedious, perhaps (although some clever work in Excel
makes it less tedious), but you will get the answer if you persevere.

A6.10.   Policy Iteration (and Transience)
In the discussion just concluded, we learned that the strategy always choose X
is not optimal because it is not unimprovable: In states AY, BY , and BX,
choosing Y gives a one-step improvement. So we concluded that the thing to do
is to try a different strategy, and keep trying until we find one that is
unimprovable.

This search must end successfully. Bellman’s equation is time
homogeneous, and the set of available actions is finite, so a stationary strategy
that is also conserving (that attains the sup in Bellman’s equation) must exist.
And since, in this problem, the utility function is both upper and lower
convergent, this conserving strategy will be optimal and, therefore,
unimprovable.

But it would be nice if we didn’t have to search randomly through all the
stationary strategies to find one that is unimprovable. In this problem, there
aren’t so many strategies that this is a major issue. But if there were many more
states or actions available, the effort involved in trying out strategy after strategy
could be prohibitive.

Suppose though, that we try a strategy σ and find that σ′  is a one-step
improvement on σ. This might suggest that we try σ′  next. The question is, If
σ′  is a one-step improvement on σ, in the sense that

for all t and ht, are we assured that ? (I’m



reverting back to notation appropriate for the most general formulations because
the question is completely general, even if our motivation for it comes from the
context of stationary problems with additive utility.) If the answer is yes, then
we could begin our search with a strategy σ; if it is not unimprovable, find a
one-step improvement on it, σ′ , and then if necessary move on to a one-step
improvement on σ′ ; and so forth, knowing that until we find an unimprovable
strategy, the value functions of the sequence of strategies are going uphill. This
is known as policy iteration in the literature.

The first counterexample given Section A6.4 shows that the answer to this
question may be no. In that example, a strategy of always take is improved
upon for a single step by always wait: using always wait for one round and
then taking is better than taking immediately, but using always wait forever is
worse. At best, we can hope for conditions sufficient to guarantee that policy
iteration will work.

I take the opportunity presented by this question to generalize the ideas
behind upper and lower convergent utility. We start with two definitions.

Definition A6.9. Strategy σ is upper transient if, for each t and ht, there is a

subset of histories H′ such that Pσ[H′|ht] = 1, u is uniformly bounded above on
H′, and limk→∞  on H′. Strategy is lower transient if,

for each t and ht, there is a subset of histories H′ such that Pσ[H′|ht] = 1, u is

uniformly bounded below on H′, and limk→∞  on H′.11

If u is upper convergent, then every strategy is upper transient. If u is lower
convergent, then every strategy is lower transient. But in some problems, u fails
to be upper (or lower) convergent because of histories that have zero probability
under certain strategies. In such cases, even though u is not universally “ nice,”
nice things may still be true about strategies that avoid the “ bad” histories.

Proposition A6.10.
a.   Suppose that σ′ is everywhere a one-step improvement on σ in the sense

that



If σ′ is upper transient, then  for all t and ht.

b.   Conversely, suppose that σ′ is  nowhere a one-step improvement on σ in
the sense that

If σ′ is lower transient, then  for all t and ht.

c.   If  is unimprovable, then  for every t, ht, and

every lower transient strategy σ.
d.   If σ is conserving and upper transient, then σ is optimal.

Part c of this proposition is a direct corollary of part b. This generalizes the
result that unimprovable strategies are optimal when utility is lower convergent,
because when utility is lower convergent, every strategy is lower transient. Part
d directly generalizes the result that conserving strategies are optimal when u is
upper convergent by similar logic.

The proofs are extensions of the basic argument used in Proposition A6.7.
Take part a: If σ′  is a one-step improvement on σ in the sense given, then by
induction and the law of iterated conditional expectations, we know that σ′  is a
k-step improvement on σ, in the sense that

Since  is always an upper bound on  (where ht+k is

the t + k partial history of h), this inequality tells us that



Fixing t and ht, separate the integral on the right-hand side of the last inequality
into the integral over the set H′  that has Pσ′[·|ht]-probability 1 and on which u
is “ nice” (in the sense of the definition of upper transience) and over the
complement of that set. The complement has zero measure and so is
inconsequential to the integral, while on the set H′ , we can pass to the limit in
k, using monotone convergence, to conclude that 

. This is part a.

The arguments for parts b and d are similar and, as noted, part c is a direct
corollary of part b.

A6.11.   Value Iteration
As we noted at the start of Section A6.9, to solve a specific problem, we could
search for a conserving strategy, as long as the problem is one in which
conserving strategies are optimal, and as long as we have the ability to compute
the optimal value functions  or, for stationary problems, υ*. Assume for now

that the problem is indeed stationary; then if r is bounded and δ  < 1, we even
have the means for producing υ*, namely as the unique bounded solution to
(A6.2″′). This isn’t quite as simple as finding υσ for a given (stationary)
strategy σ, in general. For instance, if S is finite, finding υσ amounts to solving
N linear equations in N unknowns, where N is the cardinality of S. To find υ*
involves solving N equations in N unknowns, but because of the sup operators
in (A6.2″′), these aren’t linear equations.

Or we can try to find υ* by means of successive approximation. In the
literature of dynamic programming, this is called value iteration.

Let . Then, iteratively, define  by

I’m using w here instead of υ so that there is no confusion between wn, the nth
iteration in this attempt to compute υ* recursively, and υt, a continuation-value



function beginning at time t (which ought to have either a superscript σ or *).
The hope is that limn→∞  is υ*. Unhappily, this is not true, in general.

A counterexample will be given momentarily, but both to get positive results of
this sort and to understand better what value iteration means, it helps to give
the  functions a concrete explanation:

Take a step back (in terms of assumptions) from the context of stationary
problems, to problems with additive rewards only. Given any t, ht, and T ≥ t,
we can imagine the finite-horizon subproblem where decisions are taken at dates
t, t + 1, t + 2, …, T, and rewards rt+1, …, rT+1 are received. For each strategy
σ and partial history ht, define

These are finite-horizon value functions, which can be computed by backward
induction. The connection to the wn functions is that, in a stationary
environment, where ht is a history whose time-t state is s,

In words, the question of value iteration in a stationary environment—does
limn→∞  = υ*?—is subsumed by the broader question for problems with

additive rewards: Do the value functions (both for a given strategy and the
optimal value functions) for a finite-horizon subproblem of an infinite-horizon
problem converge to the corresponding infinite-horizon value functions? That is,
do



In both cases (that is, both for the value of using a strategy and the optimal
value functions), the answer is no, in general. For the value-of-using-a-strategy
functions, counterexamples are extremely artificial, and conditions guaranteeing
convergence are fairly weak. We have the following result:

Proposition A6.11.  For an infinite-horizon dynamic programming problem
where U takes the additive form , let

If either U+(h) is uniformly bounded above (uniformly for all h) or U–(h) is
uniformly bounded below, then for all t, ht, and σ,

The proof of this is a mess of ’s and δ ’s, and I won’t even give a sketch. You
might want to try to prove the result for the following simpler cases: (a) the
functions rt are all nonnegative; (b) they are nonpositive; (c) the functions rt are
uniformly bounded and δ  < 1. These cases cover most applications you will
encounter. However, for instance, the television-purchase example requires the
more general statement given in the proposition.

But while the finite-horizon value functions for strategies converge to the
infinite-horizon value functions fairly (but not completely) generally, it takes
more to get convergence of the optimal value functions.

Consider the following example: Suppose that δ  = 1 and S = {00, 0, 1, 2,
3, …}. The only state with any choice of action at all is state s = 00, where the
available actions are {1, 2, …}. Transitions are deterministic: From state s =
00, if the action taken is n, transition is to state n. From any other state n
except for state 0, transition is to state n – 1. From state 0, transition is back to
state 0—state 0 is absorbing. As for rewards, r ≡ 0 with one exception: If you
are in state 1 and make the (deterministic) transition to state 0, the “ reward” is



–1.
In this problem, υ*(00) = –1. No matter what action you choose in state 00,

eventually the transition from 1 to 0 will happen and –1 is received. (There is
no discounting, remember.) But for any finite n, 

, because with an n-stage horizon, by

choosing (from state 00) an action m > n + 1, you put off this –1 until after the
problem “ ends.” The intuition here is simple: If you fix a strategy, then its
value over a long-enough horizon converges to its value over the infinite
horizon. But when it comes to optimal value functions, there can be strategies
where this convergence happens arbitrarily far off in the future and, if you are in
the sort of problem (with negative rewards) where this convergence is to be
avoided, then in any finite-horizon subproblem, you may be able to do so.

This intuition suggests the following positive results for value iteration.

Proposition A6.12.  For an infinite-horizon dynamic programming problem
where U takes additive form:

a.   If the problem is such that limT→∞  for all

strategies σ, dates t, and partial histories ht (e.g., if the conditions of
Proposition A6.11 hold), then for all t and ht,

b.   If either the reward functions rt are nonnegative, or the functions rt are
uniformly bounded and δ  < 1, then for all t and ht,

To prove part a, take any  > 0 and let σ be a strategy that is within  of
optimal starting at t and ht. (If , a special argument needs to

be constructed.) Take T′  large enough so that for this σ and for all T > T′ , 
 is within  of . Then  is within 2  of 



 and, of course, .

For the first half of part b, note that if rewards are nonnegative, 
, since the “ added” rewards rT+2, rT+3, … can

only increase the value of any strategy, and hence the optimal value. Apply part
a. And for the second half of part b, note that, in this case, the difference between

 and  can be uniformly bounded by δ TM/(1 – δ ), where M is twice

the uniform bound on the rt functions; hence the same uniform bound applies to
the difference between  and .

A6.12.   Examples
We now have all the tools that we will develop in this appendix; what remains
is to apply them to specific problems. Of the seven problems at the start of this
appendix, we have already solved four; we will now analyze two of the
remaining three. The purpose of this section is to show how these tools are
used; even if you didn’t follow all the proofs in earlier sections, you should
make an effort to follow the logic of how the tools can be used in specific
problems.

Infinite-horizon consumption and savings
The second problem given is an infinite-horizon consumption-savings problem,
in which the decision maker seeks to maximize the expectation of the utility
function

The decision maker begins with $1000 and, in each period, earns either 5% or
12% on any savings, each with probability 1/2, independent across periods. The
problem doesn’t say, but I assume that it is not possible for the decision maker
to go into debt.



The problem has an additive and stationary structure, where the state
variable at date t is the wealth held at the start of the period, which will be
denoted yt.

The “ added-in” utility each period, , is nonnegative, so this is

immediately a problem with lower convergent utility. In fact, since the expected
rate of return on wealth is less than the discount rate (and the per-period utility
function is concave), you can prove that every strategy for this problem is upper
transient. But I will proceed without that result, to show how you can work
your way to the answer without it.

Because utility is lower convergent, any unimprovable strategy is optimal,
and if we had a good guess as the form of the optimal strategy, we could proceed
in the fashion of the job-search problem. In fact, since I know the answer, I have
a good guess as to the form of the optimal strategy. But I’ll pretend that I don’t
have such a good guess.

Instead, I’ll employ value iteration. Because the “ period-by-period rewards”
are nonnegative, we know that by iterating Bellman’s equation, we get
(optimal, finite-horizon) value functions that converge to the infinite-horizon
optimal value functions υ*. If there is only period 0, the optimal thing to do is
to consume all wealth, so the iteration begins with .

(This is the solution of the first iteration of Bellman’s equation, beginning with
.) Dropping the subscript from the wealth term, we have the

recursion

To explain, the term over which we maximize is the utility of immediate
consumption plus the discounted and expected continuation value: If we
consume c out of y this period, next period’s wealth is either 1.05(y – c) or
1.12(y – c), each with probability 1/2.

If you use this general recursive equation with  in place of  to

find , you will learn that the optimal value of c (for a continuation value



function ) is c = y/(1 + k2), where k = 0.45(1.051/2 +

1.121/2), which is approximately 0.93734802. This then tells us that

If you stare at this for a moment, you see the pattern that emerges: By an
inductive argument, if the value of continuation is 

, then the recursion that determines  is

where k is the constant 0.45(1.051/2 + 1.121/2) and we begin with k0 = 0 (or k1
= 1). This produces an optimal  and 

, so that

Letting k* = limn kn, we know that υ*(y) will equal k*y1/2. How do we know
that this sequence of kn must converge? Here’s the argument:

•   The recursion that determines  from  is increasing in the

function , meaning, put in a bigger value-of-continuation on the

right-hand side, and a bigger value function must emerge on the left-hand
side.

•   Since  and the immediate utility functions are all nonnegative,



this means that  …. Therefore, these value

functions must “ converge,” albeit convergence to +∞ is possible.

•   In fact, since we know the form for each  is kny1/2, this means that the

scalars kn are increasing in n.

•   It is conceivable that kn increases to +∞, but since the expected return rate is
less than the discount rate and the immediate-utility function is concave,
this can’t happen. (This last step is the only one that takes special
pleading.)

Moreover, since any optimal strategy must be conserving (we know this, not
the reverse!), the optimal strategy, if one exists, must be 

. And now, to verify that this is indeed the

optimal strategy, you can either prove that it generates the optimal value
function or that it is unimprovable.

In case you do grind through the numbers, you should find that k* is
approximately 2.87030984 and the optimal strategy is to consume around
12.137869% of your wealth, each period.

(Had you been able to guess that the optimal strategy took the form of
consuming a fixed fraction of wealth, you could have short-circuited much of
this work by computing the value function associated with such a strategy and
then found the fraction that made such a strategy unimprovable. But the analysis
above shows how you can substitute a mixture of effort and value iteration for an
inspired guess, if your powers of guessing are insufficient.)

Buying a flat-screen television
Recall the problem: You wish to buy a new flat-screen television. Once you buy
the television, you will receive a reward of $3000 less the price you pay. You
only will buy once. There is an infinite sequence of stores from which you
might purchase the television, indexed by n = 0, 1, …. Store n charges the
price pn, and you can only learn pn by going to store n: From your perspective,
{pn} is a sequence of independent and identically distributed random variables,
each having a uniform distribution on the interval [$2000, $3000]. You can



visit as many stores as you wish, and there is no discounting, but each time
you visit another store, you incur a cost of $100. Once you leave a store
(without buying), you cannot go back. You want to maximize the expected
value of $3000 less the price you pay and less the cost of all the visits to stores
that you make; that is, if you visit stores 0, 1, 2, …, n and then purchase at
store n, your net reward is $3000–pn–100(n+1); you seek to maximize the
expected value of this quantity. (If you never purchase a television, your net
reward is –∞; you must keep visiting stores in succession until you buy.)

This seems very similar to the job-search problem, except that in the job-
search problem, the forces pushing you to take a job are (a) that rewards are
discounted, and (b) you get no wages until you take a job. In this problem,
there is no discounting, but you have to keep paying $100 per period until you
purchase a television. The difference may seem small in terms of economics, but
in terms of the difficulties faced in using the tools of dynamic programming, it
is significant. In the job-search problem, rewards were all nonnegative (not to
mention, discounted with a bound on per-period rewards), so the utility function
is lower convergent, and (therefore) unimprovable strategies are optimal. In this
case, the utility function is not lower convergent but upper convergent.12 Since
utility is not lower convergent, it seems at first blush that we cannot simply
search for an unimprovable strategy and declare it optimal.

But it turns out that we can do this. The key is to enlist the result that says
that an unimprovable strategy is as good as any lower-transient strategy. The
lower-transient strategies, in this problem, are those that involve purchase before
some fixed and definite time T. (Any strategy that has positive probability of
delaying purchase beyond any horizon T is not lower transient, because there is
no uniform lower bound on u(h) for such strategies that holds with probability
one under the strategy.) So, if we produce an unimprovable strategy , it is at
least as good as strategies that buy by some definite time. What about other
strategies? Let be any strategy such that, for given t and ht, 

. For each T > t, let σT denote

the strategy: Beginning at t and history ht, follow the prescriptions of σ until
time T; but at time T, if a purchase has not yet been made, purchase no matter
what price is quoted. Each σT is lower transient, and so for  unimprovable, 



. And I assert that lim T→∞ 

, which then implies that 

. This in turn shows that  is optimal, because it

shows that  is as good as any strategy that doesn’t produce the disastrous
outcome –∞.

The key to the argument is to show that limT .

This takes a bit of mathematical sophistication, and I’ll just sketch the proof.
Let HT denote the subset of histories H on which (starting from ht) a purchase is
made by time T and GT denote the complement of HT. Then

where 1HT indicates the standard indicator function. There is more going on here

than you may first discern: I’ve substituted Eσ for EσT
, but I can do that because

using σT gives the same probability distribution of results as does σ, when σ
calls for a purchase by time T (on the event HT), and it calls for purchase at time
T on the complementary event GT. On the other hand,

So the difference between  and  is the difference between

the two right-most terms. But since , the event on

which no purchase is made has zero probability under Pσ[·|ht], and (by the
continuity of probability) the probability of the events GT goes to zero. More
than that, because the integral Eσ[u(h)|ht] has finite value, a standard argument
(dominated convergence) shows that the contribution to the integral from
integrating over the sets GT goes to zero. From this argument, it is relatively



easy to show as well that the second term that makes up  also goes

to zero, giving the desired convergence.
So, to conclude, we can hunt for an unimprovable strategy and, when we

find one, we know it is optimal. Now that we know this is true, the methods
used in the job-search problem work well: Hypothesize the form of the strategy
—the obvious hypothesis is, take the first price below some critical price level 

—then find the value of using a cutoff price of , and finally find the value of 

 that makes this strategy unimprovable.

While this works, it takes substantial cleverness to see the argument that an
unimprovable strategy is optimal. A more straightforward approach would be to
recall that u is upper convergent in this problem, so we can find an optimal
strategy by producing one that is conserving. The evident problem with this is
that we don’t know υ*. Moreover, it isn’t evident that we can employ value
iteration, since value iteration when rewards are undiscounted is only guaranteed
to work (in Proposition A6.12) for problems with nonnegative rewards.

But we can use value iteration, because of part a of Proposition A6.12.
Value iteration works for the υσ functions, for all strategies σ, since there is a
uniform upper bound (of 1000) on the sum of all positive rewards that can be
received. Therefore, we know from Proposition A6.12 that the limit infimum of 

 is at least as large as . But, in addition (and for this specific

problem!), we can show that  is nondecreasing in T and that 

 for all T. Adding more periods to shop cannot decrease the

optimal value! A bit informally, the argument is: Take any strategy σ for the t
t o T horizon problem. In the last period, the sales price offered is necessarily
less than the value 3000. So if σ doesn’t prescribe accepting the last offer (if you
get that far), is beaten (for the t-to-T-horizon problem) by the strategy that is: Do
what σ prescribes, except make a purchase in the last period. Therefore, it is
clear that  is the supremum over all these purchase-at-date-T-if-you-

haven’t-already-done-so strategies. And those strategies are available for any
longer-horizon problem and, in particular, for the infinite-horizon problem. So
any longer-horizon problem, and the infinite-horizon problem, necessarily have



optimal value functions that are no smaller than .13

Therefore, we know that limT→∞  exists and equals . Because (for

this problem!) we can make a special argument about values only improving the
longer is the horizon, we know that value iteration works. The job now is to
compute υ* (where I use the stationarity of the problem to drop the subscript t).

To ease the computational burden, instead of computing the function υ*,
I’ m going to compute an “ average” value of this function. Let me explain:
When contemplating whether to purchase at the price quoted at the current store,
which I’ll call p, the decision maker reasons as follows: “ If I purchase, my net
from this point on is 3000 – p. If I don’t, I move on to the next store. I have to
pay $100 immediately and, in addition, I take my chances next time. Those
chances aren’t impacted by the current state of the system (which is the price p),
since the next price I’ll see (the next state) is independent of the current state.
So, in essence, I’m comparing today between the value of buying today, 3000 –
p, and the expected value of where I’ll be at the next store, which I’ll denote ν*,
less the $100 I have to pay to get there. That is, the number ν* will be the
average value of υ*, averaged over all the prices I may see next time, but not
including the $100 I have to pay to get to the next store.”

In the recursion that determines ν*, we start with ν0 = 0. (This corresponds
to shopping with no more stores to visit.) Obviously, the optimal decision is to
buy, since the price we’re seeing today must be less than 3000. This means that
ν1 = 500: The optimal value in the last period of shopping is 3000 – p, where p
is uniformly distributed between 2000 and 3000, and that averages to 500.

Suppose, then, that the decision maker is at the next-to-last store, seeing
price p. Buying nets 3000 – p, while going on to the next store nets an average
value of ν1 –100 = 400. So the best thing to do is to purchase if p < 2600 and
go on to the final store if p > 2600. (If p = 2600, the decision maker can do
either.) There is probability 0.6 that p < 2600, with an average value to the
decision maker in this case of 700. And there is probability 0.4 that p > 2600,
in which case the average value is 400. So ν2 = (0.6)(700) + (0.4)(400) = 580.

In general, suppose νn–1 is the average value of shopping optimally, after
paying the shopping fee of $100, if this is store n – 1 from the end. At store n



from the end, facing price p, the choice is either (a) buy now, for value 3000 – p,
or (b) go to the next store, for value νn–1 – 100. It is better to buy now if 3000 –
p > νn–1 – 100 and to go on if not, which is when 3100 – νn–1 < p. This then
gives us the formula for νn (for n ≥ 2):

To explain, this is the probability of a price p less than 3100 – νn–1, times the
average value accrued at prices between that price and the lowest price of 2000,
plus the probability of a price above 3100 – νn–1, times the value of going on,
which is νn–1 less the 100 paid to continue shopping. Because we know that
value iteration works, we know that these values will converge (upward) to ν*,
and, at the same time, the cutoff price 3100 – νn–1 that determines whether to
buy today or keep shopping converges (downward) to the cutoff price that is
conserving, and hence optimal, in the infinite-horizon problem. All that remains
is to get out Excel and run the recursion; I did so and got ν* = 652.7864
(approximately, to four decimal points) and an optimal strategy of buying at the
first price less (or equal to) $2447.2136 (again, approximately) that is
encountered.

What about the possibility of going back to an earlier price quote, either for
free or at some cost? Even if this option were free, it is not worthwhile. It is
better to pay $100 and try a new store than to go back for any price greater than
$2447.2136, and if you had seen a price less than this in the past, you would
have already bought. So, in the context of this problem (and, by a similar
argument, in the context of the job-search problem), the option to go back, even
for free, is worthless. It could be worth something if you didn’t know the
distribution of prices (or wage offers) and were learning about the distribution as
you went along; then you might pass a price early on that, experience teaches
you, was actually a good deal. But solving this sort of optimal search problem
is a good deal harder when you are learning about the distribution of “ offers” as
you go. The parking problem where you don’t know the probability ρ is a fairly



simple finite-horizon problem of this sort, and the final example (number 7)
from the start of the appendix gives you a fairly simple infinite-horizon example.

A6.13.   Things Not Covered Here: Other Optimality Criteria; Continuous
Time and Control Theory

This appendix has gone on more than long enough. The tools provided will be
sufficient for many problems you encounter in the economics literature. But
many is not all, and it may be helpful to point out (in this section and the next)
two categories of problems the solution of which requires tools not covered here.

We’ve looked at optimality criteria that involve maximizing or minimizing
the expected value of a function of the full history. More than that, the tools
we’ve developed work when the utility function has the important property that
the utility of an entire history is asymptotically “ settled” by what happens in
finite time, at least as an upper or a lower bound on the final outcome.

But imagine that rewards are received each period (that is, it looks like an
additive structure), and those rewards are something like the per capita wealth of
citizens alive in an economy in that period. (Take the perspective of a central
planner who wishes to optimize institutional features of an economy that, in the
model, lives for a countable infinity of generations of citizens.) Does it make
sense to discount these values? Why should generations that come earlier be
more important than those who come later? (These are not trivial questions.
There is a large literature in economics on intergenerational equity.) If you don’t
discount per capita wealth and simply sum up the “ rewards,” you may well get
+∞ for a whole range of strategies. In this sort of setting, you may decide that it
is sensible to evaluate institutional features of the economy in terms of which
ones give the highest long-run average per capita wealth. That is, if wt is the per
capita wealth in period t, you want to maximize

(If outcomes are uncertain, you might want to look at the expectation of this
long-run run average. If the long-run average doesn’t exist, you might look at
the limit infimum of the long-run average.) Or you might say that one set of



institutional features is better than another if, eventually, the sum of per capita
wealths of the first “ overtakes” the second; that is, letting wt be per capita
wealth in the first set and  in the second set, if there is T such that, for all t

> T,

(Of course, if one set of institutions “ overtakes” the other in this sense, then it
performs at least as well in terms of long-run averages.)

The point is: These are decision criteria in which what happens over any
finite horizon is not only not dispositive, but even of no particular consequence.
What matters is entirely what happens in the very long run. The tools
developed here are pretty much useless for such criteria. So what does work?
You’ll need to consult a text on dynamic programming to get answers.

And, second, dynamic programming, at least as presented here, involves the
selection of actions at a discrete (and possibly countably infinite) sequence of
dates or times. In some economics problems, it is natural to have a formulation
where actions are chosen continuously. The mathematical subject of control
theory, in which the central result is the Pontryagin Maximum Principle,
provides tools for solving these problems if there are no stochastic elements; the
discipline of Stochastic Control Theory extends to problems with stochastic
elements.

A6.14.   Multi-armed Bandits and Complexity
Having slogged through an appendix of 50 pages, you are entitled to hope that
you now have all the tools needed to solve all manner of complex dynamic
choice problems where, at least, decisions are taken at a discrete sequence of
dates, and the decision criteria conform to the restrictions we’ve imposed. But
you should temper those hopes: Even with these stipulations, dynamic choice
problems that arise in economics get very complex, very quickly.

A class of problems known as the multi-armed bandit problems illustrates
the point. A multi-armed bandit problem is one in which, at each point in time
t = 0, 1, …, the decision maker has a number of different actions or policies she
can try. But she can only try one in each period. At the outset, she isn’t sure



how efficacious the policies will be; she has a well-formed prior assessment
about this, but as time passes, she will get better and better information about
how different policies do. The feature that sends the complexity of this situation
through the roof is, Suppose her decision which policy to try this period affects
how much she learns about the efficacy of her options. At the extreme, imagine
that the only way she can get information about the value of a given option is to
try that particular option. If, say, she has a choice between A, B, and C, and if
after some period of time, she decides that A looks better than B and C, she
might abandon B and C altogether. But if she does, she doesn’t learn anything
more about B and C and, in particular, she might miss out on the fact that C is
actually better than A.

The name multi-armed bandit comes from a fanciful depiction of this
problem. Imagine you sit in front of a slot machine. Each time t, you can put
your coin (say, a silver dollar) into the machine and pull the arm. Most slot
machines you will find in casinos have a single arm (hence the colloquialism
one-armed bandit), but this slot machine has several arms. Different arms have
different characteristics of payoff distributions: One arm might pay off small
amounts frequently; a second might pay off rarely but in huge amounts, and a
third (masquerading as the second) might eat your silver dollar each period and
never pay back anything. The problem is, you don’t know which arm is which
or even what are the precise characteristics of each arm. You can “ buy
information” on an arm by putting up your silver dollar and pulling that arm.
But the information costs you both a dollar and the time it takes to get the
information; time you might spend more profitably by pulling a different arm.

Problem 7 from the first section is the simplest problem of this sort: It is
really only a single-armed bandit, but (what makes it part of this category of
models) you don’t know a priori the characteristics of that arm, and while you
can “ buy” information, you do so only by playing that arm. If you ever stop
playing, you learn nothing more; you might decide at some point that the arm
looks bad (is the type that never pays you a reward), while in fact it is the sort
that does pay a reward occasionally, and you’ve just had a run of bad luck with
it.

While the depiction as a slot machine with multiple arms is fanciful,
economic contexts for this category of problem abound. Think of a firm trying
different production techniques (e.g., team-build versus assembly line), health



authorities trying different treatment policies, or economic policymakers trying
different forms of monetary policy. The decision maker isn’t sure about the
efficacy of any particular technique or policy and learns by trying. But the cost of
trying a particular technique or policy to learn how well it functions includes
not using another technique or policy that is known to work “ adequately.” Of
course, in real-life applications, you may be able to analyze the impact of an
untried policy through “ what-if” analysis. But the law of unintended
consequences often means that you learn best by implementing, and that comes
at a cost.

Multi-armed bandit problems are hard dynamic programming problems. It
took the community of dynamic programmers two decades or so to figure out
how to solve these problems—look in the literature for the Gittins Index—and,
at that, the methods developed only work if the arms are statistically
independent (what you learn about one arm tells you nothing about any other
arm). But in economic contexts, statistical independence is typically too strong
an assumption: You may learn something about how well B would have done
based on your experience with A, but not as much as you would have learned
had you tried B. In this sort of situation, in general, the problem is just too
hard to solve (at least, with a discounted sum of rewards criterion).

Why bother telling you all this (and discouraging you after reading through
this appendix)? If you have already read Chapter 7 in the text itself, you know
why. If not, please go and read that chapter now.

A6.15.   Four More Problems You Can Solve
Of the seven examples given at the start of this appendix, you are left with some
details to clean up in some of them, as well as two substantial tasks: In the
parking problem, what happens if the decision maker is unsure whether ρ = 0.7
or 0.9? And all of the seventh example remains. And if you would like some
more problems on which to try your hand, here are four.

 8. Another two-button, flashing-light machine

(a) A decision maker faces the following dynamic decision problem. At dates t =
0, 1, 2, …, she must push one of two buttons, the first marked X and the
second Y. Simultaneously, the machine flashes one of two signals, either A or



B. (She doesn’t get to see what the machine will flash before she chooses her
button.) She is paid according to the button she pushes and the signal flashed
by the machine: She gets $10 is she pushes X and the machine flashes A, $0 for
X and B, $15 for Y and A, and $5 for Y and B.

Of course it matters to her what the machine flashes. If she pushed X at date t –
1, then at date t the machine flashes A with probability 0.75 and B with
probability 0.25. If she pushed Y at date t – 1, the machine flashes B with
probability 0.8 and A with probability 0.2. At date 0, the machine behaves as if
she had pushed A at date –1; i.e., it will flash A with probability 0.75. (The
machine’s behavior at date t is otherwise conditionally independent of the past,
conditional on what the decision maker did at date t – 1.)

The decision maker wishes to maximize the expectation of the discounted sum
of her payments, discounted at a rate δ  per period. That is, if rt is her reward at
date t (rt = $10, $0, $15 or $5), then she seeks to maximize the expectation of 

.

As a function of δ , what is the optimal strategy for this decision maker?

(b) Redo this problem, but supposing that the machine behaves a bit differently.
Specifically, if at date t – 1 the decision maker pushed X and the machine
flashed A, then the chance that the machine flashes A at date t is 0.75. While if
at date t – 1 either the decision maker pushed Y or the machine flashed B, then
the chance that the machine flashes A at date t is 0.2. At date 0, the machine
flashes A with probability 0.75. (The machine’s behavior at date t is otherwise
conditionally independent of the past, conditional on what happened at date t –
1.)

 9. (This sort of problem arises in applications of game theory connected to
the Folk Theorem with random observables.) A decision maker is controlling a
random process that works as follows. At each date t = 0, 1, …, the process is
either in state X or state Y. If the process is in state Y, the decision maker has
nothing to do; at the next date, the state will be Y again with probability 0.1
and it will be X with probability 0.9. Moreover, the decision maker receives $0
on this date.



If, on the other hand, the process is in state X, the decision maker must choose
one of two actions, either α or β. If the decision maker chooses α, she is paid $1
and the state is X again next period with certainty. If she chooses β, she is paid
$2 and the state next period is Y with certainty.

The decision maker discounts her rewards at the rate 0.8 per period. That is, if
she gets reward r0 at date 0, r1 at date 1, and so on, she evaluates her outcome
as the sum . If there is any uncertainty, she wishes to

maximize the expectation of this discounted infinite sum.

What is the optimal strategy for this decision maker to follow?

 10. You are (eventually) going to manufacture a product for which you will be
the monopoly producer. Demand for this product is given by the demand
function D(p) = 1000(10 – p) per period. Once you begin producing the product,
you will set its price to maximize your per period profit, which will depend on
your marginal cost of production c. (There are no fixed costs associated with
production.) Specifically, given a value of c (less than 10), your optimal level of
production per period is 500(10 – c), and your profit per period is 250(10 – c)2.

The marginal cost of manufacture c will be one of 7, or 4, or 1.

Which of these three will be your cost is partly determined by nature and partly
by you. Specifically, there is a theoretically best cost, which is one of these
three, and the chances of each value being the theoretically best cost is 1/3. (You
know these probabilities; you do not (yet) know which is the true theoretical
best cost and, as you will see, you may never learn which it is.)

At time t = 0, you know how to manufacture the good at a marginal cost of 7.
But if you choose to, you can spend this period trying to get a better (lower)
cost figure. If you choose to do this, and if the theoretical best cost figure is 7,
you will make no progress. But if the theoretical best cost figure is either 4 or 1,
there is a 1/2 probability that, in this period, you will learn how to manufacture
the product at a cost of 4.

In general, in any period where you choose to do research to improve your costs
of manufacture, you will either learn nothing or improve by one step, from 7 to



4 if you are currently at 7, and from 4 to 1 if you are currently at 4. If the true
theoretical best cost is your current cost, then there is no chance you will better
your cost. But if the true theoretical best cost is less than your current cost,
there is probability 1/2 that you will improve your costs by one step. Moreover,
this probability 1/2 is independent of anything that happened in prior periods
and, if you are currently at a cost of 7, is the same whether the theoretical best
cost is 4 or 1.

However, if you choose to do research, to try to lower your costs, you cannot
manufacture and sell this period. There are no further costs to doing research,
except for the profit you forego this period. But you must forego any profit this
period. And if you ever decide to stop research and manufacture, you can never
go back to research. You are forever stuck with the cost at which you first
decide to begin to manufacture and sell.

You want to maximize the expected value of the discounted sum of profits you
earn over an infinite horizon of time periods t = 0, 1, 2, …, with a discount rate
of δ  = 0.9. What is your optimal strategy? You must, of course, prove that the
solution you propose is indeed optimal.

 11. Forest management

(This problem is very arduous. Proceed at your own risk!)

A firm manages a growing resource. (Think of a paper firm managing a forest.)
In year t, the forest is of size xt. The firm, seeing xt, must decide whether to (i)
harvest the forest and replant or (ii) let the forest grow for another year. If the
firm harvests and replants in year t (after seeing xt), it realizes a profit of pt(xt –
1), where pt is the price of wood in year t (which the firm also sees prior to its
decision whether to harvest).

If the firm harvests in year t, the size of the forest in year t + 1 is 1 and in year t
+ 2 is 3. Thereafter, until harvested, the forest grows each year by either 4 units
or 0 units.

When managing this forest, the firm wishes to maximize the net present value of
its profits, discounted at a rate of 0.9 per year. Assume that in year 0, the forest



is of size 1; i.e., it was just harvested and replanted in year –1.

(a) Suppose pt = 1 in all periods. Moreover, the forest grows by 4 units in year
3 after harvest with certainty, and continues to grow by 4 units each year. What
is the optimal (maximizing the net present value) harvesting strategy for the
firm? (Prove that your allegedly optimal strategy is in fact optimal.)

(b) Suppose that the sequence {pt} is an sequence of independent and identically
distributed random variables, where pt = 1 with probability 1/2 and = 1.5 with
probability 1/2. What is the optimal harvesting strategy for the firm? (Prove
that your allegedly optimal strategy is in fact optimal.)

(c) Go back to the case where pt = 1 in all periods. Suppose that, in year 3 after
harvesting (i.e., in year t = 2 in the story above, and thereafter in the third year
after any harvest decision), the forest grows by 4 units with probability 0.8 and
by 0 units with probability 0.2. This continues until the forest is harvested
according to the following law of motion: If the forest grew 4 units in the
preceding period, it will grow 4 units in the current period with probability 0.8
and grow 0 units with probability 0.2; if it grew 0 units in the preceding period,
it will grow 0 units in this period with probability 1. (In other words, once the
forest stops growing, it never begins to grow again, until you harvest and
replant.) What is the optimal harvesting strategy for the firm? (Prove that your
allegedly optimal strategy is in fact optimal.)

(d) Complicate case c as follows. The forest, between each decision date, is
either in growth mode or in no-growth mode. When it is in no-growth mode,
its growth is 0, and it remains in no-growth mode. When it is in growth mode,
its growth is either 4, with probability.9, or 0, with probability.1, and in the
next period it is in growth mode with probabilty.8 and in no-growth mode with
probability.2. The transition from growth to no-growth modes is conditionally
independent of the size of the current growth, conditional on the previous mode.
That is, if the forest is in growth mode between years t and t + 1 and it grows 4
units over that period, its mode between years t + 1 and t + 2 is growth with
probability.8, the same as if it had grown only 0 units between t and t + 1.
Assume that the forest is sure to grow 1 unit the first year after harvest and
planting, 2 units the year following, and will be in growth mode the year



following that. (Thereafter, the transition probabilities above kick in.) The firm
cannot tell if the forest is in growth mode or not after the third year after harvest
and planting; the only evidence is how much the forest grew.

What is the optimal harvesting strategy for the firm? (Prove that your allegedly
optimal strategy is in fact optimal.)

 

1 My recommendations are Bertsekas, Dynamic Programming and Optimal
Control, Vols. 1 and 2 (3rd edition), Athena Scientific, 2005 and 2007, and
Whittle, Optimization Over Time: Dynamic Programming and Stochastic
Control, Vols. 1 and 2, John Wiley and Sons, 1982. Lucas and Stokey,
Recursive Methods in Economic Dynamics, Harvard University Press, 1989,
gives an account from which many economists have learned dynamic
programming; their presentation varies considerably from mine, as readers
familiar with their treatment will shortly learn.

2 In this case, my statement that the occupancy status of any parking spot is
independent of the status of other spots isn’t quite what I mean: The status of
any spot is independent of others, conditional on the value of ρ. With
uncertainty about ρ, the occupancy status of the various spots forms an
exchangeable sequence, if you know that term from Bayesian statistics.

3 The internet has made this classic optimal search problem somewhat
anachronistic.

4 Why is this called a multi-armed bandit problem, and why is it the
“ simplest” problem of that form? I’ll explain that near the end of the appendix.

5 I debated whether to omit the subscript t in , writing instead of

fσ(ht). Technically, the subscript is superfluous, as the argument of the function
ht implicitly identifies the time t. But at some crucial points in the exposition
to follow, I think it helps clarify matters to have this subscript available, so I
include it.

6 Once again, where the partial history spaces are uncountably infinite, the
legitimacy of this claim depends on a measurable selection argument. Readers



with an interest in the deep mathematics of the subject may wish to consult the
classic references on positive and negative dynamic programming, by Blackwell
(1967) and Strauch (1966).

7 Such problems are often called optimal-stopping problems, although in
most optimal-stopping problems, the reward if taken at time t depends on the
position of a stochastic process that is being observed. In these two examples,
the reward depends only on the time it is taken.

8 It would be more precise to write  on the

right-hand side of (A6.3), but here and in what follows, I’ll use the more
compact form shown.

9 The usual statement of the Monotone Convergence Theorem states that, if
fn is a sequence of nonnegative functions converging pointwise and
monotonically upwards to f, then limn ∫ fn = ∫ f. I’m adapting this result in the
following ways: I’m integrating against a probability measure, the sequence of
functions  converges monotonically downwards to u, everything is
uniformly bounded above (instead of being nonnegative), and I don’t preclude u
having an expected value of –∞, or even taking on the value –∞ for some h. But
this is all a legitimate extension of the usual Monotone Convergence Theorem.

10 Take care here: While discounting with a discount rate strictly less than
one is very common, the requirement that rewards are uniformly bounded can be
problematic in some applications. In such cases, you can often find ways to
extend c. For instance, if rewards in period t are bounded in absolute value by
Kβt for some fixed K and β > 1, and δ β if < 1, then utility is both upper and
lower convergent.

11 To ensure that various integrals are well defined, from the outset I’ve
assumed that u is either uniformly bounded above or uniformly bounded below.
I am not backing off that assumption here. But, for example, in the buying-a-
television problem, u is uniformly bounded above. I’ll later want to show that
some strategies in that problem are lower transient; so for those strategies, u
must also be uniformly bounded below, at least on a set of histories that has
probability one under those strategies.

12 Why? Since you can only buy once, along every possible history, there is
at most one positive entry. Along any history with that one positive entry, 



 converges to u(h) and, in fact, the convergence is exact at some finite
time. And, along the history where you never buy,  converges to u(h) =
–∞. Moreover, u(h) is uniformly bounded above by 1000.

13 This argument depends on the fact that the price quoted in any store can be
no greater than the value, 3000, of the television. What if the support of each pt
exceeds 3000? If you like mathematical challenges, see if you can adopt the
simple argument I’ve given here to show that value interation does work, as
long as the support of pt is bounded below.



Appendix Seven



The Implicit-Function Theorem

Suppose a continuously differentiable function F : A ×B → Rn is given, where A
and B are open sets in the spaces Rm and Rn, respectively. A point ( a0, b0)∈
A×B is specified; let z0 denote F (a0, b0). We would like to find a function φ: A
→ B with φ(a0) = b0 and

In words, as we vary a, φ(a) finds a point in B that keeps the value of F fixed at
z0.

In general, a function φ that satisfies (A6.1) cannot be found at all. Suppose,
for instance, that F doesn’t depend on b at all but varies nontrivially with a. To
be able to find φ, F must be adequately “ affected” by the b argument, where
adequately means “ enough so that we can undo the effects of varying a.” Also,
to find a function φ that works for every a∈A is too much to hope for; the best
we can do in general is to produce a function that works for a in a neighborhood
of a0. (In many applications, that is good enough.)

Proposition A7.1 (The Implicit-Function Theorem). For the setting just
described, write b = (b1, …, bn) and Fi for the ith component of the vector
function F. Let M be the n ×n matrix whose i, j th element is

Then if M evaluated at the point (a0, b0) is nonsingular, there exist open sets
A′ ⊆ A and B′ ⊆ B with (a0, b0) ∈ A′ ×B′ and a continuously differentiable
function φ: A′ → B0 such that (A7.1) holds for all a ∈ A′. Moreover, for each
a ∈ A′, φ(a) is the unique b ∈ B′ such that F (a, b) = z0 .

For a proof, see Spivak (1965). If you have a good geometric intuition, you can
probably intuit why nonsingularity of M means that F varies adequately in b, at



least in a neighborhood around b0: Whatever changes in the value of F are
wrought by varying a (close to a0), we can move in any direction we want by
varying b.



Appendix Eight



Fixed-Point Theory

Proposition A8.1. Suppose f : [0, 1] → [0, 1] is continuous. Then there exists
a fixed point of f, meaning some point x* such that f(x*) = x*.

This is the simplest of all fixed-point theorems. Its proof is elementary to
anyone who survived a course in calculus: Define the function ϕ: [0, 1] → R by
ϕ(x) = f(x) − x. This function ϕ is continuous, and ϕ(0) = f(0) − 0 = f(0) ≥ 0,
while (1) = f(1) ϕ1 ≤ 0. The Intermediate-Value Theorem from calculus therefore
tells us that there is some point x* ∈ [0, 1] such that ϕ(x*) = 0, but this is
f(x*) − x* = 0, or f(x*) = x*.

More generally, fixed-point theorems come in two basic forms, one for
functions and one for correspondences:

If f is a function with domain X and range X, [and then conditions on X and f
are given], there exists some x* ∈ X such that f(x*) = x*.

If F is a correspondence with domain X and range X (that is, F (x) ⊆ X for all
x ∈ X), [and then conditions on X and F are given], then there is exists some
x* ∈ X such that x* ∈ F (x*).

The fixed-point theorem will sometimes go on to say more, for instance, about
the structure of the set of fixed points.

In economics fixed-point theorems and fixed-point theory are most often
used to prove that an equilibrium to some system or other exists; for instance,
in this volume, we use fixed-point theory to establish the existence of a
Walrasian equilibrium for a general equilibrium economy. Economists use a
variety of fixed-point theorems for these purposes. In Chapter 14 (the one place
in this volume where fixed-point theory is employed), Kakutani’s Fixed-Point
Theorem is employed; in one of the problems, you are asked to use Brouwer’s
Fixed-Point Theorem. Here they are:

Proposition A8.2 (Brouwer’s Fixed-Point Theorem).  If X is a nonempty,
compact, and convex subset of Rk for some integer k, and f : X → X is
continuous, then there exists a fixed point of f, meaning that for some x* ∈ X,
f(x*) = x*.



Proposition A8.3 (Kakutani’s Fixed-Point Theorem).  If X is a nonempty,
compact, and convex subset of Rk for some integer k, and F : X ⇒ X is
nonempty and convex valued and upper semi-continuous, then there exists a
fixed point of F, meaning that for some x* ∈ X, x* ∈ F (x*).

It is obvious (why?) that Bouwer’s Fixed-Point Theorem is implied by
Kakutani’s; and Kakutani can be proved (not entirely trivially) if one assumes
Brouwer. So, roughly speaking, the two are equivalent. But proofs of either are
not trivial. Intuitive demonstrations can be provided. Perhaps the most typical
is the following demonstration of Brouwer where X is a circle (interior and
boundary) in R2. Suppose f : X → X has no fixed point. For each point x ∈ X,
find f(x) and draw a ray from f(x) through x; label the point on the boundary hit
by this ray as g(x). As long as f(x) ≠ x, this is a well-defined process for defining
g(x), and it is intuitively clear that g is continuous. (If x moves a bit, then f(x)
moves only a bit; hence the ray moves only a bit and the intersection point
moves only a bit.) Moreover, if x lies on the boundary of X, then clearly g(x) =
x. But then g is a continuous map from X to its boundary that is the identity on
the boundary. And (here’s the intuitive part) it is intuitively clear that one can’t
do this. You must ”tear” X somewhere to map the whole circle onto its
boundary in a way that leaves the boundary fixed. Why does the existence of a
fixed point rule this sort of thing out? If f(x) = x, then it isn’t clear how to
define g(x). More to the point, perhaps, slight movements in x around such a
fixed point can mean big movements in g(x); the ”proof” that g is continuous
depends on some separation between x and f(x).



Figure A8.1. Demonstrating Brouwer’s Fixed-Point Theorem on the
circle in R2. If continuous f has no fixed point, then let g map each x to
the point on the boundary of X that is hit when you construct a ray from
f(x) through x. This g is continuous and seemingly maps the circle into
its boundary in a way that keeps the boundary fixed. Intuitively, this does
not seem possible, so every continuous f must have a fixed point.

But this is certainly no proof. It can be turned into one; a result in
mathematics called Borsuk’s Lemma shows that this sort of continuous map is
impossible (in R2 and in higher dimensions). And other, more direct proofs are
possible. Perhaps the most accessible are ”constructive” or computational:
Using Sperner’s Lemma, you can show how to find ”approximate fixed points”
to any degree of approximation desired, and then pass to a limit. For Brouwer
proved in this fashion, see Border g(x) (1990) or Scarf (1973). And if you know
Green’s Theorem from advanced calculus, it can be used as the basis of a proof.

While we use Kakutani in the text, other fixed-point theorems can be found



in the literature. Some of these are in the same spirit as Kakutani and Brouwer.
For example, in Brouwer, convexity per se of X is inessential. You should have
no problem proving the following result:

Corollary A8.4. If X is homeomorphic1 to a convex and compact set Y ⊆ Rk,
and if f : X → X is continuous, then there is some x* ∈ X such that f(x*) = x*.

But other ”extensions” of Brouwer and Kakutani are far less trivial; in the
economics literature, you should watch in particular for the Eilenberg-
Montgomery Fixed-Point Theorem.

Other fixed-point theorems found in the literature are distinctly different from
Brouwer and Kakutani. Two of the most important are Banach’s Fixed-Point
Theorem, also known as the Contraction-Mapping Theorem, and Tarksi’s
Fixed-Point Theorem. Although we make no use of them in this volume, they
are both relatively easy to prove, so I will give them here. Both concern fixed
points of functions, but have relatively easy extensions to correspondences,
which we also provide.

Banach’s and Nadler’s Fixed-Point Theorems
Because Banach’s Theorem is sometimes used in contexts where the domain
(and range) of the function are more complex than finite-dimensional Euclidean
space, we will give it in greater generality.

The setting involves a function f defined from a complete metric space (X, d)
to itself. To explain, a metric space is a nonempty set X for which the distance
between any two points, x and x′ from X, is given by d(x, x′). The distance
function must satisfy (for all x, x′, and x″ from X) ∞ ≤ d(x, x′) < 1, d(x, x′) = 0 if
and only if x = x′, symmetry (d(x, x′) = d(x′, x)), and the triangle inequality: d(x,
x″) ≤ d(x, x′)+d(x′, x″). The metric space is complete if every Cauchy sequence in
it has a limit. For readers unfamiliar with this terminology, if X is a closed
subset of Rk for some k, then X is a complete metric space if we measure
distance by d(x, x′) = | |x – x′| | . (And you can think in those terms for the rest of
this subsection.)

Definition A8.5. If, for some α < 1, f : X → X satisfies d(f(x), f(x′)) ≤ αd(x, x′)
for all x, x′ ∈ X, the function f is called a contraction mapping.



Proposition A8.6 (Banach’s Fixed-Point Theorem, also known as the
Contraction-Mapping Theorem). If f : X → X is a contraction mapping
defined on a complete metric space (X, d), then f has a unique fixed point x*, a
single point satisfying f(x*) = x*.

Proof. Take any point from X and label it x0. Let x1 = f(x0) and, inductively,
xn+1 = f(xn). Let A = d(x0, x1), so that, inductively, d(xn, xn+1) ≤ αnA. Applying
the triangle inequality shows that d(xn, xm) ≤ A(αn + … + αm – 1) ≤ αnA/(1 – α),
(for m > n), and so {xn} is a Cauchy sequence. Since the space X is complete,
this sequence has a limit x*. That is limn d(xn, x*) = 0. Since d(f(xn), f(x*)) ≤
αd(xn, x*), this tells us that limn d(f(xn), f(x*)) = 0, but this is limn d(xn+1,
f(x*)), so limn xn = f(x*). Using the triangle inequality, one shows that, in a
metric space, a convergent sequence can have only one limit; hence f(x*) = x*,
and x* is a fixed point.

Now suppose  and  are two fixed points of f. That is, f( ) =  and f(
) = . But then, because f is a contraction mapping,

d( , ) = d(f( ), f( )) ≤ αd( , ),

for α < 1, which implies d( , ) = 0, or  = ; the fixed point is unique.

Consider next the case of correspondences. For each x ∈ X, we have a set F
(x) ⊆ X. We will assume that (X, d) is a metric space and that, for each x ∈ X,
F (x) is compact. Let Z be the space of all nonempty, compact subsets of X; a
metric for Z, called the Hausdorff metric, is

It must be proved that dH has all the properties required of a metric, but it does.

Definition A8.7.  If, for some α < 1, F : X → Z satisfies dH(F (x), F (x′) ≤



αd(x, x′) for all x, x0 ∈ X, the correspondence F is called contractive.

Proposition A8.8 (Nadler’s Fixed-Point Theorem).  If F is a contractive,
nonempty-valued, and compact-valued correspondence defined on a complete
metric space, then there is some x* ∈ X such that x* ∈ F (x*).

I’ll leave the proof in your hands with the following (substantial) hint: Begin at
any x0 and let x1 be a point in F (x0) that is closest to x0. It is worth observing,
perhaps, that uniqueness of the fixed-point is irrevocably lost: Suppose X is
compact, and F (x) = X for all x. This is a contractive mapping with a lot of
fixed points.

Tarski’s Fixed-Point Theorem
Tarski’s Fixed-Point Theorem concerns functions on ordered sets. To set the
stage, we need a slew of definitions.

Definition A8.9.
a.   A partially ordered set, or poset, consists of an abstract set X and a

binary relation  on X that is reflexive (x  x for all x), transitive (you
should know what that means), and anti-symmetric (if x  y and y  x,
then x = y).

b.   If Y is a subset of X for some partially ordered set (X, ), an upper
bound for Y is an element x ∈ X such that x  y for all y ∈ Y. A
supremum for Y is an upper bound x* of Y that, moreover, satisfies x 

x* for all other upper bounds x of Y.2

c.   A join semi-lattice is a partially ordered set (X, ) such that if x and x′
are any two elements of X, then the set {x, x′} has a supremum in X, which
is denoted x ∨ x′ and called the join of x and x′.

Proposition A8.10 (Tarski’s Fixed-Point Theorem).  Suppose (X , ) is a
join semi-lattice with the following additional properties:



•   The set X has a maximal and a minimal element: there exist  ∈ X and 
 ∈ X such that   x  x for all x ∈ X.

•   Every nonempty subset Z of X has a supremum in X.3

If f : X → X is a nondecreasing function, meaning x  x′ implies f(x)  f(x′),
then the function f admits a fixed point: For some x*, f(x*) = x*. Moreover, the
supremum of the set of fixed points of f is itself a fixed point of f.

Proof. Given the function f, let X′ = {x ∈ X : f(x)  x}. Note that if x ∈ X′,
then f(x)  x by the definition of X′, which implies f(f(x))  f(x), since f is an
nondecreasing function, which implies f(x) ∈ X′.

Since f( ) ∈ X and x′   for all x′, we know that f( )  , and
hence  ∈ X′; X′ is nonempty. Therefore, X′ has a supremum x*. I assert that
f(x*) = x*; that is, x* is a fixed point of the function: First, I assert that f(x*) 
x*. To see this, note that x*  x′ for all x′ ∈ X′; hence f(x*)  f(x′) for all x′
∈ X′ (f is nondecreasing), and as f(x′)  x′ for all x′ ∈ X′ by the definition of
X′, transitivity of  implies f(x*)  x′ for all x′ ∈ X′. This means that f(x*)
is an upper bound of X′, and since x* is its supremum, f(x*)  x*.

But if f(x*)  x*, then x* ∈ X′ by definition, and so f(x*) ∈ X′ (see the
first paragraph). Since x* is an upper bound of X′, this implies x *  f(x*),
which with the conclusion of the previous paragraph and anti-symmetry of 
implies x* = f(x*). This makes x* a fixed point.

Since  is reflexive, for any fixed point , f( ) =   , and so  ∈
X′. Therefore, x*, being the supremum of X′, is immediately also a supremum of
the set of fixed points of f.

To see Tarski’s Theorem at work (and where it fails to work), consider four
examples: First, suppose X is the unit cube in Rk, or X = [0, 1]k, and  is the
usual greater-than-or-equal-to relationship. Clearly, (X, ≥) is a poset: x ≥ x for all
x, ≥ is transitive, and if x ≥ y ≥ x, then x = y. X has maximal and minimal



elements: The origin is minimal and the vector (1, 1, …, 1) is maximal. And
suppose Z is any subset of [0, 1]k. Let x* be defined as the component-wise
supremum; that is, for i = 1, …, k,  = sup {zi : z ∈ Z}. If x is any upper
bound of Z, then xi ≥ zi for all z ∈ Z and all i; hence xi ≥  and, therefore, x ≥
x*. And x* is clearly an upper bound.

Now let f be any nondecreasing function from [0, 1]k to [0, 1]k. Tarski’s
Theorem immediately implies that f has a fixed point.

Next, suppose  is nondecreasing. The simple

case of k = 1 and f(x) = x + 1 shows that f need not have a fixed point. The
problem, of course, is that  has no maximal element. (You could also say
that there are subsets of  without suprema, but if we formulated the second
bullet-point condition as Every set with an upper bound has a supremum, then
the property holds; it is really the lack of a maximal element that is killing us.)

Or try X = . The simple case of k = 1 and f(x) = x – 1 is an example
with no fixed point. Note that in this case, X does have a maximal element and
every nonempty subset does have a supremum. But we can never get the proof
going, because we don’t know that the set X′ = {x ∈ X = : f(x) ≥ x} is
nonempty. (If we knew this set was nonempty for the f in question, we’d be in
business.)

Finally, suppose X is the set of all rational numbers between 0 and 1, with
the order ≥. We have a partially ordered set, and moreover the set has a minimal
and a maximal element. But it is not complete; not every nonempty set has a
supremum. Specifically, the set {q ∈ X : q ≤ π/4} (where π in this case is the
standard irrational number 3.14159…) has no supremum in X. And we can
produce nondecreasing f on this X with no fixed points. For instance, let {qn} be
a sequence of rational numbers that are strictly increasing and approach π/4 from
below, with q0 = 0, and let { n} be any sequence of rational numbers that are

strictly decreasing and approach π/4 from above, with 0 = 1. Then construct f

as follows:
If q (a rational number) is less than π/4, then find qn and qn+1 such that qn ≤



q < qn+1, and let f(q) = qn+1. And if q is greater than π/4, then find n and 

n+1 such that n ≥ q > n+1 and let f(q) = n+1. I leave it to you to verify that

f is nondecreasing, but has no fixed point (in X). (My f is not strictly
increasing. Can you make a minor adjustment in my construction and provide
an f that is strictly increasing on the rationals between 0 and 1 but still has no
fixed point?)

Just as Kakutani’s Fixed-Point Theorem provides a ”correspondence
version” of Brouwer, and Nadler provides a ”correspondence version” of Banach,
a ”correspondence version” of Tarski’s Fixed-Point Theorem has been given by
Zhou (1994).

Proposition A8.11 (Zhou’s Fixed-Point Theorem).  Suppose (X ) is a join
semi-lattice with the two additional properties given in the statement of
Proposition A8.10. Suppose that F : X) X is a nonempty-valued correspondence
on X, such that,

•   for each x ∈ X, F (x) contains its own supremum and,

•   if x  y, x′ ∈ F (x), and y′ ∈ F (y), then x′ ∨ y′ ∈ F (x).

Then there is some x* ∈ X such that x* ∈ F (x*).

Proof. For each x, let f(x) = sup(F (x)). I assert that f is a nondecreasing
function: If x  y, since f(x) ∈ F (x) and f(y) ∈ F (y) by the first bullet point,
we have f(x) ∨ f(y) ∈ F (x) by the second bullet point. Of course, f(x) ∨ f(y) 

 f(x), but since f(x) = sup F (x) and f(x) ∨ f(y) ∈ F (x), it follows that f(x) 
 f(x) ∨ f(y), and hence f(x) ∨ f(y) = f(x) by anti-symmetry. But then f(x) =

f(x) ∨ f(y)  f(y).

Now apply Tarski’s Fixed-Point Theorem to f; there exists x* such that x*
= f(x*). But f(x*) ∈ F (x*) by the first bullet point, and so x* ∈ F (x*).

This is, in fact, a simplified version of Zhou’s result: He provides
conditions ensuring that the set of fixed points of an (appropriately conditioned)



correspondence is a nonempty complete lattice.

 

1 In general, sets X and Y are homeomorphic if there exists a function ϕ: X →
Y that is oneto-one and onto, and such that both ϕ and ϕ–1 are continuous. In
the specific case of X compact, if ϕ: X → Y is one-to-one, onto, and continuous,
then ϕ–1 is automatically continuous. Given such a, to prove the corollary, let
g(y) = ϕ(f(ϕ–1(y))).

2 If a set Y has a supremum, that supremum is necessarily unique: If x* is a
supremum of Y, then x* is an upper bound of Y, and so x*  x** for any other
supremum x** of Y. But if x** is some other supremum of Y, then x**  x*
by a symmetric argument, and anti-symmetry of  implies that x* = x**.

3 This condition is sometimes phrased: Every nonempty set with an upper
bound has a supremum. But the first bullet point ensures that every nonempty
set has an upper bound. Readers with knowledge of lattice theory will recognize
that if these two conditions hold, then X is a lattice; every pair of points has a
meet as well as a join. Proof: If Z is a nonempty subset of X, the set B of its
lower bounds is nonempty. Let b* be the supremum of B. Since each z ∈ Z is
an upper bound of B and b* is the supremum of B, we know that z  b* for all
z ∈ Z. That is, b* is a lower bound of Z. Of course, since b* is the supremum
of B, b*  b for all b ∈ B. But this implies that b* is an infimum of Z.
Applying this to two-element subsets of X gives us a meet for each pair out of
X; moreover, every nonempty subset of X has an infimum as well as a
supremum.
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